curs zbaganu

139
 Introducere Cursul se adreseaz ă studenţilor anului II matematică, secţia informatică. În spaţiul sever de 12 lecţii se intenţionează prezentarea fundamentelor teoriei m ăsurii şi a probabilităţilor. Cursul a fost gîndit în ideea pregă tirii cursului de statistic ă ce urmeaz ă. Este un truism c ă nu se poate înţelege serios statistica fă r ă probabilit ăţi, iar probabilităţile nu po t fi înţelese - cel puţin în actuala axiomatizare a lui Kolmogorov - în absenţa teoriei măsurii. De aceea majoritatea lecţiilor - 8 - sunt dedicate problemelor de teoria m ăsurii, una este de teorie ergodic ă şi 3 despre noţiunile fundamentale de teoria probabilit ăţilor. Primele două lecţii se referă la noţiunea de măsurabilitate. Se introduce noţiunea de spaţiu măsurabil, funcţie măsurabil ă şi variabilă aleatoare (vector aleator). Se introduc mulţimile boreliene pe un spaţiu topologic şi se studiază dreapta real ă ca exemplu de baz ă de spaţiu măsurabil. În lecţiile 3,4,5 se introduce noţiunea de măsur ă. Deoarece măsurile cele mai interesante - cum ar fi măsura Lebesgue - se introduc printr- o construcţie elaborată (nu se pot da exemple imediate ca în analiza din anul I) se studiază  amănunţit construcţia lui Caratheodory, bazată pe măsura exterioar ă. Se studiaz ă apoi măsurile Stieltjes pe dreapt ă, care provin de la funcţii F:   cresc ătoare continui la dreapta . Ca un caz particular se obţine măsura Lebesgue. Se studiaz ă cu aceast ă ocazie completatul  -algebrei mulţimilor boreliene de pe dreaptă - mulţimile măsurabile Lebesgue. Se dau exemple le clasice de mulţimi nemăsurabile Lebesgue - mulţimile de tip Vitali.  Apare noţiunea de pseudo-inversă a unei funcţii de repartiţie, metodă de baz ă în simularea pe calculator a unor variabile aleatoare cu o repartiţie dată. În lecţia 6 se construieşte in tegrala Lebesgue, care pleac ă de la ideea c ă integrala unui indicator este măsura mulţimii. Se demonstrează teoremele fundamentale (Lema Fatou, Teorema Beppo-Levi, Teorema de convergenţă dominat ă Lebesgue şi echivalenţa dintre integrala Lebesgue şi integrala Riemann pentru funcţii „destul de continui” - aşa numitul criteriu Lebesgue de integrabilitate Riemann). Lecţia 7 se ocupă de teorema Radon - Nikodym. Operatorul de integrare produce o aplicaţie de la L 1 (   ,k  ,  ) la  m (   ,k  ) -spaţiul vectorial al mă surilor mărginite cu semn - dat ă prin  (f) = f  . Toate aceste măsuri sunt absolut continui faţă de  . Problema este cine este Ker(   ) şi Im(   ). R ăspunsul la prima întrebare duce la echivalenţa fundamentală din teoria măsurii f  g   f=g (mod P) (de unde p lasarea î n context natural a teoremelor fundamentale d in Cursul 4) iar cel la a doua întrebare este, în cazul cînd   este  -finit ă, teorema Radon Nikodym : Im(   ) este format ă din toate măsurile   absolut continue faţă d e  . Tot aici se studiaz ă spaţiile L  p  (Inegalitatea Holder, Minkowski) ca exemple de spaţii Banach clasice. Cunoaşterea lor, deşi probabil nu neapărat necesar ă  pentru un informatician, ţi ne de o cultură matematic ă elementar ă. Cursul 8 este dedicat teoremei ergodice a lui Birkhoff. Practic, legea numerelor mari rezult ă ca un caz foarte particular al ei.

Upload: loredana-elena-albulescu

Post on 14-Jul-2015

156 views

Category:

Documents


0 download

TRANSCRIPT

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 1/139

Introducere 

Cursul se adreseaz ă studenţilor anului II matematică, secţia informatică. În spaţiul sever de 12 lecţii se intenţionează prezentarea fundamentelor teoriei m ăsurii şi a probabilităţilor. Cursul 

a fost gîndit în ideea pregătirii cursului de statistic ă ce urmeaz ă. Este un truism c ă nu se poate 

înţelege serios statistica făr ă probabilit ăţi, iar probabilităţile nu pot fi înţelese - cel puţin în actualaaxiomatizare a lui Kolmogorov - în absenţa teoriei măsurii. De aceea majoritatea lecţiilor - 8 - sunt 

dedicate problemelor de teoria m ăsurii, una este de teorie ergodic ă  şi 3 despre noţiunilefundamentale de teoria probabilit ăţilor. 

Primele dou ă lecţii se referă la noţiunea de măsurabilitate. Se introduce noţiunea de spaţiu m ăsurabil, funcţie măsurabil ă  şi variabilă  aleatoare (vector aleator). Se introduc mulţimileboreliene pe un spaţiu topologic şi se studiază dreapta real ă ca exemplu de baz ă  de spaţiu m ăsurabil.

În lecţiile 3,4,5 se introduce noţiunea de măsur ă. Deoarece m ăsurile cele mai interesante - cum ar fi m ăsura Lebesgue - se introduc printr- o construcţie elaborată (nu se pot da exemple 

imediate ca în analiza din anul I) se studiază am ănunţit construcţia lui Caratheodory, bazată pe 

m ăsura exterioar ă. Se studiaz ă apoi m ăsurile Stieltjes pe dreapt ă, care provin de la funcţii F:  

cresc ătoare continui la dreapta . Ca un caz particular se obţine măsura Lebesgue. Se studiaz ă cu 

aceast ă ocazie completatul  - algebrei mulţimilor boreliene de pe dreaptă - mulţimile măsurabile 

Lebesgue. Se dau exemple le clasice de mulţimi nemăsurabile Lebesgue - mulţimile de tip Vitali. Apare noţiunea de pseudo-invers ă a unei funcţii de repartiţie, metodă de baz ă  în simularea pecalculator a unor variabile aleatoare cu o repartiţie dată.

