analiza fourier

Upload: ifrim-sorin

Post on 14-Jan-2016

60 views

Category:

Documents


1 download

DESCRIPTION

Aplicatii pas cu pas

TRANSCRIPT

CURS 2

CURS 2 RECAPITULARE ANALIZA FOURIER CLASIC

SFG:

SFT:

Simetrie par:

Simetrie impar:

SFA:

;

SFC:

;

Aplicaia 2.1 S se determine SFT, SFA i SFC pentru semnalul din fig. 2.9. Fig. 2.9

SFT

SFA

Spectrul SFT

Spectrul SFA

Spectrul SFC

Observaie:

Spectrul unor semnale se poate obine din spectrul cunoscut al unui semnal de referin, prin nsumarea unei constante i/sau modificarea scrii i/sau operaie de ntrziere. De exemplu, considernd u(t) din fig. 2.9 ca semnal de referin, semnalul periodic din fig. 2.14 se scrie:

Fig. 2.14 Semnal derivat din semnalul u(t), dat n fig. 2.9

Avnd n vedere modelul spectral al semnalului u(t) este

modelul spectral SFA al semnalului este:

,

deci:

; ;

Aplicaia 2.2Fie x(t) un tren de impulsuri de arie unitar, reprezentat n fig.2.15. S se modeleze semnalul prin seria Fourier, tiind c T=1 ms i =0.2ms.

Fig. 2.15: Tren de impulsuri de arie unitar

Se utilizeaz SFC . Parametrii se calculeaz astfel:

(2.35)

=

unde sinc(() este funcia sinus cardinal. Rezult parametrii i :(2.36)

(2.37)

Graficul funciei sinc(x) este dat n fig. 2.16, a). Modelul semnalului cu ajutorul SFC este:(2.38)

Fig. 2.16 Funcia sinus cardinal a) i spectrul unui tren de impulsuri b)Funcia sinus cardinal se anuleaz pentru sau, altfel, , k=1,2,.... Deci pentru frecvena , unde , ct i pentru frecvenele . In cazul aplicaiei, T=1 ms i =0.2ms, deci ,

Spectrul SFC este reprezentat n fig. 2.16, b). Se observ c .Pornind de la relaia (2.29) se poate construi spectrul de amplitudini (fig. 2.17, a)) i de faze (fig. 2.17, b)), care caracterizeaz seria Fourier armonic.

Fig. 2.17: Spectrul de amplitudini i de faze al unui tren de impulsuriAplicaia 2.3Fiind dat un tren de impulsuri cu arie unitar, avnd perioada i durata , s se realizeze programul care efectueaz urmtoarele operaii:

calculul componentelor spectrale aferente SFC;

reprezentarea n acelai grafic a semnalului dat (pe o perioad a acestuia), ct i a semnalelor calculate pe baza unui numr finit de armonici din spectrul determinat. Se vor considera 9, 19, i 29 armonici n spectru.

SHAPE \* MERGEFORMAT

Fig. 2.18 Spectrele de amplitudini i de faze

Lista comentat a programului Matlab este urmtoarea:

clear all; clg;

%parametrii trenului de impulsuri

T=2;w0=2*pi/T;tau=0.2;Amplit=1/tau;

%calcului parametrilor modelului spectral

A=zeros(1,50);phi=zeros(1,50);

for i=1:50,

alf=(i-1)*w0*tau/2;

alf=alf/pi;

A(1,i)=abs(sinc(alf)/T);

phi(1,i)=-angle(sinc(alf));

end;

%se calculeaz vectorul ind, necesar n reprezentarea grafic a spectrului

for i=1:50,

ind(i)=i-1;

end;

%reprezentarea spectrului SFC (numai pentru frecvene pozitive)

figure(1)

stem(ind,A(1,:));grid;

figure(2)

stem(ind,phi(1,:));grid;

%generarea trenului de impulsuri i reprezentarea lui graficx1=zeros(1,900);x2=Amplit*ones(1,200);

x3=zeros(1,900);x=[x1 x2 x3];

dt=0.001;t=[-T/2+dt:dt:T/2];

figure(3);

h=plot(t,x,'k');set(h,'LineWidth',2);

axis([-1 1 -1.5 7]);hold on;

