laborator 1 cee

Upload: marculescu-aurel-george

Post on 02-Jun-2018

243 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Laborator 1 CEE

    1/21

    SISTEME EOLIENE DE

    PRODUCERE A ENERGIEI

    ELECTRICE

    titular curs: dr. ing. SAFTA Carmen Anca

    Laborator_1

    Masurarea parametrilor atmosferici;

    vantul si directia vantului;

    presiunea si temperaturaAn universitar 2014-2015

  • 8/10/2019 Laborator 1 CEE

    2/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    An universitar 2014-2015

    Masurarea vitezei vantului este foarte importantapentru multe domenii de activitate: meteorologie;

    agronomie;

    navigatie aeriana; navigatie maritima;

    ingineria mediului dispersia poluantilor;

    industrie energetica.

  • 8/10/2019 Laborator 1 CEE

    3/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Viteza vantului este masurata intr-o mare varietate demoduri, de la cele mai simple la cele mai sofisticatesisteme electronice. Variatia aleatoare in timp a vitezei vantului, ata camarime cat si ca sens, face ca masuratorile sa fie dificil de

    realizat la acuratetea ceruta.Calitatea masuratorilor depinde de calitatea mijloacelorde masurare si monitorizare folosite.

    In ingineria vantului, respectiv energie eoliana,cunoasterea vitezei si directiei vantului sunt importante in

    determinarea unor amplasamente corecte si cu potentialeolian maxim.

    An universitar 2014-2015

  • 8/10/2019 Laborator 1 CEE

    4/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Tipuri de anemometre:

    anemometre cu cupe sferice (inventat n 1846

    de John Thomas Romney Robinson); anemometru cu elice; anemometru cu placa de presiune; anemometru cu tub de presiune; anemometru cu fir cald; anemometru Doppler acustic; anemometru cu laser.

    MASURAREA VITEZEI VANTULUI CU ANEMOMETRE

    Dispozitivele de masurare a vitezei vantuluise numesc anemometre.

    An universitar 2014-2015

    http://ro.wikipedia.org/w/index.php?title=John_Thomas_Romney_Robinson&action=edit&redlink=1http://ro.wikipedia.org/w/index.php?title=John_Thomas_Romney_Robinson&action=edit&redlink=1
  • 8/10/2019 Laborator 1 CEE

    5/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Anemometrul cu cupesferice (inventat n 1846 de

    John Thomas RomneyRobinson)

    An universitar 2014-2015

    http://ro.wikipedia.org/w/index.php?title=John_Thomas_Romney_Robinson&action=edit&redlink=1http://ro.wikipedia.org/w/index.php?title=John_Thomas_Romney_Robinson&action=edit&redlink=1http://upload.wikimedia.org/wikipedia/commons/6/61/Wea00920.jpghttp://ro.wikipedia.org/w/index.php?title=John_Thomas_Romney_Robinson&action=edit&redlink=1http://ro.wikipedia.org/w/index.php?title=John_Thomas_Romney_Robinson&action=edit&redlink=1
  • 8/10/2019 Laborator 1 CEE

    6/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Anemometrul cu elice

    An universitar 2014-2015

    http://translate.googleusercontent.com/translate_c?hl=ro&langpair=en|ro&u=http://en.wikipedia.org/wiki/File:Wind_speed_and_direction_instrument_-_NOAA.jpg&rurl=translate.google.ro&usg=ALkJrhgvfWafENT933t8nCiSV9TF-ARuZg
  • 8/10/2019 Laborator 1 CEE

    7/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    ANEMOMETRU CU FIR CALD

    Principiu de functionare:

    Un fir este incalzit continuu lao temperatura superioaramediuluiambiant masurat si este racit

    continuu de debitul de aer. Temperatura firului estementinuta constanta printr-uncircuit de reglare. Curentul de incalzire al firuluieste proportional cu vitezadebitului de aer.

    An universitar 2014-2015

    http://www.control3.com/4330_l.htm
  • 8/10/2019 Laborator 1 CEE

    8/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Anemometru cu laser

    The laser is emitted (1) through the front lens (6) of

    the anemometer and is backscattered off the airmolecules (7). The backscattered radiation (dots) re-enter the device and are reflected and directed into adetector (12).