În lecţia 6 se construieşte integrala Lebesgue, care pleac ă de la ideea c ă integrala unui 

indicator este m ăsura mulţimii. Se demonstrează teoremele fundamentale (Lema Fatou, Teorema 

Beppo- Levi, Teorema de convergenţă dominat ă  Lebesgue şi echivalenţa dintre integralaLebesgue şi integrala Riemann pentru funcţii „destul de continui” - aşa numitul criteriu Lebesguede integrabilitate Riemann).

Lecţia 7 se ocupă de teorema Radon - Nikodym. Operatorul de integrare produce o 

aplicaţie de la L1(   ,k  ,   ) la  m (   ,k  ) - spaţiul vectorial al măsurilor m ărginite cu semn - dat ă prin 

 (f) = f  . Toate aceste m ăsuri sunt absolut continui faţă de  . Problema este cine este Ker(   ) şi 

Im(   ). R ăspunsul la prima întrebare duce la echivalenţa fundamentală din teoria m ăsurii f  g   

f=g (mod P) (de unde plasarea î n context natural a teoremelor fundamentale din Cursul 4) iar cel la 

a doua întrebare este, în cazul cînd  este  -finit ă, teorema Radon Nikodym : Im(   ) este format ă din toate m ăsurile   absolut continue faţă de  . Tot aici se studiaz ă spaţiile Lp (Inegalitatea Holder,

Minkowski) ca exemple de spaţii Banach clasice. Cunoaşterea lor, deşi probabil nu neapă rat 

necesar ă  pentru un informatician, ţine de o cultură matematic ă elementar ă.

Cursul 8 este dedicat teoremei ergodice a lui Birkhoff. Practic, legea numerelor mari 

rezult ă ca un caz foarte particular al ei.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 2/139

Cursul 9 abordeaz ă   produsul de spaţii cu măsur ă (Teorema Fubini). Ceea ce ne 

interesez ă cel mai mult este m ăsura Lebesgue n-dimensional ă  n  şi produsul unui şir de spaţii probabilizate (Teorema Kolmog orov). Astfel putem da exemplul fundamental de funcţie ergodică - 

shiftul - şi teorema ergodică devine mai concret ă.

Lecţiile 10 -12 sunt de teoria probabilit ăţilor. Se dau noţiunile fundamentale: repartiţia şi funcţia de repartiţie a unei variabile aleatoare, media, dispersia, mediana (cu propriet ăţile lor deoptim), inegalitatea mediilor,inegalitatea Jensen, independenţa variabilelor aleatoare, coeficientul de corelaţie, legile numerelor mari. Se dă un algoritm simplu şi rapid de simulare a unei repartiţi i normale şi, în final, se dă f ăr ă demonstraţie teorema limită central ă. Oricum, demonstrarea ei 

dep ăşea cadrul şi obiectivele acestui curs. 

Textul prezent se bazeaz ă  pe o experienţă didactic ă de cinci ani. Este a treia variant ă.

Varianta II circul ă pe dischet ă. Varianta I a fost dactilografiat ă. Variantele urm ătoare vor fi,

 probabil, modificate în funcţie de programa analitică.

 Autorul ţine să mulţumească  prof. Ion Cuculescu şi Virgil Craiu pentru discuţiile fructuoaselegate de organizarea materialulu i precum şi asist. Udrea Păun (care a sesizat unele 

inadvertenţe, contribuind la îmbunăt ăţirea textului ) şi fostului student Radu Boeriu care a rezolvat toate exerciţiile corectînd unele erori (!). 

Curs 1. Familii de submulţimi ale unui spaţiu

Fie   o mulţime oarecare. Vom nota cu P () familia părţilor sale. Obiectele cele mai

importante ale teoriei măsurii sunt unele submulţimi ale lui P () cu proprietăţi speciale. 

Definiţia 1. O subfamilie K  P () se numeşte -Algebră dacă verifică următoarele proprietăţi: 

(1)K  

(2) Dacă A K  atunci şi Ac K  

(3) Dacă (An)nN este un şir de mulţimi din K , atunci şi An

n1

 K  

Definiţia 2. O subfamilie C  P() se numeşte U-sistem dacă verifică următoarele proprietăţi: 

(1)C  

(2) Dacă A C  atunci şi Ac C  

(3) Dacă (An)nN este un şir de mulţimi disjuncte din C , atunci şi An

n1

 C  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 3/139

Definiţia 3. O subfamilie A  P () se numeşte Algebră dacă verifică următoarele proprietăţi: 

(1)A  

(2) Dacă A A  atunci şi Ac A  

(3) Dacă (An)nI este o familie finită de mulţimi din A , atunci şi An

n I 

 A  

Notaţii. Aceste noţiuni se pot scrie mai scurt dacă folosim următoarele notaţii clasice: Fie M  

P () o familie oarecare de mulţimi. Vom nota atunci, pe tot parcursul acestui curs cu  M  s,  M  

,  M  ,  M  d, M  , M  , M ’ reuniunile finite (respectiv reuniunile numărabile, reuniunile arbitrare,

intersecţiile finite, intersecţiile numărabile, intersecţiile oarecare, complementarele) de mulţimi

din M .

Observaţia 1. Este evident că orice -algebră este şi algebră şi U-sistem.

Propoziţia 1. Dacă F  este o algebră atunci  F  şi A,B F  AB F .

Demonstraţie.  = c iar (AB)=(A

cBc)c

; se aplică axiomele (1), (2) şi (3) din definiţia

algebrei.  

Propoziţia 2. Dacă F  este o -algebră atunci An F   n  A

nn

  F .

Demonstraţie. Formulele lui De Morgan:

 A An

n n

c

n

c

 

 

 

şi aplicăm succesiv (2),(3),(2) din

definiţia -algebrei.  

Propoziţia 3. Dacă F   este U-sistem şi F  = F  d, atunci F   este şi -algebră. Deci în

particular dacă  F  P () este algebră şi U-sistem, atunci F   este şi -algebră.

