pendul invers rotativ

Upload: florin-petre

Post on 03-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Pendul Invers Rotativ

    1/9

    Analele Universit ii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 3/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 3/2010

    230

    PROIECTAREA PRIN METODALQRI METODA DIRECT

    LYAPUNOV A SISTEMULUI DECONTROL AL PROCESULUIPENDUL INVERS ROTATIV

    Marian Popescu,UniversityConstantin Brncui, Tg-Jiu,

    ROMANIA

    Adrian Runceanu,UniversityConstantin Brncui, Tg-Jiu,

    ROMANIAConstantin Cercel,UniversityConstantin Brncui, Tg-Jiu,

    ROMANIA

    Rezumat: n cadrul acestei lucrri se vaprezenta implementarea unui sistem de control aprocesului real pendul invers rotativ. Acestsistem prezint restricii puternice de timp real itotodat precizia comenzii calculate trebuie s fiect mai mare, datorit faptului c sistemul are nplan vertical_Up un singur punct de echilibruinstabil. Algoritmii implementai sunt bazai pe ostructur de reglare cu reacie dup variabilele destare i proiectarea s-a realizat prin metodaLQR(Linear Quadratic Regulator) i prin metodadirect Lyapunov, realizndu-se astfel i ocomparaie ntre cele dou metode.

    Cuvinte cheie: Lyapunov, LQR, pendulinvers rotativ

    1. DESCRIEREA PROCESULUIPENDUL INVERS ROTATIV

    Pendulul invers rotativ este utilizat

    foarte mult n domeniul sistemelor de control

    pentru a ilustra idea tehnologiei controlului

    automat. Fiind un sistem neliniar i instabil,

    practic are 2 puncte de echilibru n plan

    vertical, unul stabil vertical-Down i altul

    instabil vertical-Up, este foarte util n testarea

    noilor dezvoltri n domeniul sistemelorneliniare. Ca i construcie, este format dintr-

    un bra acionat de un motor de c.c. ce se

    rotete n plan orizontal i are ataat la capt

    LQR DESIGN METHOD ANDLYAPUNOV DIRECT METHODPROCESS CONTROL SYSTEM

    "ROTARY INVERTED

    PENDULUM"

    Marian Popescu,UniversityConstantin Brncui, Tg-Jiu,

    ROMANIA

    Adrian Runceanu,UniversityConstantin Brncui, Tg-Jiu,

    ROMANIAConstantin Cercel,UniversityConstantin Brncui, Tg-Jiu,

    ROMANIA

    Abstract: This paper will present theimplementation of a real process control systeminverted pendulum rotating. This system haspowerful real-time restrictions and also calculatedthe accuracy of the order must be as large becausethe system is planning vertical_Up one unstableequilibrium point. Implemented algorithms arebased on a reaction after adjusting structure statevariables and design was done by the method

    LQR (Linear Quadratic Regulator) and Lyapunovdirect method, thus achieving a comparisonbetween the two methods.

    Keywords: Lyapunov method, LQRmethod, rotational inverted pendulum

    1. INVERTED PENDULUM ROTARYPROCESS DESCRIPTION

    Rotary inverted pendulum is used very much

    in control systems to illustrate the idea of

    automatic control technology. Being an

    unstable nonlinear system and basically has

    two vertical equilibrium points, one stable

    and one unstable vertical-Down-Up-down,

    is very useful in testing new developments

    in nonlinear systems. As construction

    consists of an arm driven by a DC motor

    that rotates horizontally and is attached to

    the end of the pendulum itself that rotates in

    a vertical plane perpendicular to the actuator

    arm, as in Fig.1.

  • 7/28/2019 Pendul Invers Rotativ

    2/9

    Analele Universit ii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 3/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 3/2010

    231

    pendulul propriu-zis care se rotete ntr-un

    plan vertical perpendicular pe braul de

    acionare, ca nFig.1.

    Datorit faptului c pendulul invers

    rotativ are 2 grade de libertate rotaionale i

    numai un element de execuie, acest sistemintr n categoria sistemelor subacionate.