%calculul semnalelor deduse pe baza spectrului determinat%se utilizeaz 9, 19 i 29 armonici n spectru; se reprezint aceste

%semnale pe un grafic comun cu cel al trenului de impulsuri

for j=9:10:29,

xy=A(1)*ones(1,2000);

for i=1:j,

xy=xy+2*A(1,i+1)*cos(i*w0*t+phi(1,i+1));

end;

plot(t,xy,'k');axis([-1 1 -1.5 7]);end;grid;

Fig. 2.19 Semnalul x(t) i aproximarea acestuia printr-un numr finit de armonici

Fig. 2.20 Detalierea zonei centrale din fig. 2.19

n fig. 2.18 sunt date comnponentele spectrale i din SFC, aferente frecvenelor pozitive. n fig. 2.19 este reprezentat semnalul x(t) i aproximrile acestuia prin considerarea a 9, 19, i 29 armonici. Pentru a discerne mai bine calitatea aproximrilor, n fig. 2.20 s-a reprezentat, la scar de timp, zona central din fig. 2.19.2.3 Utilizarea sistemelor de funcii binare ortogonale n modelarea semnalelor periodice

n acest caz, funciile ortogonale din sistemul , utilizat n dezvoltarea , pot lua doar dou valori. Principalele funcii din aceast categorie sunt: funciile Walsh, funciile Rademacher, funciile Hadamard i funciile Haar.

2.3.1 Analiza Fourier - Walsh

Funciile Walsh sunt funcii ortogonale, definite pe o baz de timp, numit i suport, [0; T], T fiind perioada. Frecvent se utilizeaz ca suport domeniul [-T/2;T/2]. De asemenea, se poate utiliza un domeniu de timp normat: = t/T. n acest caz, suportul este [0; 1] sau .

Reprezentarea grafic a primelor N=8 funcii Walsh este dat n fig. 2.21.

Fig. 2.21 Primele 8 funcii Walsh

Intervalul s-a mprit n N subintervale egale, de lime (, numrul subintervalului fiind o putere a lui 2: ; n fig. 2.21 p=3.

Funciile Walsh se noteaz prin wal(i,), i=0,1,...N-1. Prin analogie cu funciile trigonometrice, funciile Walsh pare se noteaz:

(2.39) , iar (2.40) , cele impareIndicele k din funcia cal(k, ) arat numrul de intersecii ale abscisei din jumtatea bazei de timp i se numete secvena funciei.

Norma funciilor Walsh, definite n raport cu timpul normat , este 1. Dac se utilizeaz timpul fizic, t, norma este .

Dezvoltarea unei funcii periodice u(t) n sistemul de funcii Walsh este:

(2.41) , n care:(2.42)

Fig. 2.22 Spectre n analiza Fourier-Walsh, conform modelelor (2.41) a) i (2.43) b)Expresia (2.41) se poate pune sub forma:

(2.43) , n care(2.44)

(2.45)

Generarea funciilor Walsh se face, de regul, prin relaii iterative. Vom ilustra dou astfel de proceduri.

Procedura 1. Se iniializeaz wal(0,(), cu valoare unitar pentru i zero n rest. n continuare, wal(i+1,(), se calculeaz pe baza funciei anterioare, wal(i,(), i=0,1,2, ..., utiliznd ecuaia:

(2.46)

cu , iar este partea ntreag a lui .

Fig. 2.23 Generarea funciei wal(1,()

Calculul funciei wal(1,() pe baza funciei wal(0,(). n cazul funciei wal(1,(), indicii j i l sunt: i . Aplicnd relaia (2.46), rezult:

(2.47)

n fig. 2.23 este ilustrat construcia funciei wal(1,(), pe baza celor 2 termeni din partea dreapt a expresiei (2.47).

Calculul funciei wal(5,() se face punnd i . Rezult:

(2.48)

Generarea funciei wal(5,(), este ilustrat n fig. 2.24.