Demonstraţie. Fie F   P () un U-sistem stabil la intersecţii finite.Fie (An)n un şir de mulţimi

din F   şi A=

 Ann

. Se pune problema să arătăm că A F . Construim în acest scop mulţimile

disjunctate B1=A1, B2=A2-A1 =A2-B1, B3=A3-(B1B2), şi, în general, Bn+1=An+1-(B1B2..Bn),.....

Mulţimile (Bn)n au proprietăţile: (1). B1B2..Bn = A1A2..An pentru orice n 1.

 Într-adevăr, pentru n=1 afirmaţia este adevărată. O presupunem adevărată pentru n=k şi

o verificăm pentru n=k+1.Avem că B1B2.....BkBk+1 = ( B1B2..Bk)

( Ak+1-(B1B2..Bk)) = B1B2..BkAk+1 = A1A2..AkAk+1 (prin ipoteza de inducţie).Deci afirmaţia este adevărată pentru orice n.

(2). Mulţimile Bn sunt disjuncte.

 Într-adevăr, fie m<n mn-1. Atunci BmBn = Bm(An-( B1B2..Bn-1))  

Bm(An-Bm)=. Incluziunea este adevărată deoarece evident Bm B1B2..Bn-1.

(3). Toate mulţimile Bn aparţin familiei F . Într-adevăr, Bn poate fi scrisă ca

Bn=AnA1c...An-1

c şi mulţimile Ai

c F   i iar F  = F  d .

Cum F este U-sistem şi mulţimile (Bn)n sunt disjuncte rezultă că reuniunea lor este în

F . Dar din (1) rezultă că  An

n

=

 Bnn

=A. Deci F   este -algebră.

A doua afirmaţie rezultă imediat din prima observînd că orice algebră este stabilă la

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 4/139

intersecţii finite. . 

Propoziţia 4. Dacă ( M t)tT este o familie de -algebre (algebre, U-sisteme, topologii) atunci şi

intersecţia t T 

M t este de asemenea o -algebră (algebră, U-sistem, topolgie)

Demonstraţie. Evident.  

Definiţie. Fie M   o familie oarecare de submulţimi ale lui . Vom nota cu ( M ) (respectiv ( 

 M ), Alg( M ), Top( M ) ) -algebra (respectiv U-sistemul, algebra, topologia) generată de M, 

definită prin relaţia ( M ) =

F  M F 

F a ebra

  lg

(respectiv

F  M F 

F sistem

 

,

F  M F 

F a ebra

lg

,

F  M F 

F topo ie

log

). Altfel spus, ( M )

(respectiv ( M ), Alg( M ), Top( M ) ) este intersecţia tuturor -algebrelor pe (respectiv a

U-sistemelor, algebrelor, topologiilor) care conţin pe M .

Propoziţia 5.  Alg( M )  ( M ) şi ( M )  ( M ).

Demonstraţie. ( M ) este o algebră (respectiv un U-sistem) care conţine pe  M .  

Propoziţia 6. M    M    M   M    .... M  ....  ( M )Demonstraţie. Evident din definiţia unei -algebre.  

Rezultatul următor va fi folosit de multe ori în curs. 

Propoziţia 7.(i). Dacă  este unul din operatorii de închidere Alg, sau , şi ( M t)tT este o

familie de submulţimi ale lui p (), atunci ( t T

M t) = ( t T

( M t) )

(ii)Dacă  M = M d, atunci ( M ) = ( M ) .

Demonstraţie. (i). Cum M t  ( M t) incluziunea ”” este evidentă. Incluziunea cealaltă este de

asemenea imediată : cum M t   t T

M t rezultă că ( M t) ( t T

M t) pentru orice tT de

unde t T ( M t)  ( t T M t) deci, din proprietatea de monotonie a operatorului de închidere

rezultă că ( t T

( M t))  (( t T

M t)) = ( t T

M t) (este evident că orice operator de

 închidere este idempotent, adică ()) = ).

(ii)Ideea este să dovedim că ( M ) este stabil la intersecţii finite şi să aplicăm Propoziţia 3. Fie

A M . Fie F A={B( M ): AB ( M ) }. Vom arăta că F A este un U-sistem care conţine pe

 m .

 Într-adevăr, faptul că   M  F A rezultă imediat din faptul că M  este stabil la intersecţii finite:

dacă A M , atunci AB M . Mulţimea vidă este evident în F A căci aparţine oricărui U-sistem.Dacă B F A, atunci şi Bc F A căci (A( B

c))

c=(A( AB)

c)c

= (AB)(Ac); AB( M ) căci B 

F A, Ac ( M ) deoarece A( M ), AB şi Ac

 sunt disjuncte deci reuniunea lor este în ( M ) .

Rezultă că şi complementara acestei mulţimi, adică A( Bc) este în ( M ), adică B

c F A. În sfîrşit,

dacă (Bn)n este un şir de mulţimi disjuncte din F A ,rezultă că şi reuniunea lor este în F A deoarece

mulţimile ABn sunt disjuncte şi aparţin U-sistemului ( M ) care este stabil la reuniuni disjuncte

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 5/139

numărabile. Deci F A este un U-sistem care conţine pe m, deci ( M ) F A . Cum A M  este

oarecare înseamnă că am demonstrat că 

(*) A M , B( M ) AB( M )

Fie acum A  ( M ) oarecare şi e A = { B( M ) : AB( M ) -. Din (), înlocuind A cu B şi B

cu A, rezultă că  M    e A. Acelaşi raţionament de mai sus ne arată că e A este de asemenea unU-sistem, deci ( m ) e A; adică 

(**) A( M ), B ( M ) AB( M ).

Dar () nu înseamnă nimic altceva decît că  ( M ) = (( M ))d de unde, conform

Propoziţiei 3, ( M ) este o -algebră. Dar întotdeauna ( M )  ( M ) (Propoziţia 5). Cum ( 

 M ) este o -algebră care conţine pe  M , incluziunea inversă este evidentă  şi în consecinţă ( 

 M )  ( M ).  