    Ideea meninerii pendulului n pozitiavertical-Up const n proiectarea unui sistem

    de control care s balanseze, printr-o coreciecontinu a comenzii la motorul de acionare,

    pendulul n jurul punctului de echilibru

    instabil din planul vertical. Motorul care

    realizeaz acionarea este conectat mecanic la

    braul pendulului printr-un mecanism de roidinate care realizeaz o multiplicare a

    turaiei i totodat conecteaz ipoteniometrul de msur a poziiei braului.

    2.MODELAREA PENDULULUI NPOZIIE VERTICAL-UP

    Pornind de la Fig.1. a pendulului poziionat

    n plan vertical-Up, vom avea proieciamicrii pendulului n planul XOY ca n

    Fig.2. Modelarea micrii pendulului se varealiza folosind ecuaiile Euler-Lagrange i

    vom considera pentru simplificare ca avnd

    centrul de greutate chiar n vrful pendulului.

    Because the rotary inverted

    pendulum has two rotational degrees of

    freedom and only one element of

    performance, this system falls into the

    category of under operated systems. Theidea of maintaining the pendulum in

    vertical-up position is to design a control

    system to balance, through a continuous

    adjustment to the engine control actuators,

    the pendulum around the equilibrium

    unstable plane. Performing drive motor is

    connected mechanically to the arm by a gear

    mechanism that achieves a multiplication of

    speed and also connect and position

    measuring potentiometer arm.

    2.MATHEMATICAL MODELING FORVERTICAL_UP PENDULUM

    Based on Fig.1. the pendulum positioned

    vertically-Up, we have movement in the

    plane projection xOy as Fig.2. Modeling of

    pendulum motion will be made using the

    Euler-Lagrange equations and we consider

    for simplicity as being the center of gravity

    even at the top of the pendulum.

    X

    Fig.1. Vertical_Up

    pendulum.

    Y

    Z

    O

    L

    l

    PWM

    P

  • 7/28/2019 Pendul Invers Rotativ

    3/9

    Analele Universit ii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 3/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 3/2010

    232

    Lagrangeanul sistemului este: Lagrangean system is:

    coscossin2

    1)(

    2

    1)(

    2

    1

    coscossin2

    1)(

    2

    1

    2

    1

    2

    1

    2222222

    22222222

    glmLlmlmlmJLmJ

    glmLlmlmlmJLmJL

    ppppppb

    ppppppb

    ++++=

    =++++=

    &&&&&

    &&&&&&

    (1)

    Pentru coordonata generalizat avem

    ecuaia Lagrange:For generalized coordinates we have

    Lagrange equation:

    =

    LL

    dt

    d

    &(2)

    unde -este cuplul total care acioneaz

    asupra axei de rotaie n direcia creterii lui

    . Acesta reprezint cuplul exercitat demotor- m care trebuie s nving cuplul de

    frecare.

    where - is the total torque acting on the

    axis of rotation towards higher . This

    engine is the torque m - the torque requiredto overcome friction.

    &bm C= (3)

    unde bC -este coeficientul de frecare vscoas

    n jurul axei de rotaie pentru unghiul .

    Folosind relaiile (1),(2), (3) prima ecuaie de

    micare a braului pendulului devine:

    where bC - is the viscous friction coefficient

    around of rotation axis for angle.

    Using (1),(2), (3) first motion equation of

    pendulum arm is:

    &&&&&&&&&& bmpppppb CLlmlmLlmlmLmJ =++++ sincossin2cossin)(22222 (4)

    Similar, pentru a 2-a coordonat generalizat

    -unghiul braului avem ecuaia Lagrange:Idem, for second generalized coordinate -

    angle of arm has Lagrange equation:

    =

    LL

    dt

    d

    &(5)

    unde -este cuplul total care acioneaz n

    jurul axei de rotaie a braului n direcia

    creterii unghiului . Considerm

    Where, - is the total torque for acting

    around of rotation axis of arm in direction of

    rising the angle . Consider &

    pC= ,

    X

    Y

    O

    L

    lsin

    1

    1

    Fig.2. Projection in xOy plan

    Pendulum motion in the horizontalplaneLsin

    Lcos

  • 7/28/2019 Pendul Invers Rotativ

    4/9

    Analele Universit ii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 3/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 3/2010

    233

    &

    pC= , unde pC este coeficientul de

    frecare vscoas a pendulului n jurul axei de

    rotaie cu unghiul .