Fig. 2.24 Generarea funciei wal(5,()

Procedura 2. Se noteaz prin intervalul discret n care se mparte baza de timp a funciei. Dup iniializarea funciei wal(0,r), calculul iterativ al celorlalte funcii se face cu relaia:

(2.49)

cu ; ; .

Deducerea funciei wal(1,r) din wal(0,r) se face cu relaia (2.49), n care se pune i . Considernd N=4, rezult:

Construcia funciei este utilizat n fig. 2.25.

Fig. 2.25 Construcia funciei wal(1,r)

Aplicaia 2.4 S se efectueze analiza Fourier-Walsh a semnalului , , considernd numai primele 6 funcii Walsh.

Fig. 2.26 Semnal sinusoidal

Se face schimbarea de variabil: ; rezult (fig.2.26).

Se calculeaz coeficienii ai, i=0,1,...,5, din relaia (2.41), conform expresiilor (2.42). Deoarece funcia este impar, rezult . n continuare:

Fig. 2.27 Aproximarea lui prin n analiza Fourier - Walsh

n ultima relaie de mai sus, calculm fiecare termen:

Se obine:

Deci, semnalul se aproximeaz (vezi fig. 2.27) prin expresia:

2.3.2 Analiza Fourier - Rademacher

Funciile Rademacher se genereaz cu relaia:

(2.50) ,

unde este timpul normat.

Primele 3 funcii Rademacher sunt ilustrate n fig. 2.28. Din relaia de definiie (2.50), se constat c toate funciile sunt impare, deci ele nu formeaz un sistem complet de funcii ortogonale. n consecin, ele pot fi utilizate numai pentru modelarea semnalelor cu simetrie impar.Fig. 2.28 Funcii Rademacher2.3.3 Analiza Fourier - Hadamard

Funciile ortogonale Hadamard se genereaz cu relaia:

(2.51)

unde ( este timpul normat. Ele formeaz un sistem complet de funcii ortogonale, ca i funciile Walsh.

n fig. 2.29 sunt ilustrate primele 5 funcii Hadamard.Fig. 2.29 Funcii Hadamard

2.3.4 Analiza Fourier - Haar

Sistemul de funcii ortogonale Haar este definit prin relaiile:

(2.52) ,

unde i .Fig. 2.30 Funcii HaarNotnd prin gradul funciei i prin ordinul funciei (), relaia (2.52) se mai poate scrie ca n ecuaia de mai jos:

(2.53)

Norma funciilor Haar, exprimate n raport cu timpul normat, este unitar. Modelul Fourier Haar al unui semnal u(t) este:

(2.54) ,

unde .

Reprezentarea grafic a primelor 8 funcii Haar este dat n fig. 2.30.2.4 Analiza polinomial a semnalelor periodicen SFG, sistemul de funcii utilizat la modelarea semnalului u(t) se deduce pornind de la un set de funcii polinomiale, de forma . Dac acestea satisfac relaia:

(2.55) ,

atunci polinoamele se numesc ortogonale n raport cu funcia de ponderare (t). Dac relaia (2.55) este adevrat atunci sistemul de funcii: , n care , este un sistem de funcii ortogonale i se utilizeaz efectiv n SFG. Parametrii ai din SFG se calculeaz cu relaiile:

(2.56)

n cele ce urmeaz sunt prezentate principalele funcii polinomiale utilizate n modelarea semnalelor.

Polinoamele Legendre. Aceste polinoame au funcia de ponderare egal cu 1, deci sunt efectiv polinoame ortogonale.

Polinoamele Laguerre, cu funcia de ponderare . Ele se genereaz cu relaia recursiv:

Polinoamele Hermite, cu funcia de ponderare . Ecuaia utilizat pentru generarea acestor funcii este:

Polinoamele Cebev, cu funcia de ponderare

i ecuaia recursiv de generare:

Observaie:

n principiu, n SFG, putem adopta orice sistem de funcii, cu condiia ca acestea s fie liniar independente.

Dac se adopt sistemul de funcii liniar independente, este oportun ca el s se transforme ntr-un sistem de funcii ortogonale, pentru ca determinarea parametrilor SFG s se fac uor. Se tie c, dac este ndeplinit condiia , unde este simbolul lui Kronecker, atunci sistemul este ortonormal.