Acum putem introduce cel mai important exemplu de -algebră, cel care face legătura

cu topologia.Definiţie: -algebra mulţimilor boreliene. Fie (X,T ) un spaţiu topologic. Atunci -algebra

(T ) se numeşte -algebra mulţimilor boreliene ale spaţiului topologic (X,T ) sau, dacă nu

este nici un pericol de confuzie, borelianul spaţiului X . El se va nota cu B (X,T ) sau, dacă nu

este pericol de confuzie, cu B (X). Iată cîteva proprietăţi importante ale sale. 

Propoziţia 8. Fie (X,T ) un spaţiu topologic. Atunci: 

(i).Orice mulţime deschisă sau închisă este boreliană. Mai mult, B (X) = ({FX : F închisă })

(ii).Dacă X este separat, atunci orice mulţime compactă este boreliană. În particular oricemulţime cel mult numărabilă este boreliană.

(iii). Dacă X este separat şi poate fi acoperit cu o mulţime cel mult numărabilă de compacte,atunci B (X)=({KX : K compactă }).

(iv). Dacă X este un spaţiu topologic numărabil generat, adică X are o bază de topologie

numărabilă, O , atunci B (X)=( O )

Demonstraţie. (i). O mulţime închisă este complementara unei deschise, deci evident este

boreliană. Deci ({FX : F închisă })  B (X). Reciproc, orice deschisă este complementara unei

 închise de unde şi incluziunea inversă.

(ii).  În spaţii separate orice mulţime compactă este închisă.

(iii). Fie (Kn)n un şir de compacte ca X= n

Kn. Fie FX o închisă. Atunci putem scrie F= n

(FKn)

deci orice închisă este o reuniune de compacte (se ştie că F închisă, K compactă KF este

compactă căci dacă (Gt)tT este o acoperire cu deschise a lui KF, adăugînd la aceasta şi deschisulG=F

c obţinem o acoperire cu deschise a lui K din care extragem una finită) adică orice închisă 

este în -algebra generată de compacte, de unde rezultă că -algebra generată de închise (adică 

B (X)) este de asemenea inclusă  în -algebra generată de compacte, Incluziunea reciprocă este

evidentă.

(iv). Fie o o bază numărabilă de topologie pentru t . Atunci t = o   = o  (deoarece o  este

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 6/139

numărabilă) deci t   (o )  B (X)=(t )  ((o ))=(o ). Incluziunea cealaltă este evidentă.

 În cazul particular în care (X,t )=(,Top()), adică dreapta reală cu topologia canonică 

obţinem 

Propoziţia 9. Fie următoarele familii de mulţimi pe dreaptă :

 m 1 = { (a,b) : a,b, a<b } {} ;

 m 2 = (a,b) : a,b raţionale, a<b - {} ;

 m 3 = { (a,b] : a,b, a<b } {} ;

 m 4 = (a,b+ : a,b raţionale, a<b - {};

 m 5 = { [a,b) : a,b, a<b } {} ;

 m 6 = *a,b) : a,b raţionale, a<b } {} ;

 m 7 = { (-,b) : b } ;

 m 8 = { (-,b) : b raţional - ; 

 m 9 = { (-,b] : b } ;

 m 10 = { (-,b+ : b raţional - ; m 11 = { (b,) : b } ;

 m 12 = { (b,) : b raţional - ;

 m 13 = { [b,) : b } ;

 m 14 = { [b,) : b raţional -. Aunci 

(i).Toate aceste familii de mulţimi genererază pe b (), adică ( m  j )= b () 1 j14. În

plus, dacă j este par, m  j sunt numărabile.

(ii). Toate aceste familii de mulţimi sunt stabile la intersecţii finite: ( m  j)d= m  j 1 j14.

(iii). ( m 3  m 9 m 11)s, ( m 4  m 10 m 12)s, ( m 5  m 7 m 13)s şi ( m 6  m 8 m 14)s sunt algebre.

Demonstraţie.(i). Toate afirmaţiile sunt mai mult sau mai puţin imediate sau consecinţe simpleale Propoziţiei 8. Cum este evident că b ()  ( m 2j-1)  ( m 2j) 1 j7 rezultă că va fi

suficient de demonstrat că b ()  ( m 2j) 1 j7. Pentru j=1 incluziunea este o consecinţă a

Propoziţiei 8(iv) : m 2 este bază numărabilă pentru topologia de pe dreaptă. Scriind

(a,b)=n1(a,b-1/n] rezultă că orice interval deschis este în ( m 4) deci b ()  ( m 4). Din

egalitatea (a,b)=n1[a+1/n,b) rezultă b ()  ( m 6). Scriind [a,b) = (-,b)-(-,a) =[a,)-[b,)

rezultă că  m 6 ( m 8)( m 14) deci ( m 6)  ( m 8)( m 14) iar cum (a,b] = (-,b]-(-,a]

=(a,)-(b,) rezultă că  m 4 ( m 10)( m 12) deci ( m 4)  ( m 10)( m 12).

(ii). Evident. (iii).  O mulţime din ( m 3  m 9 m 11)s este o reuniune finită de intervalemărginite de tipul (a,b+ şi eventual de intervale nemărginite de tip (-,a] sau (b,).

Complementara unei asemena mulţimi este de acelaşi tip. .

Curs 2. Măsurabilitate.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 7/139

Fie ,X mulţimi oarecare şi f:  X o funcţie. Dacă BX atunci

f -1

(B)={ : f()B } va desemna preimaginea  mulţimii B prin funcţia f. Dacă 

 M   P (X) este o familie oarecare de mulţimi, atunci f -1( M ) va desemna familia

{ f -1

(B) : B M  - . În acest fel putem privi operaţia f -1 ca o funcţie de la P (X) la P ().

Propoziţia 1.  Dacă   M    P (X) este o -algebră (respectiv algebră, topologie) atunci

f -1

( M ) este de asemenea -algebră (respectiv algebră, topologie).

Demonstraţie. Evident. Preimaginea reuniunii (respectiv intersecţiei, complementarei) este

reuniunea (respectiv intersecţia, complementara). 

In plus, f -1

se comportă  bine şi faţă  de operatorii de închidere introduşi în Cursul1:

comută cu ei.

