raport de cercetare nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/isotest/raportari/r8.pdf · raport...

29
PROGRAMUL OPERAŢIONAL SECTORIAL CREŞTEREA COMPETITIVITĂŢII ECONOMICE AXA PRIORITARĂ 2 – COMPETITIVITATE PRIN CDI Operaţiunea 2.1.2: "Proiecte CD de înalt nivel ştiinţific cu participarea unor specialişti din străinătate" Titlul / Acronimul proiectului: Facilitate pentru diagnoza de fascicul laser si caracterizare / certificare ISO a comportarii componentelor optice / materialelor sub actiunea fasciculelor laser de mare putere / ISOTEST. RAPORT DE CERCETARE Nr. 8 / 22.06.2012 Perioada de raportare: 16.03.2012 22.06.2012

Upload: others

Post on 17-Oct-2019

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

PROGRAMUL OPERAŢIONAL SECTORIAL CREŞTEREA COMPETITIVITĂŢII

ECONOMICE

AXA PRIORITARĂ 2 – COMPETITIVITATE PRIN CDI

Operaţiunea 2.1.2: "Proiecte CD de înalt nivel ştiinţific cu participarea unor specialişti

din străinătate"

Titlul / Acronimul proiectului: Facilitate pentru diagnoza de fascicul laser si

caracterizare / certificare ISO a comportarii componentelor optice / materialelor sub

actiunea fasciculelor laser de mare putere / ISOTEST.

RAPORT DE CERCETARE Nr. 8 / 22.06.2012

Perioada de raportare: 16.03.2012 – 22.06.2012

Page 2: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

2

INFLPR

Sectia Laseri

Raport de Cercetare nr. 8 / 22.06.2012

In cadrul activitatilor de dezvoltare experimentala si cercetare industriala prevazute pentru a 8-a

perioada de raportare (16.03.2012 – 22.06.2012) au fost obtinute urmatoarele rezultate:

Activitatea 1.4. Dezvoltarea de subansamble si sub-sisteme ale setup-ului experimental privind:

dirijarea, atenuarea si focalizarea fasciculului laser; diagnoza parametrilor de fascicul energetici,

spatiali, temporali.– Realizat.

Au fost achizitionate urmatoarele componente pentru dezvoltarea set-up-urilor

experimentale ale instalatiei ISOTEST: 1 celula Pockels cu cristal KD*P, 2 analizoare fascicul laser

cu accesorii, 2 monitoare de energie laser, 5 detectoare de energie (3 detectoare piroelectrice, 2

detectoare optice), componente mecanice si accesorii curatire (Thorlabs), oglinzi laser, polarizori, lame

semiunda, atenuatori, lentile, expandor fascicul, separatoare de fascicul, componente optomecanice,

monturi de rotatie, carduri detectie fascicul (CVI Melles Griot), multimetru, panouri protectie si

accesorii ecranare radiatie laser, actuator liniar, masuta translatie motorizata (Eksma).

Componentele achizitionate in cadrul acestei etape au fost integrate si testate functional in sub-

sistemele si subansamblele instalatiei ISOTEST. Testele efectuate au validat solutia tehnica initiala si

dezvoltarile ulterioare privind componenta si structura functionala a instalatiei.

A fost finalizata dezvoltarea setup-rilor experimentale ale instalatiei ISOTEST: statia automata

de masurare a pragului de distrugere a componentelor laser (PDCL) in pulsuri de nanosecunde la

lungimile de unda de 1064 nm, 532 nm si 355 nm; statia automata de masurare PDCL in pulsuri de

femtosecunde la lungimea de unda de 775 nm; dispozitivul de diagnoza fascicule laser.

Activitatea 1.5. Proiectarea si realizarea sistemului software-hardware de operare automata si de

achizitie / procesare semnale– Realizat.

A fost finalizata realizarea unitatilor DSP pentru statia automata de masurare a PDCL in pulsuri

de femtosecunde si pentru dispozitivul de diagnoza de fascicul laser.

A fost receptionata Etapa a III-a de implementare software intitulata “Dezvoltarea aplicatiei

pentru stocarea datelor (realizarea unei baze de date), generarea raportului de test. Teste finale de

buna functionare a procedurii automate S-on-1 conform Caietului de Sarcini 01-10.03.2011”,

conform contractului de furnizare Nr.1246 din 05.07.2011 si a Actului Aditional nr. 2 / 12.03.2012

Page 3: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

3

incheiate cu Delisoft srl. In cadrul acestei etape au fost implementate urmatoarele rutine ale

programului software de operare a procedurii S-on-1 de masurare a pragului de distrugere a

componentelor laser (PDCL):

- Baza de date unde sunt stocate codul probei, data efectuarii testului, datele primare obtinute in urma

iradierii probelor (energia laser de test per sit setata de operator sau de program in modul automat,

energia reala cu care s-a efectuat iradierea sitului, numarul de pulsuri la care a rezistat situl si starea

sitului (distrus sau nedistrus), fisierul cu datele finale procesate de program, care sunt specificate in

raportul de test;

- Procedura de sortare a informatiilor din baza de date in ordine crescatoare sau descrescatoare din

fiecare coloana pentru o identificare facila a punctelor experimentale;

- Rutina de corelare a informatiilor din baza de date cu reprezentarea grafica a siturilor, pentru

identificarea rapida a caracteristicilor siturilor interogate, identificare necesara pentru analiza ulterioara

a morfologiei siturilor distruse la microscopul Nomarski.