Trecerea de la sistemul iniial de funcii , liniar independente, dar neortogonale, la sistemul de funcii ortonormale , se face prin procedura general Gram-Schmidt de ortogonalizare.O prezentare elementar a acestei proceduri este dat n cele ce urmeaz:

Se consider 1(t) definit ca: , i se impune condiia ca norma funciei s fie unitar:

,

adic:

,

de unde se obine a1.

Utiliznd i , se definete :

Din condiia: rezult a3, iar din se obine a2.

Funcia se definete sub forma:

Condiiile i se folosesc pentru determinarea parametrilor a5 i a6, iar pentru determinarea lui a4 se folosete condiia .

Procedura se repet pn cnd sunt implicate toate funciile din sistemul iniial, .

Dintre funciile iniiale, , cel mai des apelate n modelarea semnalelor, fcnd obiectul operaiei preliminare de ortogonalizare, sunt funciile exponeniale, , cu valori impuse pentru .

Capitolul 3

MODELAREA SEMNALELOR NEPERIODICE3.1 Analiza spectral a semnalelor utiliznd transformata Fourier

Se caut modelul unui semnal neperiodic oarecare, , de modul integrabil (fig. 3.1, a)). Pentru aceasta se utilizeaz un alt semnal, periodic, notat prin , care ntr-o perioad T posed forma semnalului (vezi fig.3.2, b)).

Fig. 3.1 Semnal periodic obinut dintr-un semnal neperiodic

S modelm semnalul periodic prin SFC:

(3.1)

i, deoarece n perioada T avem u(t) = uT(t),

(3.2)

Fig. 3.2 Pulsaiile discrete din SFC

nlocuind (3.1) n (3.2), se obine , sau:

(3.3)

,

cu . Parametrii ai SFC sunt asociai pulsaiilor (fig. 3.2).

Fig. 3.3 Pulsaiile discrete pentru o perioad T foarte mare

S considerm acum o cretere important a perioadei T. S notm pulsaia care devine foarte mic prin , deci (fig.3.3). Relaia (3.3) devine:

(3.4)

n continuare se admite c perioada T, n care se ncadreaz semnalul dat iniial, tinde spre infinit, prin transferarea spre ( a limitei din stnga a perioadei i spre ( a limitei din dreapta. Dac , se obine:

deci:

(3.5)

Paranteza din partea dreapt a relaiei (3.5) este transformata Fourier a semnalului u(t), adic:

(3.6)

Transformata Fourier reprezint modelul matematic al semnalului u(t). Aceast transformat, numit funcie spectral sau caracteristic spectral a semnalului, exist i pentru frecvene negative, deci pentru tot domeniul de frecvene . Semnalul u(t) se exprim n funcie de prin transformata Fourier invers:

(3.7)

Funcia complex se poate exprima prin urmtoarea relaie:

,

unde , iar .

n concluzie, se obine:

(3.8)

,

cu:

Funciile i sunt pare, iar funciile i sunt impare.

3.2 Semnificaia fizic a funciilor spectrale

Pornind de la relaia (3.4), adic,

n ipoteza c perioada T este foarte mare i intervalul de integrare nu este infinit, putem admite:

n consecin:

(3.9)

Pentru semnalul , SFC este:

(3.10)

,

unde . Conform cu (3.9) i (3.10), rezult:

(3.11)

Fie o form oarecare a funciei spectrale (fig. 3.4, a)). Dac se discretizeaz axa frecvenelor cu un pas , se observ c produsul reprezint aria , haurat pe fig. 3.5, a), adic:

(3.12)

Pornind de la relaiile (3.11) i (3.12), se obine:

Aceast relaie d legtura ntre caracteristica spectral i spectrul de amplitudini al SFC (fig. 3.4, b)). Pentru modelele spectrale, trecerea corespunde trecerii , unde sunt date de relaia (3.13). Fiecrui interval discret i corespunde o armonic elementar avnd amplitudinea (fig. 3.4, c)):

Se obine:

Deci mrimea este proporional cu densitatea de amplitudini a armonicilor, . Dac se trece la mrimi infinitezimale, atunci nlocuim prin iar prin i rezult . Cele prezentate justific utilizarea urmtoarelor denumiri: funcie a densitii spectrale, pentru , i densitate spectral de amplitudini, pentru .Funcia spectral a unui impuls

Fie impulsul real de arie unitar (fig. 3.5). S se calculeze funcia spectral a acestui semnal.