Propoziţia 2.  Întotdeauna ( f -1

( M )) = f -1

(( M ))

( şi respectiv  Alg( f -1

( M )) = f -1

( Alg( M )), Top( f -1

( M )) = f -1

(Top( M )) ).

Demonstraţie. ““: Fie E = { BX : f -1

(B) ( f -1

( M )) }.Evident M    E   . În al doilea rînd E  

este o -algebră.  Într-adevăr, E  deoarece ( f -1

( M )) şi evident

f -1

()= . Apoi, dacă B  E, atunci şi Bc  E  căci f 

-1(B

c)=(f 

-1(B))

c  şi ( f 

-1( M )) este o

-algebră. În sfîrşit, dacă (Bn)n este un şir de mulţimi din E , reuniunea lor va fi de asemenea în E  

căci   f B f Bn

n

n

n

 

  1 1

.

Rezultă că ( M )  (E )= E . Deci B( M ) f -1

(B) ( f -1

( M )) adică 

f -1

(( M )) ( f -1

( M )).

““: Evident f -1

( M ) f -1

(( M )) deci (f -1

( M ))   (f -1

(( M ))) = f -1

(( M )), căci ultima

familie este deja o -algebră conform Propoziţiei. 

Acelaşi raţionament funcţionează dacă  înlocuim operatorul ““ cu “ Alg” sau “Top”. . 

Definiţie. Spaţiu măsurabil, funcţie măsurabilă. O pereche (,k ) unde  este o mulţime

oarecare şi k    p ()este o -algebră  se numeşte spaţiu măsurabil. Dacă (,k ) şi (X, f ) sunt

două spaţii măsurabile şi f:  X este o funcţie, atunci funcţia f se numeşte (k , f )-măsurabilă 

dacă f -1

(f ) k , adică dacă B f  f -1

(B) k . Dacă nu este pericol de confuzie, (adică dacă 

-algebrele k  şi f se subînţeleg) vom spune doar că „f este măsurabilă”. Dacă f este bijectivă şi

funcţia f -1 este de asemenea (f , k )-măsurabilă vom spune că f este un izomorfism de spaţii

măsurabile sau, mai scurt, un izomorfism. Dacă , X sunt spaţii topologice şi ă -algebrele k  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 8/139

şi f sunt -algebrele mulţimilor boreliene, atunci o funcţie măsurabilă se va numi funcţieboreliană.

Observaţie. Dacă k  şi f ar fi topologii în loc să fie -algebre, noţiunea de măsurabilitate ar

coincide cu noţiunea de continuitate. Într-adevăr, se ştie că f este continuă  f -1

(G) este

deschisă G deschisă. Altfel scris, f este continuă  f -1

(f ) k , ceea ce arată o similaritate

remarcabilă  între cele două noţiuni. În acest caz izomorfismul (funcţie bijectivă bimăsurabilă)

s-ar numi homeomorfism (= funcţie bijectivă şi bicontinuă). Ca şi în topologie, este valabilurmătorul rezultat:

Propoziţia 3. (i). Fie (,k ), (E,e ) (F,f ) trei spaţii măsurabile şi f:  E, g:E F două funcţii

măsurabile. Atunci compunerea lor gf este de asemenea măsurabilă.

(ii). Fie (,k ), (E,e ) două spaţii măsurabile şi f :   E o funcţie oarecare. Să presupunem că 

e =( m ) cu m   p () . Atunci f este măsurabilă  f -1

( m ) k  

Demonstraţie. (i) este evident iar (ii) este o consecinţă imediată a propoziţiei 2: f -1(e ) = f -1

(( m ))

= (f -1

( m ))  ( k ) = k .  

Importanţa punctului (ii) din Propoziţia 3 este vizibilă: pentru a demonstramăsurabilitatea unei funcţii f nu este nevoie să verificăm neapărat că f 

-1(B) k  pentru

orice B din e , ci este suficient să verificăm acest lucru pentru B m  lucru mai uşor. 

Definiţie. -Algebra generată de o familie de funcţii. Fie (Xt,F t)tT o familie de spaţii

măsurabile, X o mulţime oarecare şi f t:X Xt  o familie de funcţii. Atunci -algebra (

 f t 

t T 

1( F t)) se va numi -algebra generată de funcţiile (f t)tT şi se va nota, în cazul că 

ne există pericol de confuzie asupra spaţiilor măsurabile (Xt,F t)tT,cu (f t : tT).

Propoziţia 4. Fie (,K ) un spaţiu măsurabil, X o mulţime oarecare şi Fie (Xt,F t)tT o familie de

spaţii măsurabile. Fie f t:X Xt  o familie de funcţii şi f:  X .

Atunci f este (K ,(f t : tT ))-măsurabilă  f tf sunt (K , F t)-măsurabile tT.

Demonstraţie. ““ este evident : compunerea de funcţii măsurabile este măsurabilă.

““. f -1((f t : t T ))=f -1

(( f t 

t T 

1( F t)))=(f 

-1(

 f t 

t T 

1( F t))) (Propoziţia 2!)=(

 f t 

t T 

1(f 

-1(F t)))

(datorită proprietăţilor aplicaţiei f -1) =(( ) f f t 

t T 

1

( F t)) K   deoarece toate funcţiile f tf sunt măsurabile.  

Definiţie. Produsul unei familii de spaţii măsurabile. Să considerăm în definiţia de mai

sus cazul particular în care X= X t 

t T 

  şi funcţiile f t:X Xt sunt proiecţiile canonice, adică f t(x)=xt 

tT. Atunci vom nota -algebra (f t : tT) cu t T  F t. Dacă T={1,2,...,n} vom mai scrie

spaţiul măsurabil produs şi direct, adică 

(X1X2....Xn, F 1 F 2.... F n). În cazul particular în care (X t,F t)tT coincid, deci dacă (Xt,F t 

)=(E, F ) tT, produsul acestor spaţii măsurabile se va nota (ET, F 

T) . Dacă   în plus T=1,2,...,n-

vom prefera scrierea mai obişnuită (En, F 

n) în loc de (ET, F 

T). Să remarcăm analogia acestei

definiţii cu cea de topologie produs: produsul unei familii de spaţii topologice se defineşte la fel .

