e3 guide rc project nagy-gyorgy t 2014 v2

Upload: ngyt77

Post on 03-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    1/71

    REINFORCED CONCRETE DESIGN GUIDE

    1ST PART

    Prepared byNAGYGYRGY TamsPhD, Lecturer

    tamas.nagy [email protected]

    FLORU CodruPhD, Assistant Lecturer [email protected]

    2014 V2

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    2/71

    REFERENCES

    SR EN 1992-1-1: 2004, Proiectarea structurilor de beton, Partea 1-1: Reguli generale pentru cl diri(+AC:2008)

    SR EN 1992-1-1/NB: 2008, Proiectarea structurilor de beton, Partea 1-1: Reguli generale pentru cl diri. Anexa Na ional

    EN 1992-1-1: 2004, Design of concrete structures - Part 1-1: General rules and rules for buildings

    SR EN 1991-1-1:2004, Ac iuni asupra structurilor. Partea 1-1: Ac iuni generale (+ NA:2006)

    P 100-1/20013, Cod de proiectare seismic - Partea I - Prevederi de proiectare pentru cl diri

    Cadar I., Clipii T., Tudor A., Beton Armat (ed. II), Ed. Orizonturi Universitare, 2004, ISBN 973-638-176-5

    Kiss Z., One T., Proiectarea structurilor de beton armat dup SR EN 1992-1, Ed. Abel, 2008, ISBN973114070-0

    Mosley W.H., Burgey J.H., Hulse R., Reinforced Concrete Design to Eurocode 2, Sixth Edition, 2007, ISBN:9780230500716

    Nilson A., Darwin D., Dolan Ch., Design of Concrete Structures (13th Ed.), McGraw-Hill Co, 2004, ISBN 0-07-248305-9

    Newman J., Choo B. S., Advanced Concrete Technology SET, Ed. Elsevier Science, 2003, ISBN-13:9780750656863

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    3/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    1. ELEMENTS OF A FLOOR

    - STRUCTURAL ELEMENTS , WITH STRENGTH ROLE

    - SLAB AND BEAMS (DISPOSED IN ONE OR TWO DIRECTIONS, WHICH SUPPORTS THESLAB)

    - NON-STRUCTURAL ELEMENTS , E.G. PROTECTIONS- FINISHING, FLOORS, ISOLATIONS (ACOUSTIC, HYDRO-), INSULATIONS

    GIRDERS (MAIN BEAMS) BEING ALSO IN THE SAME TIME BEAMS OF THE FRAME

    SECONDARY BEAMS DISPOSED PERPENDICULAR TO THE GIRDERS, BEINGEQUIDISTANT (AS IS MUCH AS IT IS POSSIBLE), THE DISTANCEBETWEEN THEIR AXIS BEING

    IN THE CASE OF SLABS REINFORCED IN ONE DIRECTION, THE RATIO

    OF A SLAB PANEL RESPECTS THE CONDITION:

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    4/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    1. ELEMENTS OF A FLOOR

    The cast-in-place floor is a space structure, because, through concrete andsteel reinforcement a link between the component elements is created.

    The computation of a space structure is quite difficult , therefore, in design isaccepted the calculation of each structural element separately , taking intoaccount the load transmission modes, in vertical direction, toward the supports .

    In this way, it could be admitted that the slab ( S ) is supported by the secondarybeams ( SB ), the secondary beams are supported by the girders ( G) and columns(C) and the girders together with columns are forming the frame, which transmitsthe loads to the foundations ( F) and to the terrain.

    S SB frame = G + C F terrain

    The route of the loads specifies the order in which the design of the structural element must be done, i.e.design of the slab, then secondary beams, girders, etc.

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    5/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    1. ELEMENTS OF A FLOOR

    n x B

    L

    L

    GirdersSecondary beams

    Slab panel

    Columns

    Detail A

    (bay)

    ( s p a n

    )

    Transversal sectionsgirder secondary beam

    secondary beam

    girder

    Girder secondary beam

    Detail A

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    6/71

    Formwork plane

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    7/71

    Formwork plane

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    8/71

    Formwork plane

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    9/71

    Formwork plane

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    10/71

    Formwork plane

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    11/71

    Formwork plane

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    12/71

    Formwork plane

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    13/71

    Formwork plane

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    14/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    1. ELEMENTS OF A FLOOR

    DESIGN PHASES

    - PRE-DIMENSIONING : choosing the structural elements dimensionsaccording to the recommendations, in such a way to correspond also to other criteria that the strength;

    - COMPUTATION OF THE LOADS : determination of the design loads,knowing the structural elements dimensions, the composition of non-structuralelements, destination and location of the construction;

    - ESTABLISHING THE STATIC SCHEME FOR DESIGN based on the design

    spans of the elements;

    - STATIC DESIGN : determining the most unfavourable effects of design loadswhich acting on the admitted static scheme. It can be solved by using CADprograms or manually, with approximate methods;

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    15/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    1. ELEMENTS OF A FLOOR

    DESIGN PHASES (contd)

    - THE PROPER DESIGN , through following steps:

    - finalization of the elements cross section , based on the resultsfrom the static calculations and on the used material characteristics;

    - computation of the reinforcement area and setting their layout ;

    - execution drawing , which includes the framework plane and

    reinforcement layout, reinforcement details and material consumptions(volume of the concrete and reinforcement).