Funcia spectral este transformata Fourier a semnalului:

,

deci funcia posed forma dat n fig. 3.6.

Fig. 3.5 Impuls de arie unitarFig. 3.6 Funcia spectral a impulsului

S considerm acum un tren de impulsuri unitare cu , notat cu x(t) (fig. 2.15). S notm , cu , i frecvena foarte mic a semnalului periodic .

n fig. 3.7, a) i b), se ilustreaz procedeul de discretizare a funciei spectrale prezentate mai sus.

Se observ c, prin discretizarea funciei spectrale a impulsului (fig. 3.7, a)), se obine spectrul semnalului periodic (fig. 3.7, b)).

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.DSMT4

EMBED Equation.DSMT4

EMBED Equation.DSMT4

EMBED Equation.DSMT4

EMBED Equation.DSMT4

EMBED Equation.DSMT4

EMBED Equation.DSMT4

EMBED Equation.DSMT4

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

Fig. 3.4 Procedeul de discretizare a unei funcii spectrale

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

b)

a)

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

b)

a)

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

a)

b)

EMBED Equation.3

EMBED Equation.3

0

5

10

15

20

25

30

35

40

45

50

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

5

10

15

20

25

30

35

40

45

50

-3

-2.5

-2

-1.5

-1

-0.5

0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1

0

1

2

3

4

5

6

7

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0

1

2

3

4

5

6

EMBED Equation.3

9

19

29

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

a)

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

b)

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

c)

b)

a)

EMBED Equation.3

EMBED Equation.3

cal(0, )

cal(1, )

cal(2, )

sal(0, )

sal(1, )

sal(2, )

cal(3, )

sal(3, )

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

a)

b)