Au fost efectuate teste de buna functionare a procedurii automate S-on-1 care au confirmat

functionarea corecta a statiei automate de masurare a PDCL in pulsuri de nanosecunde aplicand

procedura automata S-on-1. Testele au fost efectuate in perioada 01.03.2012 – 04.05.2012 pe

componente optice (acoperiri antireflex si oglinzi laser) furnizate de Ophir Optics SRL. Rezultatele

testelor sunt sintetizate in Anexa 1 a Raportului de Cercetare nr. 8 / 22.06.2012.

In ultima Etapa a contractului Delisoft (05.05.12 – 25.06.12) intitulata ”Asistenta si modificari

ale software-ului de operare pe durata testelor tehnologice de optimizare a procedurii automate S-on-

1”, pe baza testelor tehnologice efectuate pe statia automata in pulsuri de nanosecunde, au fost aduse o

serie de imbunatatiri interfetei grafice a programului de operare S-on-1, prezentate in detaliu in cadrul

Activitatii 2.3.

Activitatea 2.2. Teste preliminare de functionare sistem software-hardware. Implementarea

procedurilor ISO (diagnoza de fascicul, masurare PDCL) pe sistemul software-hardware - Realizat.

Testele preliminare de functionare a sistemului software-hardware pentru masurarea PDCL au

fost finalizate si raportate in cadrul Activitatii 2.2. din RC 7.

Au fost finalizate testele preliminare de implementare a procedurilor de diagnoza de fascicul,

conform standardului ISO 11146-1:2005. Fasciculele laser de test au fost furnizate trei laseri He-Ne in

unda continua: tip 1105P (JDS Uniphase, SUA); tip 3222H-PC (Hughes, SUA) si tip 05-LHP-071-221

(Melles Griot, SUA). Au fost masurati urmatorii parametri spatiali de fascicul: dimensiunile

transversale de fascicul (definite folosind metoda momentelor de ordinul doi, conform definitiei ISO),

Page 4: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

4

divergenta unghiulara si factorul de propagare M2. S-a urmarit cu precadere obtinerea unei

reproductibilitati cat mai bune a marimilor masurate. Cu aceasta ocazie s-a descoperit cauza principala

care impiedica o buna reproductibilitate a masurarii - lumina parazita fluctuanta din laborator. Ca

masura de eliminare a acestei cauze, in prezent se proiecteaza un sistem de ecranare atat a mesei de

laborator cat si a analizorului de fascicul laser cu care se fac masurarile respective. Prin masuri de

ecranare preliminara, incertitudinile de masura s-au redus de 3-4 ori. Rezultatele testelor sunt

prezentate pe larg in Anexele 2 si 3 ale Raportului de Cercetare Nr. 8.

Activitatea 2.3. Teste preliminare si finale pentru optimizarea functionarii instalatiei automate

privind derularea automata a procedurilor de masurare, detectarea PDCL, achizitia si procesarea

datelor furnizate de senzorii de masura.- Realizat partial conform calendar

Au fost initiate testele tehnologice finale pentru optimizarea functionarii instalatiei automate

ISOTEST. Testele au fost efectuate pe statia automata in pulsuri de nanosecunde pentru masurarea

PDCL prin procedura ISO S-on-1, cu componente optice de test furnizate de Ophir Optics SRL

(Newport-Ophir, Israel). In afara monitorizarii derularii secventelor procedurii automate de masurare,

sunt verificati in detaliu pasii algoritmului de calcul al procedurii S-on-1:

- definirea intervalelor de energie laser utilizate pentru ridicarea experimentala a caracteristicilor de

probabilitate de distrugere, pe baza datelor experimentale acumulate in baza de date a procedurii de

masurare;

- calculul energiei laser de test pentru iradierea sitului urmator;

- distributia uniforma a punctelor experimentale in cadrul intervalelor de energie mentionate mai sus.

Pentru a facilita monitorizarea de catre operator a procedurii automate de masurare, au fost

aduse o serie de imbunatatiri interfetei grafice a programului de operare:

- Afisarea explicita a intervalelor de energie definite de program;

- Afisarea punctelor experimentale corespunzatoare fiecarui interval de energie;

- Posibilitatea de a intrerupe procedura automata de masurare si de a reface calibrarea atenuatorului

de energie, daca operatorul constata o diferenta semnificativa intre energia laser de test calculata de

program si energia laser setata efectiv de atenuator.

- Afisarea valorii medii a energiei laser utilizate in cadrul procedurii de test, valoare care reprezinta

un indicator global al durabilitatii probei testate.

In Fig. 1 este aratata ultima varianta a interfetei grafice a procedurii automate S-on-1 de masurare

a PDCL.

Page 5: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

5

Testele au fost efectuate pe doua tipuri de acoperiri antirefex pentru lungimea de unda laser de

1064 nm (SJ6624- MgO si SJ6623). A fost evaluata incertitudinea standard in masurarea densitatii de

energie (fluenta) si a densitatii de putere (iradianta) la pragul de distrugere a suprafetei optice in camp

laser. Incertitudinea globala a rezultatelor masurarii este determinata de trei factori majori:

1. Microdefectele si neomogenitatile structurale ale suprafetei optice testate distorsioneaza dependenta

liniara a probabilitatii de distrugere de energia plusurilor laser de test, relatie liniara indicata de

modelele teoretice care studiaza interactia laser – materie. [1, 2]

2. Eroarea intrinseca a algoritmului S-on-1 cauzata de largimea finita ΔQ a intervalelor de energie

Qi ΔQ utilizate in calculul probabilitatii de distrugere. Considerand o distributie rectangulara de

probabilitate a acestui tip de eroare, incertitudinea standard corespunzatoare poate fi estimata cu relatia

,3Q

QQ

unde Q este energia per puls mediata pe toate siturile interogate.