    Astfel, folosind relaiile (1),(5), obinem a 2-a

    ecuaie de micare:

    where pC is the viscous friction coefficient

    around of rotation axis for angle.

    So, using (1), (5) we obtain the second

    motion equation:

    =++ sinsincossinsincos)(222 glmLlmlmLlmLlmlmJ ppppppp

    &&&&&&&&&

    &&&&&& pppppp CglmlmlmJLlm =++ sincossin)(cos222 (6)

    Astfel, din relaiile (4) i (6) se obin ecuaiile

    de micare pentru sistemul pendul inversrotativ n poziia vertical-Up:

    So, from (4) and (6) we obtain the motion

    equation for rotation invers pendulum in

    up-vertical position

    (7)sincossin)(cos

    sincossin2cossin)(

    222

    22222

    =++

    =++++

    &&&&&&

    &&&&&&&&&&

    pppppp

    bmpppppb

    CglmlmlmJLlm

    CLlmlmLlmlmLmJ

    3. LINIARIZAREA SISTEMULUI NJURUL UNUI PUNCT STAIONAR DEFUNCIONARE,CAZUL PENDUL-UP

    Pornind de la relaiile (7) ce reprezint

    ecuaiile pentru bra i pentru pendul npoziia vertical-Up, vom liniariza aceste

    ecuaii n jurul unui punct staionar de

    funcionare 00 , , caracterizat de

    urmtoarele relaii:

    3. SYSTEM LINEARIZATIONAROUND A STATIONARY POINTOPERATION, THE CASE PENDUL_UP

    Starting from the relations(7) what are the

    equations for the pendulum arm and the

    vertical_Up position, these equations will be

    linearized around a steady operating

    point 00 , ,characterized by the following

    relations:

    )()( 0 tt += ; )()( 0 tt += (8)

    Poziia 0 -este unghiul unde trebuie inut

    braul n plan orizontal i implicit pendulul s

    fie n echilibru vertical_Up. Astfel ref =0

    este chiar mrimea de referin pentru sistem.

    The position 0 -is the angle where the arm

    should be held horizontally and thus be in

    balance pendulum vertical_Up. Thus

    ref =0 is the reference for the system.

    =

    =

    =

    =

    =+=

    +=

    )()(

    )()(

    )()(

    )()(

    )()()(

    )()(

    0

    0

    tt

    tt

    tt

    tt

    ttt

    tt

    &&&&

    &&&&

    &&

    &&

    (9)

    Ecuaiile de stare(7), liniarizate n jurulpunctului staionar devin:

    The state equation(7), linearized around the

    stationary point is:

    u

    eab

    de

    eab

    db

    x

    x

    x

    x

    eab

    ce

    eab

    hb

    eab

    fb

    eab

    cb

    eab

    ha

    eab

    fa

    x

    x

    x

    x

    +

    =

    0

    0

    0100

    0

    0001

    0

    2

    2

    4

    3

    2

    1

    222

    222

    4

    3

    2

    1

    &

    &

    &

    &

    (10)

  • 7/28/2019 Pendul Invers Rotativ

    5/9

    Analele Universit ii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 3/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 3/2010

    234

    unde: where:

    glmhCflmJeR

    Kd

    R

    KKCcLlmbLmJa pppp

    a

    t

    a

    btbppb ==+==+==+= ;;;;;);(

    22

    4. PROIECTAREA STRUCTURIISISTEMULUI DE CONTROL PRINMETODA LQR

    Implementarea structurii de reglare cu reaciedup variabilele de stare este prezentat n

    Fig.3. curspunsurile n timp real prezentate

    nFig.4.

    4. STRUCTURE OF CONTROLSYSTEM DESIGN WITH METHODLQR

    Implementation of the control structure with

    state feedback is presented in Fig.3. with

    real-time responses shown inFig.4.

