prof. salah ce591compcol_f13

Upload: magdyamdb

Post on 02-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Prof. Salah CE591compcol_F13

    1/30

    CE591 Lecture 13: Composite ColumnsComposite Action, CompositeComponents, History

    IntroductionEncased and FilledComposite Columns

    Behavior of Composite Columns

    AISC Limitations

  • 8/10/2019 Prof. Salah CE591compcol_F13

    2/30

    Benefits of Structural

    Steel ConcreteHigh Strength

    High Stiffness(Modulus ofElasticity)

    High Ductility

    Excellent FireResistance

    Low Cost

    Ability to Be Castinto Any Shape

    + speed of construction

    Very good for floor framing Very good for floor slabs

  • 8/10/2019 Prof. Salah CE591compcol_F13

    3/30

    Composite Action

    Developed when two load carryingstructural members are integrallyconnected and deflect as a single unit.

  • 8/10/2019 Prof. Salah CE591compcol_F13

    4/30

    Benefits (floor beam example)Reduced weight of steel

    Increased stiffness for composite floor

    beams/girders

    Or shallower beams

    for the same stiffness

    increased floor-to-floor height

  • 8/10/2019 Prof. Salah CE591compcol_F13

    5/30

    Composite ElementsBeams

    ColumnsFloor slabs

    Shear Walls

    Concrete

    Metal

    Deck

    Beam-to-Column Connections (?)

    Composite Columns considered to have a toughness; good

    choice for designs where blast-loading is a concern

  • 8/10/2019 Prof. Salah CE591compcol_F13

    6/30

    HistoryEarly 1900s steelbeams encased inconcrete for

    fireproofing1931Empire StateBuildings entire steelframe was encased in

    concreteComposite sections were not considered in

    capacity calculations, but lateral stiffness wasdoubled for drift calculations

  • 8/10/2019 Prof. Salah CE591compcol_F13

    7/30

    History

    1988Bank of China

    megatruss ofcomposite columns

  • 8/10/2019 Prof. Salah CE591compcol_F13

    8/30

    HistoryLate 1990sPacific First Center Supercolumns

    (lateral system)

    Gravity columns

    Floorbeams

  • 8/10/2019 Prof. Salah CE591compcol_F13

    9/30

    Composite ColumnsEncased Composite Columns

    SRCSteel Reinforced Concrete

    Filled Composite Columns

    CFTConcrete Filled Tubes

  • 8/10/2019 Prof. Salah CE591compcol_F13

    10/30

    Encased Composite ColumnsStructural shapessurrounded byconcrete

    Vertical andhorizontalreinforcement tosustain encasement

    Shear connectorscan be used to helptransfer forcesLongitudinal Bars

    Lateral Ties/

    Stirrups

  • 8/10/2019 Prof. Salah CE591compcol_F13

    11/30

    Encased Composite ColumnsConcrete provides stiffening,strengthening, fire protection

    Steel carries construction loadMight use when exposedconcrete finish desired

    Might use for transitions(concrete to steel columns)

  • 8/10/2019 Prof. Salah CE591compcol_F13

    12/30

    Encased Composite ColumnsDifficult toplace?

    Might use U-ties instead

  • 8/10/2019 Prof. Salah CE591compcol_F13

    13/30

    Steel shell (pipe, tube, orhollow section built-up from

    plate)Shell provides formwork forconcrete

    Shell provides confinement toconcrete

    Filled Composite Columns

  • 8/10/2019 Prof. Salah CE591compcol_F13

    14/30

    Concrete adds strength,stiffness

    Might use when exposed steelis desired

    Steel can buckle outwards

    Shear connectors might be

    needed near beam-to-columnconnections

    Filled Composite Columns

  • 8/10/2019 Prof. Salah CE591compcol_F13

    15/30

    Shear bond between concrete & steelFriction

    Coefficient of sliding friction ~0.5

    Encased ColumnsPressure/friction only if concrete confinedlaterally to bear against steel shapelateral ties