Fig. 1. Interfata grafica a programului software de operare al procedurii S-on-1

3. Incertitudunea standard combinata (de tip A si B) in evaluarea parametrilor pulsurilor laser de test

(energie, durata efectiva,aria efectiva a spotului laser pe suprafata probei):

3.1. Incertitudinea de tip A determinata experimental prin masurarea parametrilor laser;

Energia medie Subintervale de

energie

Puncte experimentale din

subintervalul de energie

Page 6: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

6

3.2. Incertitudinea de tip B cauzata de erorile de calibrare ale aparatelor de masura (detectoare

/ monitoare de energie, profilometru laser cu camera CCD, osciloscop digital de banda larga, fotodioda

rapida.

Primele doua surse de erori contribuie semnificativ la stabilirea cuantumului erorii standard

medii εfit de fitare parametrica a celor 9 caracteristici de probabilitate de distrugere ridicate

experimental de programul S-on-1, in sensul ca exista o valoare de saturatie a marimii εfit care, dupa un

anumit numar de situri interogate, nu mai poate fi micsorata prin adaugarea de noi date experimentale.

Conform datelor experimentale publicate in literatura, este de asteptat o valoare de saturatie uzuala de

pana la εfit ≈ 20 %. [3]

Masurarile efectuate pe probele SJ6624- MgO si SJ6623 au evidentiat valori de saturatie ale

erorii de fitare de 12,3 % si respectiv 14.2 %. Luand in considerare si erorile in evaluarea parametrilor

de fascicul specificate mai sus, a rezultat o eroare globala in evaluarea PDCL (densitatea de putere la

pragul de distrugere) de 16 %, respectiv de 18 %. Mentionam ca, in conformitate cu experienta

internationala acumulata in acest domeniu, o eroare absoluta de pana la 25 % in masurarea PDCL este

considerata uzuala si atesta in general o procedura de masurare corecta, relativ precisa. [4]

Rezultatele detaliate ale acestor teste tehnologice sunt prezentate in Anexele 4 si 5 ale prezentului

raport.

Activitatea 2.4. Intocmirea documentatiei pentru acreditare RENAR. Se vor defini operatiunile de

certificare pentru care se solicita acreditarea RENAR, tinand cont de prioritatile potentialilor

beneficiari ai facilitatii ISOTEST. - Realizat partial conform calendar.

In prezent sunt purtate discutii cu reprezentantii RENAR - Asociatia de Acreditare din

Romania, pentru stabilirea organismului de certificare (Sectia Laseri din cadrul INFLPR, sau direct

INFLPR). De asemenea, a fost initiata activitatea de selectie a documentatiei tehnice specifice in

vederea acreditarii organismului de certificare, pentru efectuarea urmatoarelor proceduri dezvoltate in

cadrul proiectului ISOTEST:

- Masurare /certificare PDCL a componentelor optice in conformitate cu standardul ISO 21254-2;

- Testare /certificare fiabilitate in camp laser a componentelor optice in conformitate cu standardul ISO

21254-3.

Testele preliminare si tehnologice efectuate pana in prezent pe statia automata de masurare

PDCL in pulsuri de nanosecunde au evidentiat interesul companiei Ophir Optics srl, principalul

producator de componente optice din Romania, pentru cele doua proceduri mentionate mai sus.

Page 7: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

7

Lucrari stiintifice prezentate / acceptate la Conferinte Internationale

3 lucrari prezentate la International Student Conference on Photonics (ISCP) 2012, Sinaia, 8-12

May 2012:

- “Laser induced damage threshold test station: development and measurements - preliminary

results”, A. Zorilă, L. Rusen, S. Sandel, A. Stratan, C. Blanaru, C. Fenic, G. Nemeş.

- “ISO Procedure for Laser Beam diagnosis”, L. Rusen, A. Zorilă, L. Neagu, A. Stratan, G. Nemeş.

- “Automation development for laser induced damage threshold ISOTEST facility”, S. Sandel,

C.Blanaru, C. Baicu.

2 lucrari acceptate la SPIE Laser Damage Symposium XLIV: Annual Symposium on

Optical Materials for High Power Lasers, 23-26 Sept. 2012, NIST, Boulder, Colorado, USA

(evenimentul stiintific mondial cel mai important pentru domeniul caracterizarii materialelor optice

pentru laseri de mare putere):

- “Effective area of pulsed laser spots within ISO 21254-1,2,3 standards: critical analysis, extensions,

and measurements in near ultraviolet - near infrared domain”, Paper 8530-72, Authors: G. Nemes, A.

Stratan, A. Zorila, L. Rusen.

- “Automated test station for laser-induced damage threshold measurements according to ISO 21254-

1,2,3,4 standards”, Paper 8530-80, Authors: A. Stratan, G. Nemes, A. Zorila, L. Rusen, S. Simion, C.

Blanaru, C. Fenic, L. Neagu.

Lucrari stiintifice trimise spre publicare / brevete inregistrate

“Real-time detection of optical damage induced by high-power laser pulses”, A. Zorila, S.

Simion, L. Rusen, A. Stratan, P. Schiopu, Scientific Bulletin UPB, Submission ID: 1422/25.05.2012.