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

_1285076356.unknown

_1285077832.unknown

_1285151895.unknown

_1285155874.unknown

_1285481092.unknown

_1285482337.unknown

_1285484054.unknown

_1285484375.unknown

_1285484420.unknown

_1285484451.unknown

_1285484707.unknown

_1285484433.unknown

_1285484395.unknown

_1285484122.unknown

_1285483079.unknown

_1285483416.unknown

_1285482360.unknown

_1285481881.unknown

_1285482269.unknown

_1285481445.unknown

_1285481824.unknown

_1285481444.unknown

_1285156975.unknown

_1285157047.unknown

_1285231244.unknown

_1285480570.unknown

_1285157061.unknown

_1285231243.unknown

_1285157011.unknown

_1285157029.unknown

_1285156991.unknown

_1285156573.unknown

_1285156739.unknown

_1285156779.unknown

_1285156959.unknown

_1285156869.unknown

_1285156753.unknown

_1285156700.unknown

_1285156729.unknown

_1285156717.unknown

_1285156654.unknown

_1285156679.unknown

_1285156619.unknown

_1285156517.unknown

_1285156545.unknown

_1285156556.unknown

_1285156529.unknown

_1285156386.unknown

_1285156505.unknown

_1285152074.unknown

_1285155328.unknown

_1285155465.unknown

_1285155500.unknown

_1285155536.unknown

_1285155555.unknown

_1285155525.unknown

_1285155488.unknown

_1285155451.unknown

_1285155464.unknown

_1285155378.unknown

_1285155389.unknown

_1285155355.unknown

_1285155129.unknown

_1285155189.unknown

_1285155221.unknown

_1285155316.unknown

_1285155222.unknown

_1285155220.unknown

_1285155155.unknown

_1285155169.unknown

_1285155056.unknown

_1285155068.unknown

_1285152087.unknown

_1285151993.unknown

_1285152028.unknown

_1285152048.unknown

_1285152008.unknown

_1285151942.unknown

_1285151978.unknown

_1285151925.unknown

_1285145405.unknown

_1285150873.unknown

_1285151799.unknown

_1285151835.unknown

_1285151849.unknown

_1285151816.unknown

_1285151691.unknown

_1285151781.unknown

_1285151573.unknown

_1285150756.unknown

_1285150820.unknown

_1285150850.unknown

_1285150790.unknown

_1285145433.unknown

_1285150735.unknown

_1285146418.unknown

_1285145417.unknown

_1285144966.unknown

_1285145303.unknown

_1285145367.unknown

_1285145392.unknown

_1285145332.unknown

_1285145037.unknown

_1285145243.unknown

_1285145282.unknown

_1285144991.unknown

_1285145014.unknown

_1285144876.unknown

_1285144924.unknown

_1285144938.unknown

_1285144892.unknown

_1285077895.unknown

_1285144861.unknown

_1285077877.unknown

_1285076770.unknown

_1285076993.unknown

_1285077135.unknown

_1285077669.unknown

_1285077753.unknown

_1285077796.unknown

_1285077731.unknown

_1285077738.unknown

_1285077549.unknown

_1285077643.unknown

_1285077657.unknown

_1285077629.unknown

_1285077390.unknown

_1285077415.unknown

_1285077158.unknown

_1285077097.unknown

_1285077115.unknown

_1285077056.unknown

_1285077076.unknown

_1285077036.unknown

_1285076871.unknown

_1285076948.unknown

_1285076974.unknown

_1285076890.unknown

_1285076812.unknown

_1285076831.unknown

_1285076799.unknown

_1285076603.unknown

_1285076686.unknown

_1285076729.unknown

_1285076746.unknown

_1285076707.unknown

_1285076650.unknown

_1285076669.unknown

_1285076623.unknown

_1285076524.unknown

_1285076563.unknown

_1285076579.unknown

_1285076541.unknown

_1285076433.unknown

_1285076455.unknown

_1285076415.unknown

_1109501410.unknown

_1285053187.unknown

_1285060329.unknown

_1285073316.unknown

_1285074360.unknown

_1285074466.unknown

_1285076234.unknown

_1285074381.unknown

_1285073708.unknown

_1285074090.unknown

_1285073639.unknown

_1285073507.unknown

_1285060372.unknown

_1285060424.unknown

_1285073298.unknown

_1285060392.unknown

_1285060403.unknown

_1285060415.unknown

_1285060383.unknown

_1285060351.unknown

_1285060362.unknown

_1285060339.unknown

_1285056420.unknown

_1285056748.unknown

_1285059372.unknown

_1285060220.unknown

_1285060298.unknown

_1285060319.unknown

_1285060287.unknown

_1285060204.unknown

_1285056930.unknown