    Filled ColumnsPressure normal to interface exists

  • 8/10/2019 Prof. Salah CE591compcol_F13

    16/30

    Behavior of Encased ColumnsFlexural stiffness governed byconcrete encasement

    Encasement prevents buckling ofsteel bars and steel shape

    Concrete outside ties cracks andspalls, followed by rest of

    encasementAfter spalling, post-yield buckling ofsteel, overall failure

  • 8/10/2019 Prof. Salah CE591compcol_F13

    17/30

    Behavior of Filled ColumnsFlexural stiffness governed by steelshell

    Initial compressive strainsteelexpands more than concrete, causesmicrocracking

    Expansion of concrete then

    restrained by steelSteel reaches yield, inelasticoutward buckling may occur,concrete crushes

  • 8/10/2019 Prof. Salah CE591compcol_F13

    18/30

    Elephant-Foot Buckling

  • 8/10/2019 Prof. Salah CE591compcol_F13

    19/30

    ConfinementConfinement from steel shell canincrease effective strength of concrete

    However, stiffness reduced bymicrocracking

  • 8/10/2019 Prof. Salah CE591compcol_F13

    20/30

    AISC LimitationsTo qualify as a composite column:

    AISC I1.3,I2.1a and C-I1, I2

    01.0

    g

    s

    A

    A

    Concrete strength:

    ksicfksi

    ksicfksi

    6'3

    10'3

    Normal weight

    Lightweight

    Supercolumns 12 ksi

  • 8/10/2019 Prof. Salah CE591compcol_F13

    21/30

    AISC Limitations, contd

    Steel strength (used in calculations):

    AISC I1.3 and C-I1

    ksiFandF yry 75

    Corresponds roughly to 0.003 strain limit for concrete

  • 8/10/2019 Prof. Salah CE591compcol_F13

    22/30

    AISC Limitations, contd

    AISC I2.1 and C-I2.1

    Min. 1.5 db, 1-1/2 clear (betweensteel core and longitudinal reinf. bars)

    axm"16@4.

    max"12@3..

    Noor

    NoMin

    g

    srsr

    AA Area of reinf. bars (in

    2

    )

    Gross area of composite

    member (in2)

    004.0sr

  • 8/10/2019 Prof. Salah CE591compcol_F13

    23/30

    AISC Limitations, contd AISC I2.1and C-I2.1

    d

    dStr 5.0

    Least column

    dimension

    provisions of ACI 318 shal l apply with exceptions and limitations

    (as listed in AISC I 1.1); see ACI 318 Sections 7.10 and 10.9.3 for

    additional tie reinforcement provisions

  • 8/10/2019 Prof. Salah CE591compcol_F13

    24/30

    Local Bucklinglpfor Axial Compression

    AISC I1.4 and C-I1.4

    b

    t t

    D

    yFE

    tb 26.2

    yFE

    tD 15.0

  • 8/10/2019 Prof. Salah CE591compcol_F13

    25/30

  • 8/10/2019 Prof. Salah CE591compcol_F13

    26/30

  • 8/10/2019 Prof. Salah CE591compcol_F13

    27/30

  • 8/10/2019 Prof. Salah CE591compcol_F13

    28/30

    Nominal Section Strength

  • 8/10/2019 Prof. Salah CE591compcol_F13

    29/30

    AISC Limitations, contd

    b

    t

    bis for longerside / dimension

    AISC B4.1b= clear distance

    between webs less inside

    corner radius

    Radius not known?

    Use b = w3t

    w

    t = design wall thickness(0.93 x nominal wall thickness

    (AISC B4.2))

  • 8/10/2019 Prof. Salah CE591compcol_F13

    30/30

    Load TransferAISC I6

    Transfer of load to concrete by

    direct bearing requires bearingcheck, etc.

    Load applied to steel or

    concrete onlyshearconnectors required

    Good reference on Load Transfer is PowerPoint by

    W Jacobs posted to CE591 website