“Dispozitiv integrat in statie automata de masuare ISO a pragului de distrugere a

componentelor optice iradiate cu laser”, S. Simion, C. Blanaru, A. Stratan, A. Zorila, Cerere de Brevet

de Inventie nr. A /00425 / 13.06.2012.

Concluzii

Apreciem ca au fost indeplinite activitatile de dezvoltare experimentala si cercetare industriala

prevazute pentru pentru a saptea perioada de raportare: 16.03.2012 – 22.06.2012. Pana in prezent nu

sunt de semnalat factori care ar putea intarzia derularea planificata a activitatilor proiectului.

Page 8: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

8

Referinte

1. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Ablation of solids by femtosecond

lasers: Ablation mechanism and ablation thresholds for metals and dielectrics, Phys. Plasmas 9, 949-

957 (2002).

2. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling,

Ablation of metals by ultrashort laser pulses, JOSA B 14, 2716-2722 (1997).

3. K. Starke, T. Gro, D. Ristau, W. Riggers, J. Ebert, Laser-induced damage threshold of optical

components for high repetition rate Nd:YAG lasers, Proc. SPIE 3578, 584-593 (1990).

4. C.J. Stolz, D. Ristau, M. Turowski, H. Blaschke, Thin Film Femtosecond Laser Damage

Competition, Boulder Damage Symposium, Boulder, CO, United States, 21-23 September 2009,

https://e-reports-ext.llnl.gov/pdf/382702.pdf

Director proiect Director stiintific,

Dr. George Nemes Dr. Aurel Stratan

Page 9: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

9

ANEXA 1

PV de receptie Etapa III nr. din 04.05.2012 (contract Delisoft srl)

Rezultatele testelor si a masurarilor efectuate de beneficiar pe instalatia ISOTEST :

1. Dezvoltarea aplicatiei pentru stocarea datelor (realizarea unei baze de date), generarea

raportului de test.

A fost realizata o aplicatie care este capabila sa stocheze informatiile rezultate dupa iradierea probelor,

cu urmatoarele caracteristici:

- baza de date este compusa din cinci campuri care reprezinta de la stanga la dreapta ordinea in care s-a

facut iradierea, energia setata de operator sau de program in modul automat, energia reala cu care s-a

efectuat iradierea sitului, numarul de pulsuri la care a rezistat situl si starea sitului (distrus sau

nedistrus);

- a fost implementata o procedura de sortare a informatiilor din baza de date in ordine crescatoare sau

descrescatoare din fiecare coloana pentru o identificare facila a punctelor;

- a fost implementata o rutina de corelare a informatiilor din baza de date cu reprezentarea grafica a

siturilor, pentru identificarea rapida a caracteristicilor siturilor interogate, identificare necesara pentru

analiza ulterioara a morfologiei siturilor distruse la microscopul Nomarski.

- programul software proceseaza datele experimentale sintetizate in cele 9 caracteristici de

probabilitate de distrugere ridicate experimental in timpul procedurii de interogare a siturilor probei

testate si, pe aceasta baza, furnizeaza datele finale specificate in raportul de test.

2. Teste finale de buna functionare a procedurii automate S-on-1 conform Caietului de Sarcini

01-10.03.2011

Au fost efectuate teste finale de masurare a pragului de distrugere optica aplicand procedura automata

S-on-1 pe urmatoarele componente furnizate de Ophir Optics SRL:

- Acoperire antireflex AR @1064 nm SY5931

- Oglinda laser @1064-1540 nm R-88% GR1978Q

- Oglinda laser HR @1064-1540 nm; GR1975/76; SJ6035

- Acoperire antireflex ARW@1064 nm - SJ6413

- Oglinda laser HR @1064 nm 45° - SJ6449

- Acoperire antireflex AR @1064-0-GR1999Q-SJ6442

- Acoperire antireflex AR @1064 nm, 0° - 7° BATCH 6536

Pentru a facilita monitorizarea procedurii automate de interogare a siturilor, pe interfata grafica au fost

afisate intervalele de energie laser definite de program in vederea uniformizarii distributiei punctelor

experimentale in gama de lucru a energiei laser per puls (figura1).

Page 10: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

10

Fig. 1. Interfata grafica a procedurii automate S-on-1.

In figura 2 (extrasa din raportul de test) este aratata caracteristica de distrugere a probei ARW@1064

nm - SJ6413 determinata experimental prin procedura automata S-on-1.

Fig. 2. Characteristic damage curve of the sample.

X – number of pulses, N; Y – energy density threshold, H(N) (J/cm2); 1 – threshold energy density at 0 % damage probability, H0(N) – experimental data; 2 – threshold energy density at 50 % damage probability, H50(N) – experimental data;3 – H0(N) - nonlinear fit;4 – H50(N) - nonlinear fit. Caracteristica H0(N) din figura 2 este extrapolata de program pentru un numar foarte mare de pulsuri, asa cum se arata in figura 3.

X

Page 11: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

11

Fig.3. Measured and extrapolated S-on-1 damage threshold versus number of pulses, N.

X – number of pulses, N; Y – threshold energy density at 0 % damage probability, H0(N) (J/cm2); 1 – extrapolated H0(N) for large number of pulses; 2 – experimental data.

In figura 4 este aratata imaginea unui sit distrus, obtinuta cu un microscop Nomarski cu marire 200x

Fig. 4. Normarski micrograph of a damaged site (energy density 40 J/cm2, damage after 1 pulse)

Testele au demonstat o functionare corecta a procedurii automate S-on-1, conform cerintelor

specificate in Caietul de Sarcini.