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 9/139

  O consecinţă imediată a Propoziţiei 4 este 

Propoziţia 5. Fie (Xt,F t)tT o familie de spaţii măsurabile şi X= X t 

t T 

, F =t T  F t. Fie (,K ) un alt

spaţiu măsurabil şi f:  X, f()=(f t())tT . Atunci f este (K ,t T  F t)-măsurabilă  f t sunt (K ,

F t)- măsurabile pentru orice tT.Demonstraţie. Evident :dacă pt:XXt sunt proiecţiile canonice, atunci ptf = f t şi aplicăm

Propoziţia 3. .

Un alt caz particular de -algebră generată de o funcţie este cea de urmă a unei

-algebre pe o mulţime. Fie (,K ) un spaţiu măsurabil şi A   o mulţime oarecare. Injecţia

canonică este funcţia iA : A   dată de relaţia iA()=. Atunci -algebra (iA) = iA-1

(K ) se

numeşte urma lui K   pe A şi se notează cu K A.

 În cazul spaţiilor topologice este interesantă legătura între borelianul produs şi produsulborelienilor. Dacă am şti că ele coincid, de exemplu, atunci orice funcţie continuă ar fi

măsurabilă, lucru care ar fi de ajutor în stabilirea măsurabilităţii. 

Propoziţia 6. Fie (Xt, T t) o familie cel mult numărabilă de spaţii topologice numărabil generate.

Atunci B ( X t 

t T 

) =t T  B (Xt).

Demonstraţie. Fie O t baze numărabile de topologie în (Xt, T t), adică T t = ( O t) şi O t sunt

numărabile tT. Atunci topologia produs pe X := X t 

t T 

va fi dată de formula T =Top(

 pt 

t T 

1

(( O t))) = Top(

( pt t T 

1

( O t))). Fie U t mulţimile pt-1

(O t). Deci T = Top((

t T 

U t)) =((

t T 

U t))d 

(Exerciţiu : Top( M )= M  d) =( t T 

U t)d   (datorită distributivităţii reuniunii faţă de intersecţie) .

Fie O  familia de mulţimi O = ( t T 

U t)d. Cum T este cel mult numărabilă, familiile U t sunt de

asemenea numărabile iar intersecţiile finite care se pot realiza cu o familie numărabilă de

mulţimi formează de asemenea o mulţime numărabilă de mulţimi, rezultă că O este numărabilă.

 Înseamnă că T = O  = O  (reuniunile de mulţimi dintr-o familie numărabilă sunt întotdeauna

reuniuni cel mult cel mult numărabile), cu alte cuvinte O  este o bază de topologie pentru T .

Rezultă că B ( X t 

t T 

)=(T )=( O )=( O )= ( t T 

U t) = ( p

t T 

1

(O t)) = (

 ( pt 

t T 

1(O t)))

(cf. Propoziţia 7(i), Curs 1) = ( pt 

t T 

1((O t))) (cf. Propoziţiei 2)

= ( pt 

t T 

1(((O t))) = (

 pt t T 

1((T t)))) (deoarece O t  sunt baze de topologii în Xt)

= ( pt 

t T 

1(b (Xt))) (din definiţia mulţimilor boreliene ale unui spaţiu topologic) =

t T  B (Xt).  

 În cazul particular în care (X t, T t) = (,Top()) coincid cu dreapta reală cu topologia sa

canonică obţinem următoarea consecinţă foarte importantă a Propoziţiei 5: 

Corolar 7. Dacă T este cel mult numărabilă, atunci B (T) = ( B ())

T.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 10/139

Demonstraţie. Se ştie că că Top() este o topologie cu bază numărabilă ( de exemplu

Top()=Top( {(a,b) a,b raţionale- ). Se aplică apoi Propoziţia 5. 

Corolar 8. Fie f: n   continuă. Atunci f este (( B ())

n, B ()) - măsurabilă.

Demonstraţie. f -1

(B ())=f -1

((Top())) = (f -1

(Top())) (cf. Propoziţiei 2)

 ( Top(n

)) (f continuă  înseamnă că preimaginea oricărei deschise este de asemeneadeschisă!) = B (n

) = ( B ())n

conform Corolarului 6.  

Este importantă de asemenea legătura între borelian şi urmă.

Propoziţia 9. Fie (X,T ) un spaţiu topologic şi AX. A este înzestrat cu topologia de subspaţiu. 

(i). B (A)= B (X)A.

(ii). Dacă A B (X), atunci B (A) ={ B B (X) : BA }

(iii). B ([-,+) unde dreapta încheiată este înzestrată cu topologia canonică.

(iv). B ([-,]) =( { [-,b) :b } ) =( { (a,] : a } ).

(v). B ([-,]) = { BJ : B B (), J{-1,1} }.

Demonstraţie. 

(i). B (A) = ( T  A) = (iA-1

(T ))=iA-1

((T )) (conform Propoziţiei 2) = iA-1

( B (X)) = B (X)A.

(ii). Din definiţia urmei, B (A) ={ CA : C B (X) }. Dacă A B (X), atunci şi

B =AC B (X) .

(iii). este deschisă  în *-,], deci boreliană.

(iv). Fie F =( {[-,b) :b } ). Evident F   B ([-,]) deoarece toate intervalele

[-,b) fiind deschise, sunt boreliene. Reciproc, ar trebui arătat că orice deschisă din

[-,+ este în F . Dar deschisele sunt reuniuni cel mult numărabile de intervale de tipul (a,b) sau

[-,b) sau (a,] cu a,b. Scriind (a,]c= n1

[-,a+xn) cu (xn)n un şir descrescător de

numere pozitive convergent la 0, rezultă că (a,] F . În sfîrşit, un interval deschis mărginit se

poate scrie (a,b)=[-,b)(a,+, deci şi el aparţine la F , de unde cealaltă incluziune.