    An universitar 2014-2015

    http://translate.googleusercontent.com/translate_c?hl=ro&langpair=en|ro&u=http://en.wikipedia.org/wiki/File:Laser_anemometer.png&rurl=translate.google.ro&usg=ALkJrhjgJ0GM1hJlIsx3Hmla6npHcG_05w
  • 8/10/2019 Laborator 1 CEE

    9/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Anemometru Doppler acustic

    Anemometre Sonic, dezvoltat pentru prima oar n anii1970, utilizeaza undele sonore ultrasunete pentru amsura viteza vntului.

    An universitar 2014-2015

    http://translate.googleusercontent.com/translate_c?hl=ro&langpair=en|ro&u=http://en.wikipedia.org/wiki/Ultrasound&rurl=translate.google.ro&usg=ALkJrhgFv9fbNF490drbVGAMosviA9xOEQhttp://translate.googleusercontent.com/translate_c?hl=ro&langpair=en|ro&u=http://en.wikipedia.org/wiki/Ultrasound&rurl=translate.google.ro&usg=ALkJrhgFv9fbNF490drbVGAMosviA9xOEQhttp://translate.googleusercontent.com/translate_c?hl=ro&langpair=en|ro&u=http://en.wikipedia.org/wiki/Ultrasound&rurl=translate.google.ro&usg=ALkJrhgFv9fbNF490drbVGAMosviA9xOEQhttp://translate.googleusercontent.com/translate_c?hl=ro&langpair=en|ro&u=http://en.wikipedia.org/wiki/Ultrasound&rurl=translate.google.ro&usg=ALkJrhgFv9fbNF490drbVGAMosviA9xOEQ
  • 8/10/2019 Laborator 1 CEE

    10/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    An universitar 2014-2015

    http://www.google.ro/imgres?imgurl=http://www.smewind.com/wb/media/products/_DSC2007_copy.jpg&imgrefurl=http://www.smewind.com/wb/pages/ro/produse/gama-de-senzori/girueta-w200p-de-la-vector.php&usg=__AeehofmlkyGhuWAvSeXBS5pbwYM=&h=267&w=200&sz=30&hl=ro&start=17&zoom=1&um=1&itbs=1&tbnid=GulZ8iexY7EGGM:&tbnh=113&tbnw=85&prev=/images?q=girueta&um=1&hl=ro&sa=X&tbs=isch:1http://www.google.ro/imgres?imgurl=http://www.decoblog.ro/wp-content/uploads/2010/07/girueta-cocos.jpg&imgrefurl=http://www.decoblog.ro/categorie/decoratiuni_gradina&usg=__GLrvW0bA3kSW76z55H8dBhBafw8=&h=336&w=336&sz=17&hl=ro&start=5&zoom=1&um=1&itbs=1&tbnid=w6wCfD_oSZK2qM:&tbnh=119&tbnw=119&prev=/images?q=girueta&um=1&hl=ro&sa=X&tbs=isch:1http://www.google.ro/imgres?imgurl=http://www.bizoo.ro/img/Giruet--directia-si-intensitatea-vantului/img100/sale/2199661_1223317614.jpg&imgrefurl=http://www.bizoo.ro/produse/Giruet--directia-si-intensitatea-vantului/start-0/10/&usg=__cdb8cWzJ4vbstssY4xhghG9j_Uw=&h=100&w=100&sz=3&hl=ro&start=1&zoom=1&um=1&itbs=1&tbnid=b9I7t6RH-S0IDM:&tbnh=82&tbnw=82&prev=/images?q=girueta&um=1&hl=ro&sa=X&tbs=isch:1
  • 8/10/2019 Laborator 1 CEE

    11/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Statii meteo complete:

    http://www.lpelectric.ro/ro/products/meteo_ro.html

    An universitar 2014-2015

  • 8/10/2019 Laborator 1 CEE

    12/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    RADIOSONDE

    A radiosonde (Sonde is French and German for probe) is a unit for use inthings such as weather balloons that measures various atmosphericparameters and transmits them to a fixed receiver. Radiosondes may operateat a radio frequency of 403 MHz or 1680 MHz and both types may be adjustedslightly higher or lower as required.