Dr. Aurel Stratan

Ing. Alexandru Zorila

Page 12: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

12

ANEXA 2 NILPRP

ISOTEST Project

Preliminary Test Report No. 3 / 08.06.2012

Evaluation of laser beam widths, divergence angles and beam propagation ratios

according to standard ISO 11146-1:2005

a) General information

1) Test has been performed in accordance with ISO 11146-1:2005

2) Date of test: 08.06.2012

3) Name and address of test organization: Solid State Lasers Laboratory, http://ssll.inflpr.ro, National Institute

for Lasers, Plasma and Radiation Physics, 409, Atomistilor Str., P.O. Box MG 36, 077125 Magurele, Bucharest,

Romania

4) Name of individual performing the test: Laurentiu Rusen

b) Information concerning the tested laser

1) Laser type: He-Ne laser

2) Manufacturer: Hughes, USA

3) Manufacturer’s model designation: 3222H-PC

4) Serial number: 6420119

c) Test conditions

1) Laser wavelength(s) at which tested: 633 nm

2) Operating mode (CW or pulsed): CW

3) Laser parameter settings

i) Output power: 2.6 mW

5) Polarization: linear, partially polarized

6) Environmental conditions: clean filtered air, controlled temperature 22 oC 1

oC; room stray light.

d) Information concerning testing and evaluation

1) Evaluation method used: Second-order moments

2) Test equipment: Camera PHOTON BeamPro, SN 93044

3) Beam forming optics and attenuating method:

i) Type of attenuator: neutral density (ND) glass

ii) Type of focusing element: convergent lens, f = 400 mm @ 633 nm

e) Test Results

1) Beam waist diameter/widths and Rayleigh length(s)

Beam waist location z01 = 1596 mm before the front principal plane of the focusing lens (subscript 1).

Mean value

mm

Standard deviation

%

Beam waist diameter dσ01 0.75 6 Beam waist width dσ01x 0.56 5.5 Beam waist width dσ01y 0.85 4

Page 13: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

13

Rayleigh length zR1 613 7 Rayleigh length zR1x 380 6 Rayleigh length zR1y 881 5

2) Beam divergence angles (in accordance with Clause 8, before the front principal plane of the focusing lens,

subscript 1)

Focusing element used: convergent lens, f = 400 mm @ 633 nm

Mean value

mrad

Standard deviation

%

Beam divergence angle Θσ1 1.2 5.5 Beam divergence angle Θσ1x 1.5 5 Beam divergence angle Θσ1y 1.0 4

3) Beam propagation parameters derived from hyperbolic fit (in accordance with Clause 9, after the back

principal plane of the focusing lens, subscript 2)

Beam waist locations z02 measured from the rear principal plane of the focusing lens

Mean value

Standard deviation

%

Beam waist location z02 506 mm 3 Beam waist location z02x 539 mm 3 Beam waist location z02y 478 mm 2 Beam waist diameter dσ02 0.22 mm 4 Beam waist width dσ02x 0.21 mm 3 Beam waist width dσ02y 0.19 mm 2 Azimuth angle ϕ Rayleigh length zR2 54 mm 4 Rayleigh length zR2x 52 mm 3 Rayleigh length zR2y 43 mm 2.5 Beam divergence angle Θσ2 4.1 mrad 1.5 Beam divergence angle Θσ2x 4.0 mrad 1 Beam divergence angle Θσ2y 4.4 mrad 1.5 Beam propagation ratio M

2 1.2 3 Beam propagation ratio M

2x 1.0 3

Beam propagation ratio M2

y 1.0 2

Page 14: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

14

400 600 800 1000

0.0

0.8

1.6

2.4

Dmean

Fit of Dmean

Dm

ean

(mm

)

Z (mm)

Equation y = sqrt ( A + B*x + C*x*x )

Value Standard Error

Dmean A 4.41342 0.10538

Dmean B -0.01725 4.12453E-4

Dmean C 1.70497E-5 3.63387E-7

Fig.1. Hyperbolic fit to the measured beam widths along the propagation distance z.

Fig. 2. Spatial beam profile measured at the beam waist of the focused beam.

Page 15: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

15

ANEXA 3

NILPRP

ISOTEST project

Preliminary Test Report No. 5/ 14.06.2012

Evaluation of laser beam widths, divergence angles and beam propagation ratios

according to standard ISO 11146-1:2005

a) General information

1) Test has been performed in accordance with ISO 11146-1:2005

2) Date of test: 14.06.2012

3) Name and address of test organization: Solid State Lasers Laboratory: http://ssll.inflpr.ro, National Institute

for Lasers, Plasma and Radiation Physics, 409, Atomistilor Str., P. O. Box MG 36, 077125 Magurele,

Bucharest, Romania

4) Name of individual performing the test: Laurentiu Rusen

b) Information concerning the tested laser

1) Laser type: He-Ne laser

2) Manufacturer: Hughes, USA

3) Manufacturer’s model designation: 3222H-PC

4) Serial number: 6420119

c) Test conditions

1) Laser wavelength(s) at which tested: 633 nm

2) Operating mode (CW or pulsed): CW

3) Laser parameter settings

i) Output power: 2.6 mW

5) Polarization: linear, partially polarized

6) Environmental conditions: clean filtered air, controlled temperature 22 oC 1

oC, room stray light partially

eliminated

d) Information concerning testing and evaluation

1) Evaluation method used: Second order moment

2) Test equipment: Camera PHOTON BeamPro, SN 93044

4) Beam forming optics and attenuating method:

i) Type of attenuator: neutral density (ND) glass

ii) Type of focusing element: convergent lens, f = 400 mm @ 633 nm

e) Test Results

1) Beam waist diameter/widths and Rayleigh length(s)