(v). ““: Fie F   mulţimea din dreapta. Se verifică imediat că F este o -algebră. Toate

intervalele [-,b), b sunt în F , deci şi -algebra generată de ele care, conform punctului (iv)

coincide cu B ([-,]).

““: Conform punctului (ii) şi (iii) orice mulţime boreliană de pe dreaptă,B, este de asemenea în

B ([-,+). O mulţime finită,J, este de asemenea în B ([-,+) deoarece este închisă.  

Definiţie. Variabilă aleatoare. Punct aleator. Vector aleator. Fie (,K ) un spaţiu măsurabil şi

T o mulţime cel mult numărabilă. O funcţie f:  Tcare este (K ,B (T

))-m[surabilă se

numeşte vector aleator. Dacă T are două elemente vom numi vectorul f punct aleator, iar dacă 

T are un singur element, f se va numi variabilă aleatoare. Dacă f este o variabilă aleatoare cu

proprietatea că f() este finită, atunci f se numeşte variabilă aleatoare simplă. Dacă f() este

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 11/139

cel mult numărabilă. atunci f se numeşte variabilă aleatoare etajată. Dacă f:  [-, +]

este (K , b ([-,])-măsurabilă, atunci f se numeşte variabilă aleatoare extinsă. Din

Propoziţia 8 rezultă că orice variabilă aleatoare este şi variabilă aleatoare extinsă şi, mai mult,

orice variabilă aleatoare extinsă f cu proprietatea că f() este chiar variabilă aleatoare. 

Iată o consecinţă a Propoziţiei 4 care ne dă un criteriu de a recunoaşte un vector aleator: 

Propoziţia 10. Fie (,K ) un spaţiu măsurabil, T o mulţime cel mult numărabilă şi f:  T.

Atunci f este vector aleator ptf sunt variabile aleatoare tT.

Demonstraţie. “  “ : Din Corolarul 6, B (T) = ( B ())

T, proiecţiile canonice pt sunt

măsurabile iar compunerea de aplicaţii măsurabile este măsurabilă.

“  “ : Dacă toate componentele f t=ptf sunt măsurabile, atunci f este (K ,

B ()T)-măsurabilă cf. Propoziţiei 4. Apoi se aplică Corolarul 6.  

Acum putem prezenta cele mai importante proprietăţi ale variabilelor aleatoare, carevor fi folosite în restul cursului.

Propoziţia 11. Fie (,K ) un spaţiu măsurabil şi L (,K ) (respectiv S (,K ), E (,K ) ) familia

variabilelor sale aleatoare (respectiv variabilelor aleatoare simple, etajate).

(i). Dacă f 1, f 2,...,f n sunt variabile aleatoare şi g:n este (B (n),B ())-măsurabilă,atunci

funcţia compusă g(f 1,f 2,...,f n) este de asemenea variabilă aleatoare. În particular, dacă g este

continuă rămîne valabilă aceeaşi afirmaţie. (ii). Toate aceste familii de funcţii sunt algebre comutative peste , adică spaţii vectoriale realecu structură de inel comutativ faţă de înmulţirea obişnuită a funcţiilor. 

(iii). f este variabilă aleatoare {f<x} K   x  {f x} K   x  {f>x} K  

x etc. În general f este variabilă aleatoare f -1

( M ) K dacă ( M )= B ().

(iv). f este variabilă aleatoare extinsă  {f<x} K   x  {f>x} K   x {f B}K  

B b () şi f=} K ,{f=-} K .

(v). Dacă f() este cel mult numărabilă atunci f este variabilă aleatoare {f=x} K  xf().

(vi). Fie f:  [-,+ o funcţie oarecare şi h: *-,] [-1,1] un homeomorfism crescător (de

exemplu funcţia h(x)=

arctgx

 

1

2 dacă x, h(-)=0, h()=1 ). Atunci f este variabilă aleatoare

extinsă dacă şi numai dacă hf este variabilă aleatoare.

(vii). Dacă (f n)n este un şir de variabile aleatoare extinse, atunci funcţiile limsup(f n) şi liminf(f n)

sunt de asemenea variabile aleatoare extinse.

(viii).  În particular, dacă (f n)n este un şir convergent de variabile aleatoare atunci limita sa este

de asemenea o variabilă aleatoare.(ix). Dacă f este o variabilă aleatoare mărginită, atunci există un şir de variabile aleatoare

simple, (f n)n care converge uniform la f.

(x). Dacă f este o variabilă aleatoare oarecare, atunci există un şir de variabile aleatoare etajate,(f n)n care converge uniform la f.

(xi). Dacă f este o variabilă aleatoare oarecare, atunci există un şir de variabile aleatoare simple,(f n)n care converge punctual la f.

(xii).  Spaţiul vectorial S (,K ) este dens în L (,K ) în topologia convergenţei simple iar

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 12/139

E (,K ) este dens în L (,K ) în topologia convergenţei uniforme. 

Demonstraţie. 

(i).Funcţia f:ndată prin f()=(f 1(),f 2(),...,f n()) este ( K , b (n

)) măsurabilă din

Propoziţia 9 iar compunerea de funcţii măsurabile produce funcţii măsurabile.

(ii). Funcţiile g(x,y)=axbycu a,b, h(x,y)=xy, g,h:

2

sunt continue, deci măsurabile. Înseamnă că dacă f 1 şi f 2 sunt variabile aleatoare şi af 1+bf 2, f 1f 2 vor fi de asemenea variabile

aleatoare, conform punctului (I).

(iii). f -1

(( m ))=(f -1

( m )) din Propoziţia 2. Din Cursul 1, Prpoziţia 9, se ştie că 

b () = ({( -,x) : x}) = ({(x,) : x}) = ({(-,x] : x}) = ([x,) : x}) etc.

(iv). Se aplică Propoziţia 8 şi Propoziţia 2. (v). Să presupunem că f() este cel mult numărabilă. Dacă f este variabilă aleatoare, atunci

{f=x}=f -1(x-) aparţne -algebrei K  din definiţia măsurabilităţii. Reciproc, dacă B este o mulţime

boreliană oarecare, atunci f -1

(B)=

 f x  x B f  

1

K datorită faptului că reuniunea în cauză este

cel mult numărabilă.