    A,B,C,D

    u(t)=-kx(t) )(t

    Fig.3.Structura sistemului de reglare cu reacie dup variabilele de stare

    K1

    K2

    K3

    K4

    x1

    )(t&

    x2

    )(tx3

    )(t&

    )(t

    x4

    (

    0= ref

    0 =ref

    State Feed-back

    -

  • 7/28/2019 Pendul Invers Rotativ

    6/9

    Analele Universit ii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 3/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 3/2010

    235

    5. PROIECTAREA STRUCTURIISISTEMULUI DE REGLARE PRINMETODA DIRECT LYAPUNOV

    Ideea de baz n liniarizarea Intrare-Ieire

    este gsirea unei relaii directe ntre mrimea

    de comand i ieirea sistemului. O metodde a gsi aceast relaie este s derivm

    succesiv mrimea de ieire pn aparemrimea de comand direct n ecuaie.

    Procednd n aceast manier vom avea:

    5. STRUCTURE OF CONTROLSYSTEM DESIGN WITH DIRECTLYAPUNOV METHOD

    The basic ideea in state feedback

    linearization is finding a direct relationship

    between control signal and output signal of

    the system. One way to find this relatioship

    is successively derive the output signal until

    control signal appear direct in the equation.

    Thus we have:

    && =y ; )R

    KLlcosm()det(

    1a

    tp ub

    My +== &&&&

    Se poate observa c intrarea u apare direct

    n ieire la a 2-a derivare a ieirii i astfelvom liniariza sistemul (7) Intrare-Ieire prin

    reacie, impunnd o comand virtual v de

    forma:

    It may be noted that the input signal u

    appers directly in the output signal for

    second derivative of otput signal and we

    achieved fedback input-output liniarization

    of the system (7) and impose a form of

    virtual command:

    )R

    KLlcosm(

    )det(

    1

    a

    tp ub

    Myv +=== &&&& (11)

    =4x -poziie bra

    &=3x -vitez bra

    =2x -poziie pendul

    &

    =1x -vitez pendul

    dreaptatreaptref = -referin poziie bra

    u-comanda calculat

    Fig.4. Rspunsul sistemului real obinut pentru variaia treapt a referinei ref

  • 7/28/2019 Pendul Invers Rotativ

    7/9

    Analele Universit ii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 3/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 3/2010

    236

    Comanda real aplicat la motorul deacionare va fi de forma:

    The real command applied to the motor

    drive will be as:

    cos

    )det(

    LlmR

    K

    bvMu

    pa

    t

    = (12)

    Structura sistemului este prezentat nFig.5. The system structure is presented inFig.5.

    Comanda obinut pentru sistemul pendul

    invers rotativ prin proiectare cu metoda a

    doua Lyapunov este:

    The command obtained for the system

    rotary inversed pendulum is:

    pendul

    model

    matematic

    neliniar

    k0

    k1

    k3

    k3

    k3

    C1

    C2

    C3

    comanda

    neliniar

    &=2x

    =3x

    &=4x

    &=4x

    =3x

    0

    - -

    v1 v=v1+v2u

    Fig.5.Structura sistemului proiectat prin metoda a doua Lyapunov

    &&

    k4

    k4

    k4

    D1

    D2

    D3

    &=2x

    =3x

    &=4x

    k4 D1=1x

    v=v1+v2+v3

    -

    4443342241144333232134130 xDkxDkxDkxDkxCkxCkxCkxkxkv =

  • 7/28/2019 Pendul Invers Rotativ

    8/9

    Analele Universit ii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 3/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 3/2010

    237

    CONCLUZII

    Cerinele de timp real ale acestui

    proces sunt foarte puternice i acest lucru anecesitat realizarea unei distribuii mai mari a

    prelucrrii. Implementarea a fost realizat cao structur de reglare cu reacie dup

    variabilele de stare, iar proiectarea

    algoritmului de reglare a fost realizat prin

    metoda LQR i metoda a doua Lyapunov.