Beam waist location z01 = 1519 mm before the front principal plane of the focusing lens (subscript 1)

Mean value

mm

Standard deviation

%

Beam waist diameter dσ01 0.61 1.5 Beam waist width dσ01x 0.59 2 Beam waist width dσ01y 0.59 1.5

Page 16: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

16

Rayleigh length zR1 447 2 Rayleigh length zR1x 446 2.5 Rayleigh length zR1y 444 2

2) Beam divergence angles (in accordance with Clause 8, before the front principal plane of the focusing lens,

subscript 1))

Focusing element used: convergent lens, f = 400 mm @ 633 nm

Mean value

mrad

Standard deviation

%

Beam divergence angle Θσ1 1.4 (?) 1.5 Beam divergence angle Θσ1x 1.3 2 Beam divergence angle Θσ1y 1.3 1.5

3) Beam propagation parameters derived from hyperbolic fit (in accordance with Clause 9, after the back

principal plane of the focusing lens, subscript 2))

Beam waist locations z02 measured from the rear principal plane of the focusing lens

Mean value

Standard deviation

%

Beam waist location z02 523 mm 0.2 Beam waist location z02x 523 mm 0.7 Beam waist location z02y 523 mm 0.2 Beam waist diameter dσ02 0.20 mm 0.2 Beam waist width dσ02x 0.19 mm 0.8 Beam waist width dσ02y 0.20 mm 0.2 Azimuth angle ϕ Rayleigh length zR2 49 mm 0.2 Rayleigh length zR2x 49 mm 1 Rayleigh length zR2y 48 mm 0.2 Beam divergence angle Θσ2 4.1 mrad 0.1 Beam divergence angle Θσ2x 4.0 mrad 0.3 Beam divergence angle Θσ2y 4.1 mrad 0.1 Beam propagation ratio M

2 1.0 1 Beam propagation ratio M

2x 1.0 1

Beam propagation ratio M2

y 1.0 1

Page 17: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

17

400 500 600 700 800

0.0

0.3

0.6

0.9

Z (mm)

Dm

ean

(mm

)

Dmean

Fit of Dmean

Equation y = sqrt ( A + B*x + C*x*x )

Value Standard Error

Dmean A 4.61377 0.00422

Dmean B -0.01748 1.7714E-5

Dmean C 1.67032E-5 1.66252E-8

Fig.1. Hyperbolic fit to the measured beam widths along the propagation distance z.

Fig. 2. Spatial beam profile measured at the beam waist of the focused beam.

Page 18: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

18

ANEXA 4

National Institute for Lasers, Plasma, and Radiation Physics (NILPRP/INFLPR)

Solid State Lasers Laboratory ISOTEST

Test report # 11

Laser-induced damage threshold (LIDT) by S-on-1 test according to ISO 21254 - 1, 2, 3, 4

Tester’s name: Alexandru Zorila

Date: 18.05.2012

Order #:

Specimen Type of specimen: AR coating

Specifications: 1064 nm, MgF2, LASF40

Shape and size: round, 1 inch

Manufacturer/ supplier: Ophir Optics SRL, Bucharest, Romania

Part ID # SJ6624 TR

Date of production 09.05.2012

Storage: original package

Cleaning procedure: blowing with Duster 1671-10S

Preliminary inspection comments: small dots after cleaning – see comments

Mounting of test specimen: kinematic mount, vertical position

Test equipment

Laser source Type: Q-switched, single longitudinal mode

Manufacturer: Quantel (France)

Model #: Brilliant B 10 SLM

Energy meter

Manufacturer: Coherent, Inc.

Model #: J-25MT-10 kHz pyroelectric detector

Calibration date: Sept.10

Calibration due date: Sept.11

Temporal diagnosis

Photodiode Alphalas, type UPD-200-UD

Oscilloscope Tektronix, type DPO-7104

Spatial diagnosis

Beam profiler Newport-Ophir-Spiricon, type Gras20

Page 19: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

19

Diagnosis - Pulse energy real time monitored with type J-25MT-10 kHz pyroelectric detector and calibrated by making a

measurement before and after the full test with type J-50MB-YAG pyroelectric detector. - Temporal profile recorded before and after test. Effective pulse duration calculated using waveform recorded data. - Spatial profile recorded before and after test. Beam diameter/widths obtained directly from beam profiler. Effective beam diameter/widths calculated from beam profiler raw data.

Laser parameters

Wavelength: 1064 nm

Operating mode: pulsed, repetitively

Output energy: adjustable, up to 450 mJ

Pulse repetition frequency: 10 Hz

Polarization state: linear, totally polarized, horizontal

Pulse duration - FWHM: 4.4 ns

Pulse duration – effective, τeff: 5.3 ns

Measurement specifications Beam diameter/widths - second moments: -

Beam diameter/widths - 1/e2 clip level: -

Beam diameter/widths - effective: 0.21 mm

Spatial beam profile: see typical figure

Angle of incidence (AOI): 4° ± 1°

Polarization: type P

Number of sites per specimen: 276

Number of shots per site, S: 500

Arrangement of test sites: near-circular, close packed

Distance between sites: 1 mm

Number of specimens tested: 1

Total number of sites for the test: 276

Real time damage detection method: scattered radiation

Damage detection after test: visual, Nomarski microscope (50x, 200x, 500x)

Environmental conditions

Test environment: clean filtered air

Temperature: 24 °C ± 1 °C

Humidity: 40 %

Comments:

Typical 200x Nomarski picture of the sample after cleaning, before test.