_1285056749.unknown

_1285056524.unknown

_1285056646.unknown

_1285056667.unknown

_1285056747.unknown

_1285056657.unknown

_1285056539.unknown

_1285056634.unknown

_1285056481.unknown

_1285056512.unknown

_1285056499.unknown

_1285056442.unknown

_1285055603.unknown

_1285056353.unknown

_1285056375.unknown

_1285056319.unknown

_1285056330.unknown

_1285054341.unknown

_1285055559.unknown

_1285053458.unknown

_1285053547.unknown

_1285053605.unknown

_1285053490.unknown

_1285053228.unknown

_1284716019.unknown

_1285052228.unknown

_1285053160.unknown

_1285052875.unknown

_1285053139.unknown

_1284988553.unknown

_1285051873.unknown

_1285051944.unknown

_1285051997.unknown

_1285051823.unknown

_1284988240.unknown

_1284988488.unknown

_1284716070.unknown

_1284987990.unknown

_1284716087.unknown

_1284716040.unknown

_1284716067.unknown

_1109501563.unknown

_1109501634.unknown

_1110097102.unknown

_1110540186.unknown

_1284709800.unknown

_1284709910.unknown

_1112096061.unknown

_1113030497.unknown

_1113030496.unknown

_1112078095.unknown

_1112096051.unknown

_1112078077.unknown

_1110539994.unknown

_1110540178.unknown

_1110098507.unknown

_1110539986.unknown

_1110097134.unknown

_1109501660.unknown

_1109501675.unknown

_1109501684.unknown

_1109501670.unknown

_1109501645.unknown

_1109501650.unknown

_1109501640.unknown

_1109501606.unknown

_1109501617.unknown

_1109501628.unknown

_1109501612.unknown

_1109501590.unknown

_1109501600.unknown

_1109501584.unknown

_1109501439.unknown

_1109501544.unknown

_1109501556.unknown

_1109501532.unknown

_1109501420.unknown

_1109501434.unknown

_1109501415.unknown

_1104901179.unknown

_1104999919.unknown

_1109429243.unknown

_1109498815.unknown

_1109498937.unknown

_1109499108.unknown

_1109499232.unknown

_1109501345.unknown

_1109499298.unknown

_1109499113.unknown

_1109498946.unknown

_1109499103.unknown

_1109498926.unknown

_1109498931.unknown

_1109498824.unknown

_1109498661.unknown

_1109498780.unknown

_1109498794.unknown

_1109498772.unknown

_1109491262.unknown

_1109498512.unknown

_1109498650.unknown

_1109496517.unknown

_1109477221.unknown

_1109490664.unknown

_1109477475.unknown

_1109429256.unknown

_1105889753.unknown

_1106123175.unknown

_1106123611.unknown

_1106123615.unknown

_1109426214.unknown

_1109426229.unknown

_1109426531.unknown

_1109426164.unknown

_1106123616.unknown

_1106123613.unknown

_1106123614.unknown

_1106123612.unknown

_1106123325.unknown

_1106123609.unknown

_1106123610.unknown

_1106123340.unknown

_1106123346.unknown

_1106123334.unknown

_1106123313.unknown

_1106123319.unknown

_1106123305.unknown

_1105895599.unknown

_1106123064.unknown

_1106123087.unknown

_1106122906.unknown

_1106122958.unknown

_1105960150.unknown

_1105895082.unknown

_1105890498.unknown

_1105358391.unknown

_1105886115.unknown

_1105886222.unknown

_1105886241.unknown

_1105886127.unknown

_1105365477.unknown

_1105365499.unknown

_1105610281.unknown

_1105362968.unknown

_1105348935.unknown

_1105355001.unknown

_1105358375.unknown

_1105348943.unknown

_1105275903.unknown

_1105275904.unknown

_1104999973.unknown

_1104901425.unknown

_1104902329.unknown

_1104903218.unknown

_1104904036.unknown

_1104904044.unknown

_1104904119.unknown

_1104903689.unknown

_1104903065.unknown

_1104903115.unknown

_1104903146.unknown

_1104903058.unknown

_1104901857.unknown

_1104902318.unknown

_1104902324.unknown

_1104902246.unknown

_1104901858.unknown

_1104901698.unknown

_1104901711.unknown

_1104901717.unknown

_1104901705.unknown

_1104901431.unknown

_1104901419.unknown

_1104901181.unknown

_1104901348.unknown

_1104901354.unknown

_1104901360.unknown

_1104901182.unknown

_1104901180.unknown

_1104827243.unknown

_1104837209.unknown

_1104846433.unknown

_1104900279.unknown

_1104900638.unknown

_1104901089.unknown

_1104901095.unknown

_1104901039.unknown

_1104901048.unknown

_1104901030.unknown