    Rawinsondes are usually referred to as radiosondes.

    Modern radiosondes measure or calculate the following variables:PressureAltitudeGeographical position (Latitude/Longitude)Temperature

    Relative humidityWind (both wind speed and wind direction)Cosmic ray readings at high altitudeRadiosondes measuring ozone concentration are known asozonesondes.[1]

    An universitar 2014-2015

    http://en.wikipedia.org/wiki/French_languagehttp://en.wikipedia.org/wiki/Weather_balloonhttp://en.wikipedia.org/wiki/Atmospheric_soundinghttp://en.wikipedia.org/wiki/Atmospheric_soundinghttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Hertzhttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Altitudehttp://en.wikipedia.org/wiki/Geographic_coordinate_systemhttp://en.wikipedia.org/wiki/Latitudehttp://en.wikipedia.org/wiki/Longitudehttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Relative_humidityhttp://en.wikipedia.org/wiki/Windhttp://en.wikipedia.org/wiki/Wind_speedhttp://en.wikipedia.org/wiki/Wind_directionhttp://en.wikipedia.org/wiki/Cosmic_rayhttp://en.wikipedia.org/wiki/Ozonehttp://en.wikipedia.org/wiki/Ozonehttp://en.wikipedia.org/wiki/Cosmic_rayhttp://en.wikipedia.org/wiki/Wind_directionhttp://en.wikipedia.org/wiki/Wind_speedhttp://en.wikipedia.org/wiki/Windhttp://en.wikipedia.org/wiki/Relative_humidityhttp://en.wikipedia.org/wiki/Temperaturehttp://en.wikipedia.org/wiki/Longitudehttp://en.wikipedia.org/wiki/Latitudehttp://en.wikipedia.org/wiki/Geographic_coordinate_systemhttp://en.wikipedia.org/wiki/Altitudehttp://en.wikipedia.org/wiki/Pressurehttp://en.wikipedia.org/wiki/Hertzhttp://en.wikipedia.org/wiki/Radio_frequencyhttp://en.wikipedia.org/wiki/Atmospheric_soundinghttp://en.wikipedia.org/wiki/Atmospheric_soundinghttp://en.wikipedia.org/wiki/Weather_balloonhttp://en.wikipedia.org/wiki/French_language
  • 8/10/2019 Laborator 1 CEE

    13/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    RADIOSONDE

    The modern radiosonde communicates via radio with a computer that stores all

    the variables in real-time. The first radiosondes were observed from the groundwith a theodolite, and gave only a wind estimation by the position. With theadvent of radar by the Signal Corps it was possible to track the balloons with theSCR-658 radar. Modern radiosondes can use a variety of mechanisms fordetermining wind speed and direction, such as a radio direction finderor GPS.

    An optical theodolite,manufactured in theSoviet Union in 1958 andused for topographicsurveying

    Modern theodolite Nikon DTM-520

    An universitar 2014-2015

    http://en.wikipedia.org/wiki/Theodolitehttp://en.wikipedia.org/wiki/SCR-658_radarhttp://en.wikipedia.org/wiki/Radio_direction_finderhttp://en.wikipedia.org/wiki/Global_Positioning_Systemhttp://en.wikipedia.org/wiki/Nikonhttp://en.wikipedia.org/wiki/Nikonhttp://localhost/var/www/apps/conversion/tmp/scratch_3//upload.wikimedia.org/wikipedia/commons/3/3d/Teodolit_nikon_520.jpghttp://en.wikipedia.org/wiki/Global_Positioning_Systemhttp://en.wikipedia.org/wiki/Radio_direction_finderhttp://en.wikipedia.org/wiki/SCR-658_radarhttp://en.wikipedia.org/wiki/SCR-658_radarhttp://en.wikipedia.org/wiki/SCR-658_radarhttp://en.wikipedia.org/wiki/Theodolite
  • 8/10/2019 Laborator 1 CEE