Page 20: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

20

Error budget:

a) random (type A) errors Pulse energy standard deviation: ± 1 %

Pulse spot effective area standard deviation: ± 2 %

Effective pulse duration standard deviation: ± 2 %

b) instrument (type B) standard uncertainties Pulse energy measuring system (4 instruments overall): ± 4 %

Pulsed spot effective area uncertainty (1 instrument): ±5 %

Effective pulse duration uncertainty (2 instruments): ± 5 %

Estimated LIDT standard uncertainty: ± 16 %

Fig. 1. Temporal profile of the laser pulse. Y – detector output (a.u.); X – time (ns).

Fig. 2. Spatial laser beam profile in the target plane. Effective spot area = 3.5 ∙ 10

-4 cm

2.

Page 21: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

21

Test Results:

100

101

102

103

19

20

21

22

28

29

30

1

2

3

4

Y

X

Fig. 3. Characteristic damage curve of the sample.

X – number of pulses, N (N ≤ S) for which the damage probability is calculated; Y – threshold energy density, H(N) (J/cm2); 1 – threshold energy density at 0 % damage probability, H0(N) – experimental data; 2 – threshold energy density at 50 % damage probability, H50(N) – experimental data; 3 – H0(N) - nonlinear fit*1 ; 4 – H50(N) - nonlinear fit*1 .

Page 22: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

22

100

101

102

103

104

105

106

107

108

20

22

24

26

28

30

1

2

Y

X

Fig. 4. Measured and extrapolated S-on-1 damage threshold versus number of pulses, N.

X – number of pulses, N; for N ≤ S, calculated from experimental results; for N > S, extrapolated data; Y – threshold energy density at 0 % damage probability, H0(N) (J/cm2); 1 – experimental data; 2 – extrapolated*2 H0(N) for large number of pulses

Summary of LIDT values Extrapolated 0 % LIDT for N = 108 pulses: energy density H0(108) = 19 J/cm2. Extrapolated power density for τeff = 5.3 ns effective pulse duration: E0(108) = H0(108)/ τeff = 3.5 GW/cm2. Extrapolated equivalent*3 energy density for τeff,eq = 20 ns: H0,eq(108) = 36 J/cm2. Extrapolated equivalent*4 power density for τeff,eq = 20 ns: E0,eq(108) = 1.8 GW/cm2.

Recommendations for durability The extrapolation curve for 108 pulses may not take into account all possible factors leading to potential damage. We recommend an additional safety factor of approximately 0.9 applied to each of the above values. *1 Fitting equation: Hth(N) = Hth,∞ + (Hth,1 – Hth,∞)/[1 + log10(N)/Δ], notations according to ISO21254-2 Annex E *2 Fitting equation: Hth(N) = Hth,∞ – d + (Hth,1 – Hth,∞)/[1 + log10(N)/Δ], notations according to ISO21254-2 Annex E

*3 Equivalence equation used: H0,eq(108) = H0(108)∙( τeff,eq /τeff)1/2

*4 Equivalence equation used: E0,eq(108) = E0(108)∙( τeff /τeff,eq)1/2

Page 23: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

23

Fig. 5. Example of 200x Normarski micrograph of a damaged site

(energy density 37 J/cm2, damage after 1 pulse)

Statement related to certification of the test results ISOTEST laboratory certifies that the Laser Induced Damage Threshold of this sample was tested according to recommendations of the ISO 21254-1,2,3,4:2011 standards. During 2013 ISOTEST will submit the paperwork to obtain the accreditation as a test laboratory from Romanian Accreditation Association (RENAR). Currently these results represent ISOTEST internal results.

Test performed by Signatures Alexandru Zorila For ISOTEST: Dr. George Nemes

Page 24: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

24

ANEXA 5

National Institute for Lasers, Plasma, and Radiation Physics (NILPRP/INFLPR)

Solid State Lasers Laboratory ISOTEST

Test report # 10

Laser-induced damage threshold (LIDT) by S-on-1 test according to ISO 21254 - 1, 2, 3, 4

Tester’s name: Alexandru Zorila

Date: 17.05.2012

Order #:

Specimen Type of specimen: AR coating

Specifications: 1064 nm

Shape and size: 1 inch, round

Manufacturer/ supplier: Ophir Optics SRL, Bucharest, Romania

Part ID # SJ 6623

Date of production 09.05.2012

Storage: original package

Cleaning procedure: blowing with Duster 1671-10S

Preliminary inspection comments: lines on the surface

Mounting of test specimen: kinematic mount, vertical position

Test equipment

Laser source Type: Q-switched, single longitudinal mode

Manufacturer: Quantel (France)

Model #: Brilliant B 10 SLM

Energy meter

Manufacturer: Coherent, Inc.

Model #: J-25MT-10 kHz pyroelectric detector

Calibration date: Sept.10

Calibration due date: Sept.11

Temporal diagnosis

Photodiode Alphalas, type UPD-200-UD

Oscilloscope Tektronix, type DPO-7104

Spatial diagnosis

Beam profiler Newport-Ophir-Spiricon, type Gras20

Diagnosis - Pulse energy real time monitored with type J-25MT-10 kHz pyroelectric detector and calibrated by making a

measurement before and after the full test with type J-50MB-YAG pyroelectric detector. - Temporal profile recorded before and after test. Effective pulse duration calculated using waveform recorded data.