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    16/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    2. PRE-DIMENSIONING THE ELEMENTS OF THE FLOOR

    SLAB

    IF YES SLAB REINFORCED IN A SINGLE DIRECTION

    (Conf. P100-1/2013)

    hs = M x 10 mml = interaxis

    Section aah s

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    17/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    2. PRE-DIMENSIONING THE ELEMENTS OF THE FLOOR

    BEAMS

    bmin = 200 mmh, b = M x 50 mmL = interaxis

    DIMENSION RECOMMENDATIONS

    HEIGHT

    Minimum, hminL/(1215) girders

    L/20 secondary beams

    Optimum, hopt L/(812) girders

    L/(1215) secondary beams

    WIDTH h/b = 1.5 3 rectangular section

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    18/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    2. PRE-DIMENSIONING THE ELEMENTS OF THE FLOOR

    COLUMNS (is chosen)

    bCOL = (bG + 5cm) 350 mm

    hCOL 1,2 b COL

    h, b = M x 50 mm

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    19/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    3. COMPUTATION OF LOADS

    ACTION CHARACTERISTICS EXAMPLES

    PERMANENT Variation in time is

    negligibleSelf weight: structural elements,finishing, etc.

    VARIABLE Variation in time is

    important

    Loads resulted from using of the buildings (live loads)

    WindSnow

    ACCIDENTAL High intensity, reduced time of actionEarthquake Explosion

    Design value of action

    Partial safety coefficient

    Characteristic value of action

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    20/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    3. COMPUTATION OF LOADS

    GENERALLY, THESE LOADS CAN BE CONSIDERED UNIFORMLYDISTRIBUTED ON THE SLAB SURFACE AND THERE ARE EXPRESSED INkN/m 2.

    FOR THE CHARACTERISTIC VALUES k

    DESIGN VALUES d

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    21/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    3. COMPUTATION OF LOADS

    PERMANENT (DEAD) CHARACTERISTIC LOADS : gk

    SELFWEIGHT

    - RC SLAB

    - PLASTER

    - FLOOR

    - Asphalt

    - Mosaic

    - Pavement

    - Cement concrete lining

    P

    , , , 2 , 2

    , 2

    , 2

    ,

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    22/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    3. COMPUTATION OF LOADS

    MATERIALS SPECIFIC WEIGHT

    [kN/m3]

    CONCRETES

    R. C. 25.0

    FINISHING PLASTERS

    Cement mortar 21.0

    Cement lime mortar 19.0

    Lime or plaster mortar 17.0

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    23/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    3. COMPUTATION OF LOADS

    VARIABLE (LIVE) CHARACTERISTIC LOADS : qk

    IMPOSED LOADS

    - CATEGORIES OF USE

    - PARTITION WALLS

    (according to SR EN 1991-1-1:2004)

    Q

    ,,

    ,

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    24/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    3. COMPUTATION OF LOADS

    PERMANENT DESIGN LOADS

    VARIABLE DESIGN LOADS

    TYPE OF LOAD

    PARTIAL SAFETY FACTOR FOR ACTIONS

    F

    PERMANENT LOADS g = 1.35

    VARIABLE LOADS q = 1.50

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    25/71

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    26/71

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    27/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    4. STATIC DESIGN OF THE SLAB

    ESTABLISHING THE STATIC SCHEME

    -The real slab is replaced with a continues beam having spans of l c and linear

    distributed loads of pd x 1 m [kN/m]

    Envelope curves

    gd,gs/q d,gs = 0,5

    gd,gs /q d,gs = 5

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    28/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    4. STATIC DESIGN OF THE SLAB

    ESTABLISHING THE STATIC SCHEME

    -The real slab is replaced with a continues beam having spans of l c and linear

    distributed loads of pd x 1 m [kN/m]

    14

    envelope curves

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    29/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    CHARACTERISTIC AND DESIGN STRENGTH

    CONCRETE

    Quality of concrete is defined by the strength class, which is the characteristic

    compressive strength on cylinders

    Concrete class is

    Design compressive strength of concrete

    REINFORCEMENT

    Design strength of reinforcement

    ,

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    30/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    CHARACTERISTIC AND DESIGN STRENGTH