    14/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Meteorological Masts and Towers

    An universitar 2014-2015

  • 8/10/2019 Laborator 1 CEE

    15/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    An universitar 2014-2015

  • 8/10/2019 Laborator 1 CEE

    16/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Sound intelligence in the search for

    wind power

    October 11, 2010 by WindPowerEngineeringFiled under Condition Monitoring, WindMaintenance

    The wind industrys need for wind

    measurement has grown beyond the

    60-m reach of standardmeteorological (met) masts. To

    reduce uncertainty for wind projectsthat can cost anywhere from $100million to $1 billion, the industryneeds data from the entire rotorsweep that cant be gleaned from 60,

    80, or even 100-m met masts.A 60-m met mast outfitted withsensors measures only about aquarter of the rotor sweep of a typicalcommercial turbine mounted on an80-m tower. Taller masts areobtainable, but permitting and aircraftobstruction regulations make them

    challenging to site. And even wherean 80-m mast is feasible, it onlymonitors the lower half of the windpowering the turbine. Is there asolution to met mast shortcomings?

    An universitar 2014-2015

    http://www.windpowerengineering.com/author/admin/http://www.windpowerengineering.com/author/admin/http://www.windpowerengineering.com/category/maintenance/condition-monitoring-maintenance/http://www.windpowerengineering.com/category/maintenance/http://www.windpowerengineering.com/category/maintenance/http://www.windpowerengineering.com/category/maintenance/http://www.windpowerengineering.com/category/maintenance/http://www.windpowerengineering.com/category/maintenance/condition-monitoring-maintenance/http://www.windpowerengineering.com/author/admin/http://www.windpowerengineering.com/author/admin/
  • 8/10/2019 Laborator 1 CEE

    17/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    SODAR (SOnic Detection AndRanging), also written as sodar, is ameteorological instrument used as awind profilerto measure the scattering ofsound waves by atmospheric turbulence.SODAR systems are used to measurewind speed at various heights above theground, and the thermodynamic

    structure of the lower layer of theatmosphere.Sodar systems are like radar(radiodetection and ranging) systems exceptthat sound waves rather than radiowaves are used for detection. Other

    names used for sodar systems includesounder, echosounder and acousticradar.[1]

    An universitar 2014-2015

    http://en.wikipedia.org/wiki/Wind_profilerhttp://en.wikipedia.org/wiki/Atmospherehttp://en.wikipedia.org/wiki/Radarhttp://en.wikipedia.org/wiki/Soundhttp://en.wikipedia.org/wiki/Radiohttp://en.wikipedia.org/wiki/Lighthttp://localhost/var/www/apps/conversion/tmp/scratch_3//upload.wikimedia.org/wikipedia/commons/7/7b/WindCollector2.jpghttp://en.wikipedia.org/wiki/Lighthttp://en.wikipedia.org/wiki/Radiohttp://en.wikipedia.org/wiki/Soundhttp://en.wikipedia.org/wiki/Radarhttp://en.wikipedia.org/wiki/Atmospherehttp://en.wikipedia.org/wiki/Wind_profiler
  • 8/10/2019 Laborator 1 CEE

    18/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Sodar is a form of sonar, like that used for echolocation by dolphins and bats. Sodar sends audibleacoustic pulses into the air, which reflect off encountered temperature differences. Microphones detectthe resulting back-scatter. Calculating the time it takes for the sounds to travel back to themicrophones yields the heights where the reflections occurred. Measuring the frequency change fromthe emitted pulse allows calculating wind speed towards or away from the instrument. Sending acousticpulses in three or more different directions allows translating steeply angled wind speed measurementsinto horizontal wind speeds and directions over the measurement range.

    An universitar 2014-2015

  • 8/10/2019 Laborator 1 CEE

    19/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    LIDAR technology (Light Detection and

    Ranging) is a ground-based laser system thatmeasures the wind profile from 10 m to 200m. Wind Measurement International haschosen the ZephIR LIDAR system as offeringthe most bankable data. It is a candidate toreplace the met mast based wind

    measurements used in power curvecalculations for offshore wind farms.