    Prin realizarea unei comparaii ale celor 2rspunsuri, metoda direct Lyapunov, fiind o

    metod bazat pe o funcie energetic,realizeaz stabilizarea pendulului n poziievertical-Up cu o robustee mai mare n jurul

    poziiei de echilibru, pe cnd metoda LQR,dei stabilizeaz mai bine pendulul, are un

    domeniul mic de stabilitate n jurul punct

    staionar de funcionare.

    BIBLIOGRAFIE[1] Astrm K.A., Murray R.M.,

    FEEDBACK SYSTEMS-AN

    CONCLUSIONS

    Real-time requirements of this

    process are very strong and this has

    necessitated the achievement of a greater

    distribution of processing. The

    implementation was done as feedback input-

    output linearization and control algorithm

    designed was done by LQR method and the

    second Lyapunov method. By a comparison

    of the two responses, Lyapunov direct

    method, is a method besed on an energy

    basis, the stabilization pendulumvertical_Up with a more robust around the

    equilibrium position, while the LQR

    method, although better stabilizes pendulum

    has a small field of stability around the

    stationary point of operation

    REFERENCES[1] Astrm K.A., Murray R.M.,

    FEEDBACK SYSTEMS-AN

    INTRODUCTION FOR SCIENTISTS

    Fig.6.Rspunsul sistemului real pendul-invers

  • 7/28/2019 Pendul Invers Rotativ

    9/9

    Analele Universit ii Constantin Brncui din Trgu Jiu, Seria Inginerie, Nr. 3/2010

    Annals of the Constantin Brncui University of Trgu Jiu, Engineering Series, Issue 3/2010

    238

    INTRODUCTION FOR SCIENTISTS AND

    ENGINEERS, 2008, Princeton University

    Press, ISBN-13: 978-0-691-13576-2, ISBN-

    10: 0-691-13576-2

    [2] C.J.A. van Kats, NONLINEARCONTROL OF A FURUTA ROTARYINVERTED PENDULUM, DCT reportnr.2004.69, 2004, TU/e Bachelor Final

    Project Report

    [3] Ionete C., Manole E., Surlea D., xPCMULTITASKING CONTROL FOR TWO

    QUANSER EXPERIMENTS, 9th

    International Carpathian Control Conference-

    ICCC2008, Sinaia, Romnia, 25-28 Mai

    2008, pag.263-266, ISBN 978-973-746-897-0

    [4] Popescu D., Rsvan V., Danciu D.,SOME ASPECTS RGARDING THE PIO

    THEORY, 9th International Carpathian

    Control Conference-ICCC2008, Sinaia,

    Romnia, 25-28 Mai 2008, pag.525-530,

    ISBN 978-973-746-897-0

    [5] Rsvan V., Popescu D., Danciu D.,

    NETWORKS AND

    SYNCHRONIZATION, A XIII-a ediie

    International symposium on systems theory

    SINTES 13, 18-20 octombrie 2007, Craiova,

    pag.164-168, ISBN:978-973-742-839-4

    AND ENGINEERS, 2008, Princeton

    University Press, ISBN-13: 978-0-691-

    13576-2, ISBN-10: 0-691-13576-2

    [2] C.J.A. van Kats, NONLINEAR

    CONTROL OF A FURUTA ROTARYINVERTED PENDULUM, DCT reportnr.2004.69, 2004, TU/e Bachelor Final

    Project Report

    [3] Ionete C., Manole E., Surlea D., xPCMULTITASKING CONTROL FOR TWO

    QUANSER EXPERIMENTS, 9th

    International Carpathian Control

    Conference- ICCC2008, Sinaia, Romnia,

    25-28 Mai 2008, pag.263-266, ISBN 978-

    973-746-897-0

    [4] Popescu D., Rsvan V., Danciu D.,SOME ASPECTS RGARDING THE PIO

    THEORY, 9th International Carpathian

    Control Conference-ICCC2008, Sinaia,

    Romnia, 25-28 Mai 2008, pag.525-530,

    ISBN 978-973-746-897-0

    [5] Rsvan V., Popescu D., Danciu D.,

    NETWORKS AND

    SYNCHRONIZATION, A XIII-a ediie

    International symposium on systems theory

    SINTES 13, 18-20 octombrie 2007, Craiova,

    pag.164-168, ISBN:978-973-742-839-4