Page 25: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

25

- Spatial profile recorded before and after test. Beam diameter/widths obtained directly from beam profiler. Effective beam diameter/widths calculated from beam profiler raw data.

Laser parameters

Wavelength: 1064 nm

Operating mode: pulsed, repetitively

Output energy: adjustable, up to 450 mJ

Pulse repetition frequency: 10 Hz

Polarization state: linear, totally polarized, horizontal

Pulse duration - FWHM: 4.5 ns

Pulse duration – effective, τeff: 5.3 ns

Measurement specifications Beam diameter/widths - second moments: -

Beam diameter/widths - 1/e2 clip level: -

Beam diameter/widths - effective: 0.210 mm

Spatial beam profile: see typical figure

Angle of incidence (AOI): 4° ± 1°

Polarization: type P

Number of sites per specimen: 276

Number of shots per site, S: 500

Arrangement of test sites: near-circular, close packed

Distance between sites: 1 mm

Number of specimens tested: 1

Total number of sites for the test: 276

Real time damage detection method: scattered radiation

Damage detection after test: visual, Nomarski microscope (50x, 200x, 500x)

Environmental conditions

Test environment: clean filtered air

Temperature: 24 °C ± 1 °C

Humidity: 40 %

Comments:

Typical 200x Nomarski picture of the sample after cleaning, before test.

Page 26: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

26

Error budget:

a) random (type A) errors Pulse energy standard deviation: ± 1 %

Pulse spot effective area standard deviation: ± 2 %

Effective pulse duration standard deviation: ± 2 %

b) instrument (type B) standard uncertainties Pulse energy measuring system (4 instruments overall): ± 4 %

Pulsed spot effective area uncertainty (1 instrument): ±5 %

Effective pulse duration uncertainty (2 instruments): ± 5 %

Estimated LIDT standard uncertainty: ± 18 %

Fig. 1. Temporal profile of the laser pulse. Y – detector output (a.u.); X – time (ns).

Fig. 2. Spatial laser beam profile in the target plane. Effective spot area = 3.5 ∙ 10

-4 cm

2.

Test Results:

Page 27: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

27

100

101

102

103

20

22

28

30

32

34

1

2

3

4Y

X

Fig. 3. Characteristic damage curve of the sample.

X – number of pulses, N (N ≤ S) for which the damage probability is calculated; Y – threshold energy density, H(N) (J/cm2); 1 – threshold energy density at 0 % damage probability, H0(N) – experimental data; 2 – threshold energy density at 50 % damage probability, H50(N) – experimental data; 3 – H0(N) - nonlinear fit*1 ; 4 – H50(N) - nonlinear fit*1 .

Page 28: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

28

100

101

102

103

104

105

106

107

108

18

20

22

24

26

28

1

2

Y

X

Fig. 4. Measured and extrapolated S-on-1 damage threshold versus number of pulses, N.

X – number of pulses, N; for N ≤ S, calculated from experimental results; for N > S, extrapolated data; Y – threshold energy density at 0 % damage probability, H0(N) (J/cm2); 1 – experimental data; 2 – extrapolated*2 H0(N) for large number of pulses

Summary of LIDT values Extrapolated 0 % LIDT for N = 108 pulses: energy density H0(108) = 19.5 J/cm2. Extrapolated power density for τeff = 5.3 ns effective pulse duration: E0(108) = H0(108)/ τeff = 3.7 GW/cm2. Extrapolated equivalent*3 energy density for τeff,eq = 20 ns: H0,eq(108) = 37 J/cm2. Extrapolated equivalent*4 power density for τeff,eq = 20 ns: E0,eq(108) = 1.9 GW/cm2.

Recommendations for durability The extrapolation curve for 108 pulses may not take into account all possible factors leading to potential damage. We recommend an additional safety factor of approximately 0.9 applied to each of the above values. *1 Fitting equation: Hth(N) = Hth,∞ + (Hth,1 – Hth,∞)/[1 + log10(N)/Δ], notations according to ISO21254-2 Annex E *2 Fitting equation: Hth(N) = Hth,∞ – d + (Hth,1 – Hth,∞)/[1 + log10(N)/Δ], notations according to ISO21254-2 Annex E

*3 Equivalence equation used: H0,eq(108) = H0(108)∙( τeff,eq /τeff)1/2

*4 Equivalence equation used: E0,eq(108) = E0(108)∙( τeff /τeff,eq)1/2

Page 29: RAPORT DE CERCETARE Nr. 8 / 22.06 - ssll.inflpr.rossll.inflpr.ro/ISOTEST/Raportari/R8.pdf · Raport de Cercetare nr. 8 / 22.06.2012 In cadrul activitatilor de dezvoltare experimentala

29

Fig. 5. Example of 200x Normarski micrograph of a damaged site

(energy density 37 J/cm2, damage after 1 pulse)

Statement related to certification of the test results ISOTEST laboratory certifies that the Laser Induced Damage Threshold of this sample was tested according to recommendations of the ISO 21254-1,2,3,4:2011 standards. During 2013 ISOTEST will submit the paperwork to obtain the accreditation as a test laboratory from Romanian Accreditation Association (RENAR). Currently these results represent ISOTEST internal results.

Test performed by Signatures Alexandru Zorila For ISOTEST: Dr. George Nemes