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    31/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    FINALIZING THE THICKNESS OF THE SLAB

    Design section of the slab

    Reinforcement of the slab popt (%) for reinforcing with f yk = 400 500 N/mm 2 f yk = 300 400 N/mm 2

    In 1 direction 0,25 0,50 0,30 0,60

    In 2 directions 0,20 0,50 0,25 0,50

    s s

    hs

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    32/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    FINALIZING THE THICKNESS OF THE SLAB

    Checking of the chosen thickness (necessary)

    MEd the maximum bending moment from the static designb = 1000 mm

    or = f( ) table , where

    , in function of popt

    100 1 0.5

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    33/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    FINALIZING THE THICKNESS OF THE SLAB

    Computation of the necessary slab thickness

    where,

    /2

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    34/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    FINALIZING THE THICKNESS OF THE SLAB

    Computation of the necessary slab thickness

    !!!!!!!!! in function of the Exposure Classand Structural class ( Ch. 4.4 )

    h s = M x 10 mm

    max ,; ,;10

    ,

    0.1 2

    bond

    durability

    5 , 10 25

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    35/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    FINALIZING THE THICKNESS OF THE SLAB

    If

    OK

    If

    RE-CALCULATION OF THE LOADS MOMENTS

    FINALIZING THE SLAB THICKNESS

    ,

    ,

    , ,

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    36/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    CALCULATION OF THE REINFORCEMENT AREA

    Effective depth:

    2

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    37/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    DETAILING RULES principal reinforcements(SR EN 1992-1-1/ Ch. 9)

    straight (bound) bars

    welded bars (welded fabrics)

    , 0.26 0.0013

    , 0.04

    1.5 200 . . 80 0.1 2 6

    5

    ngyt1

    l d

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    38/71

    Slide 37

    ngyt1 in conformity with the N.A.tamas.nagygyorgy, 11/03/02

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    39/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    DETAILING RULES principal reinforcements(SR EN 1992-1-1/ Ch. 9)

    - At the edge of the slab

    - Perpendicular to the girder , 25%, , 6/ l o

    G P gs

    gsgs

    gs

    lo /4

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    40/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    DETAILING RULES secondary reinforcements(SR EN 1992-1-1/ Ch. 9)

    = min 20% A s

    2.5 300 . .ngyt2

    Slide 39

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    41/71

    Slide 39

    ngyt2 in conformity with the N.A.tamas.nagygyorgy, 11/03/02

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    42/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    DETAILING RULES welded wire mesh (fabric) reinforcements(SR EN 1992-1-1/ Ch. 9)

    - At the edge of the slab

    - Perpendicular to the girder , 50, , , 5 l o

    G P gs

    gsgs

    gs

    lo /4

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    43/71

    5.58cm 2

    4.52cm2

    3.50cm2

    3.50cm2

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLABSLAB LAYOUT reinforcement with inclined bars

    I DESIGNOFARCCASTIN PLACESLAB

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    44/71

    5.58cm 2

    4.52cm2

    3.50cm2

    3.50cm2

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLABSLAB LAYOUT reinforcement with inclined bars

    I DESIGNOFARCCASTIN PLACESLAB

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    45/71

    5.58cm2

    4.52cm2

    3.50cm2

    3.50cm2

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLABSLAB LAYOUT reinforcement with straight bars

    I DESIGNOFARCCASTIN PLACESLAB

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    46/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLABSLAB LAYOUT reinforcement with welded wire mesh (welded fabric)

    I DESIGNOFARCCASTIN PLACESLAB

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    47/71

    I. DESIGN OF A RC CASTINPLACE SLAB

    5. DIMENSIONING OF THE SLAB

    CHECKING THE SLAB FOR SHEAR FORCES

    Generally , in the case of usual slabs with low thickness, the reinforcement isresulting from the design for bending and reinforcement for shear force is notneeded.

    To verify this:

    , , , 100 1/3 0.035 3/2 1/2

    , 0.18/

    1200 2.00

    0.02

    II DESIGNOFTHESECONDARYBEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    48/71

    II. DESIGN OF THE SECONDARY BEAM

    1. COMPUTATION OF LOADS

    B

    l o sbbG bG

    bsb

    G

    s.b

    s.b

    s.b.

    G

    II DESIGNOFTHESECONDARYBEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    49/71

    II. DESIGN OF THE SECONDARY BEAM

    1. COMPUTATION OF LOADS

    P , , Q , ,

    bsb

    , ,

    B

    l o sbbG bG

    G

    s.b

    s.b

    s.b.

    G

    IT IS THE TOTALLOAD!!!

    II DESIGNOFTHESECONDARYBEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    50/71

    II. DESIGN OF THE SECONDARY BEAM

    2. STATIC DESIGN OF THE SECONDARY BEAM

    ESTABLISHING THE STATIC SCHEME

    The secondary beam will be computed as a continues beam, with designspans , the supports being the girders. 0,

    11

    II.DESIGNOFTHESECONDARYBEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    51/71

    II. DESIGN OF THE SECONDARY BEAM

    3. DIMENSIONING OF THE SECONDARY BEAM

    As1 Step 1

    As1 Step 2

    As1 Step 1

    As2 = the minimum betweenthe reinforcements obtainedfrom the adjacent spans inStep 1 (here from M 1 and M2)

    As1 Step 2

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    52/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    FINALIZING THE HEIGHT OF THE SECONDARY BEAM

    Checking the chosen height (necessary)

    M Ed - maximum bending moment from the static design

    bsb - from pre-dimensioningor = f( ) table, where

    , in function of popt 1.2 1.8

    100 1 0.5

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    53/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    FINALIZING THE HEIGHT OF THE SECONDARY BEAM

    Computation of the necessary height

    ,

    long stirr

    cnomC nom,longd s /2

    max ,; , 10

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    54/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    FINALIZING THE HEIGHT OF THE SECONDARY BEAM

    Computation of the necessary height

    !!!!!!!!!!!!!!!!!!in function of the Exposure Classand Structural class ( Ch. 4.4 )

    h sb = M x 50 mm and then verification h sb /b sb =1,5 3,0 ???

    max ,; ,;10

    ,

    20 25

    bond

    durability

    10 , 10 25

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    55/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    FINALIZING THE HEIGHT OF THE SECONDARY BEAM

    If

    OK

    If

    RE-CALCULATION OF THE LOADS MOMENTS

    FINALIZING THE HEIGHT OF THE SECONDARY BEAM

    , ,

    , ,

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    56/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DESIGN OF THE REINFORCEMENTS IN SPAN simple reinforced T section

    The effective width of the flange ( beff ), depends on the web and flangedimensions, the type of loading, the span, the support conditions and thetransverse reinforcement.

    The effective width of the flange ( beff ) should be based on the distance l 0between points of zero moment.

    (B) (B) (B)

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    57/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DESIGN OF THE REINFORCEMENTS IN SPAN simple reinforced T section

    , , 0,2 0,10 0,20,

    beff

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    58/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DESIGN OF THE REINFORCEMENTS IN SPAN simple reinforced T section

    Table method

    If > lim re-dimensioning of the section

    /

    /

    2

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    59/71

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    60/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DETAILING RULES(SR EN 1992-1-1/ Ch. 9 and P100/1-2006, Ch.5)- At the edge of the beam

    - Anchorage of bottom reinforcement at end support

    - Anchorage at intermediate supports

    , 15%,

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    61/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DETAILING RULES

    >0.3l o >0.3l o >0.3l o

    ~10cm

    l

    10d

    l bd

    l bd

    min 2

    min 228 secondary

    min 2

    min 2

    A B A

    28 secondary

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    62/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DETAILING RULES

    (ch. 8.4.4)

    for anchorages in tension

    for anchorages in compression, 0.3,;10;100

    , 0.6,;10;100

    12345 , ,, /4/

    4

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    63/71

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    64/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DESIGN OF THE REINFORCEMENTS ON THE SUPPORTSdouble reinforced rectangular cross section

    Is calculated

    - If a > lim re-dimensioning of the section

    - If a < 0

    2 22

    1 2

    IT IS THE MINIMUMEFFECTIVE AREA !!!

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    65/71

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    66/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DESIGN OF THE REINFORCEMENTS ON THE SUPPORTSdouble reinforced rectangular cross section

    Is calculated

    - Must be checked if no yielding of compressed reinf.F c acts at the level of F s2

    2 22

    IT IS THE MINIMUMEFFECTIVE AREA !!!

    1.25 1 1 2

    2 /

    2 2

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    67/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DESIGN FOR SHEAR FORCEComputation the shear resistance of concrete

    , 0.18/ 1 200 2.00

    0.02

    , , 100 1/3 0.035 3/2 1/2

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    68/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DESIGN FOR SHEAR FORCE

    If minimum shear reinforcement will be provide

    For providing of double-arm stirrups

    ,

    , 0.08

    , 0.75 1 400

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    69/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DESIGN FOR SHEAR FORCE

    If is imposed = 45 o (crack)

    = 90 o (stirrups)where z 0,9d

    choose Asw = n x sw snec

    and then must be verified if

    ,

    II. DESIGN OF THE SECONDARY BEAM

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    70/71

    3. DIMENSIONING OF THE SECONDARY BEAM

    DESIGN FOR SHEAR FORCEDETAILING RULES

    To have a ductile failure

    Where

    , , 0.51

    1 0.6 1 250

  • 8/12/2019 E3 Guide RC Project Nagy-Gyorgy T 2014 v2

    71/71