    LIDAR (Light Detection And Ranging, also LADAR) is an optical remotesensing technology that can measure the distance to, or other properties of atarget by illuminating the target with light, often using pulses from a laser.

    LIDAR technology has application in geomatics, archaeology, geography,geology, geomorphology, seismology, forestry, remote sensing andatmospheric physics,[1] as well as in airborne laser swath mapping (ALSM),laser altimetry and LIDAR contour mapping.

    An universitar 2014-2015

    http://en.wikipedia.org/wiki/Remote_sensinghttp://en.wikipedia.org/wiki/Remote_sensinghttp://en.wikipedia.org/wiki/Lighthttp://en.wikipedia.org/wiki/Laserhttp://en.wikipedia.org/wiki/Geomaticshttp://en.wikipedia.org/wiki/Archaeologyhttp://en.wikipedia.org/wiki/Geographyhttp://en.wikipedia.org/wiki/Geologyhttp://en.wikipedia.org/wiki/Geomorphologyhttp://en.wikipedia.org/wiki/Seismologyhttp://en.wikipedia.org/wiki/Forestryhttp://en.wikipedia.org/wiki/Remote_sensinghttp://en.wikipedia.org/wiki/Atmospheric_physicshttp://en.wikipedia.org/wiki/Contour_maphttp://localhost/var/www/apps/conversion/tmp/scratch_3//upload.wikimedia.org/wikipedia/commons/0/0e/Lidar_P1270901.jpghttp://en.wikipedia.org/wiki/Contour_maphttp://en.wikipedia.org/wiki/Atmospheric_physicshttp://en.wikipedia.org/wiki/Remote_sensinghttp://en.wikipedia.org/wiki/Forestryhttp://en.wikipedia.org/wiki/Seismologyhttp://en.wikipedia.org/wiki/Geomorphologyhttp://en.wikipedia.org/wiki/Geologyhttp://en.wikipedia.org/wiki/Geographyhttp://en.wikipedia.org/wiki/Archaeologyhttp://en.wikipedia.org/wiki/Geomaticshttp://en.wikipedia.org/wiki/Laserhttp://en.wikipedia.org/wiki/Lighthttp://en.wikipedia.org/wiki/Remote_sensinghttp://en.wikipedia.org/wiki/Remote_sensing
  • 8/10/2019 Laborator 1 CEE

    20/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Lidar, like Sodar, measures wind speeds by processing the Doppler shifts ofits emitted beams. A Lidar either pulses or continuously fires a solid-stateinfrared laser while motorized mirrors or optical waveguides maneuver thebeams. These strike particles in the air, aerosols, which reflect back to the

    source instrumentation where photosensors detected them.

    Like Sodar and Sonar, Lidar technology has been in use for years inapplications other than wind power. Meteorological lidar has been usedsuccessfully to measure narrow regions of air, sometimes to distances as greatas 15 km. Such systems have been built with color-tunable lasers, high-powerrequirements, and great expense, typically upwards of $1 million.

    An universitar 2014-2015

  • 8/10/2019 Laborator 1 CEE

    21/21

    SISTEME EOLIENE DE PRODUCERE A ENERGIEI ELECTRICE titular curs: dr. ing. SAFTA Carmen Anca

    Sodar and Lidar each have advantages and disadvantages. Lidars strong suit is

    response time. Light speed permits many more measurements than can bemade in the round-trip time of sound waves traveling a few hundred meters.Lidar can make second-by-second wind-speed measurements, which are usefulfor wind turbine controls. For resource assessments, however, the highresponse speed possible with lidar has no particular advantage.

    Sodars technical advantages include an inherently lower cost and power of

    basic transducers. These are not academic considerations. There are severalsodar systems available from $50,000 to $75,000, while the lowest costcomplete lidar systems carry price tags of $150,000 to $250,000. The lowestpower sodar, Triton, consumes 7W on average. The lowest power lidar systemis reported to be 45W. For remote applications this is a substantial difference.