_1104900945.unknown

_1104900293.unknown

_1104900532.unknown

_1104900549.unknown

_1104900516.unknown

_1104900286.unknown

_1104899442.unknown

_1104899937.unknown

_1104900040.unknown

_1104900089.unknown

_1104900225.unknown

_1104900073.unknown

_1104899972.unknown

_1104899454.unknown

_1104899711.unknown

_1104899742.unknown

_1104899460.unknown

_1104899448.unknown

_1104899423.unknown

_1104899430.unknown

_1104899177.unknown

_1104842939.unknown

_1104845446.unknown

_1104845685.unknown

_1104846359.unknown

_1104845459.unknown

_1104845044.unknown

_1104845427.unknown

_1104845388.unknown

_1104845426.unknown

_1104845106.unknown

_1104845105.unknown

_1104844997.unknown

_1104845025.unknown

_1104845034.unknown

_1104845016.unknown

_1104844945.unknown

_1104844958.unknown

_1104844944.unknown

_1104843995.unknown

_1104841610.unknown

_1104842881.unknown

_1104842928.unknown

_1104842866.unknown

_1104842874.unknown

_1104842828.unknown

_1104841468.unknown

_1104841595.unknown

_1104841426.unknown

_1104841461.unknown

_1104830547.unknown

_1104833372.unknown

_1104833404.unknown

_1104834765.unknown

_1104834881.unknown

_1104834883.unknown

_1104834771.unknown

_1104834780.unknown

_1104834637.unknown

_1104834733.unknown

_1104834760.unknown

_1104834621.unknown

_1104834627.unknown

_1104833387.unknown

_1104833396.unknown

_1104833379.unknown

_1104830707.unknown

_1104830870.unknown

_1104830887.unknown

_1104830807.unknown

_1104830813.unknown

_1104830821.unknown

_1104830789.unknown

_1104830799.unknown

_1104830692.unknown

_1104828305.unknown

_1104830469.unknown

_1104830540.unknown

_1104830437.unknown

_1104830429.unknown

_1104827678.unknown

_1104827992.unknown

_1104827255.unknown

_1045638370.unknown

_1103465116.unknown

_1103466256.unknown

_1103466468.unknown

_1103467040.unknown

_1103467071.unknown

_1103467072.unknown

_1103467070.unknown

_1103467069.unknown

_1103467016.unknown

_1103467034.unknown

_1103467009.unknown

_1103466355.unknown

_1103466424.unknown

_1103466269.unknown

_1103465451.unknown

_1103465577.unknown

_1103466041.unknown

_1103466234.unknown

_1103465989.unknown

_1103465505.unknown

_1103465140.unknown

_1103465303.unknown

_1103465394.unknown

_1103465155.unknown

_1103465128.unknown

_1103464182.unknown

_1103464625.unknown

_1103464944.unknown

_1103465100.unknown

_1103464878.unknown

_1103464612.unknown

_1103464618.unknown

_1103464195.unknown

_1046006000.unknown

_1062841300.unknown

_1062841786.unknown

_1103462879.unknown

_1063356801.unknown

_1062841767.unknown

_1046009444.unknown

_1046079322.unknown

_1046006944.unknown

_1046007296.unknown

_1046006038.unknown

_1046005994.unknown

_1046005997.unknown

_1046005987.unknown

_1045993092.unknown

_1045576929.unknown

_1045577179.unknown

_1045577200.unknown

_1045577203.unknown

_1045577190.unknown

_1045577195.unknown

_1045577198.unknown

_1045577192.unknown

_1045577185.unknown

_1045577187.unknown

_1045577182.unknown

_1045577154.unknown

_1045577168.unknown

_1045577174.unknown

_1045577177.unknown

_1045577171.unknown

_1045577160.unknown

_1045577163.unknown

_1045577165.unknown

_1045577157.unknown

_1045577134.unknown

_1045577141.unknown

_1045577146.unknown

_1045576874.unknown

_1045576917.unknown

_1045576923.unknown

_1045576926.unknown

_1045576920.unknown

_1045576891.unknown

_1045576900.unknown

_1045576907.unknown

_1045576911.unknown

_1045576914.unknown

_1045576903.unknown

_1045576895.unknown

_1045576883.unknown

_1045576886.unknown

_1045576877.unknown

_1045576880.unknown

_1045576847.unknown

_1045576862.unknown

_1045576868.unknown

_1045576865.unknown

_1044010805.unknown

_1044010869.unknown

_1044010875.unknown

_1044003633.unknown

_1044010797.unknown

_1044003700.unknown

_1043916805.unknown

_1044003497.unknown

_1044003566.unknown

_1044003609.unknown

_1044003537.unknown

_1043916825.unknown

_1043916793.unknown

_1043916785.unknown