(vi). Faptul esenţial este că funcţia h:*-,][-1,1] este (b ([-,]),b ([-1,1]))-bimăsurabilă,

adică atît h cît şi h-1sunt măsurabile.

(vii). Să luăm, de exemplu funcţia f=limsup f n =

inf sup inf  n k 

 f n

gn k n

1 0 1 cu gn=sup{f n, f n+1,....} .

Arătăm mai întîi că gn sunt măsurabile. Fie gn,k=sup {f n, f n+1, ...,f n+k} = max {f n, f n+1, ...,f n+k}.

Funcţiile gn,k sunt variabile aleatoare extinse deoarece dacă h este homeomorfismul de la

punctul precedent, rezultă că h(gn,k)= max {h(f n), h(f n+1), ...,h(f n+k)} (datorită monotoniei lui h) =

(h(f n), h(f n+1), ...,h(f n+k)) este variabilă aleatoare din punctul (i) al propoziţiei ( funcţia :n,

(x)=max(x1,x2,...,xn) este continuă, deci măsurabilă) . Apoi, şirul de variabile extinse (gn,k)k este

crescător şi converge la gn. Fie x un număr real. Rezultă că {gn>x} = k  0

{gn,k>x} k , deci gn sunt

variabile aleatoare extinse conform punctului (iv). Şirul de variabile aleatoare extinse (gn)n 

este descrescător şi converge la f. Rezultă că {f<x} = k  0

{gn<x- aparţine -algebrei k  

x, deci f este variabilă aleatoare extinsă cf. (iv).

(viii). Dacă (f n)n este un şir convergent de variabile aleatoare, atunci f = limsup f n = liminf f n şiamîndouă aceste funcţii sunt variabile aleatoare extinse, conform punctului precedent. Dar

f(), deci f este o variabilă aleatoare.

(ix). Fie f o variabilă aleatoare mărginită şi a,b ca af b. Funcţiile hn: definite prin

hn(x)=[nx]/n sunt crescătoare, deci măsurabile Borel (mulţimile hn<x- sunt intervale) şihn(x)-x1/n, deci hn converg uniform la funcţia identică. Rezultă că variabilele aleatoare

hn(f)=[nf]/n converg uniform la f. Dar ele sunt simple căci mulţimile hn(f)() sunt finite (hn(f)()

hn([a,b])={k/n : ak/nb}).

(x). Dacă f nu este mărginită, variabilele aleatoare hn(f) de la punctul precedent sunt etajate.

(xi). Fie hn(x)=[nx]1[-n,n](x)/n. Variabilele aleatoare hn(f) sunt simple (căci hn()={k/n : -n2kn

2}

este finită) şi converg la f (deoarece x-hn(x)  1[-n,n](x)/n + (1(-,n][n,)(x)) 0 c]nd n ).

(xii). Este o reformulare a punctelor (x) şi (xi).  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 13/139

 

Exerciţii. 

1. Operatorii ()s,()d, (), (), (), () sunt idempotenţi, adică  M  ss=  M  s etc, iar operatorul ()’ este involutiv,

adică (.)’ ’ = (.).

2 Să se arate că operatorii s şi d, precum şi  şi comută, adică  M  sd=  M  ds şi M  =  M   .

3. Dimpotrivă,  şi nu comută: arătaţi că  Q    M   , dar Q   M  , unde M  reprezintă mulţimea

deschiselor de pe dreaptă iar Q  este mulţimea numerelor raţionale. 

Indicaţie. Q este o reuniune numărabilă de puncte iar orice punct x este intersecţia şirului de intervale

deschise (x-1/n,x+1/n), deci Q    M  . Să presupunem prin absurd că Q    M   = M   (căci o reuniune de

deschise este de asemenea deschisă). Atunci Q c ar fi o reuniune numărabilă de închise; cum interiorul

mulţimii Q c este vid, Q c s-ar putea scrie ca o reuniune numărabilă de închise cu interior vid. Atunci ar

rezulta că = Q Q c se poate scrie ca o reuniune numărabilă de închise cu interior vid, adică  ar fi un

spaţiu de categoria I Baire ceea ce este fals: orice spaţiu metric complet este de categoria II Baire

(Teorema lui Baire).  

4. Fie =  şi m  = { (a,b) : a,b -. Calculaţi m  s, m  d, m  , m   şi arătaţi că Q    M   , dar Q   M  .

(Indicaţie: orice deschisă este în m   ). 

5. Fie =[0,)2 şi m  = { [0,a)[0,b) : a,b>0 }. Arătaţi că:

(i). M  d= M  iar m    = { IJ : I,J intervale care conţin pe 0 }

(ii). m s= {[0,f) : f:[0,) [0,) descrescătoare, continuă  la dreapta, cu o mulţime finită  de valori şi

f()=0} iar m  = {[0,f) : f:[0,) [0,] descrescătoare, continuă la dreapta} unde, dacă f şi g sunt două 

funcţii, *f,g) înseamna (x,y) : f(x)y<g(x) }.

(iii). Fie f:[0,)[0,) continuă strict descrescătoare. Atunci mulţimea *0,f+ este în M   , dar nu în M  .

Deci, în general nu este nici o incluziune  între M    şi M  .

Indicaţie (iii). Fie f n =

 f k 

n nk 

n

n

 

 

 

 

 

 

1

10

1[ , )

. Atunci [0, f ] =

[ , )01

 f nn

deci *0,f+ este în M   conform

cu (ii). Dacă *0,f+ ar fi în M   ar trebui ca [0,f] să se poată scrie ca o reuniune de intervale InJn, conform

primului punct. Fie an şi bn capetele drepte ale intervalelor In şi Jn. Pentru orice x0 punctul (x,f(x))[0,f]

trebuie să fie în una din mulţimile InJn, notată In(x)Jn(x) . Înseamnă că xan(x) şi f(x)bn(x) de unde

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 14/139

f(an(x))f(x)bn(x). Dar In(x)Jn(x)  [0,f] bn(x) f(an(x)) deci (an(x),bn(x)) este pe graficul lui f şi intervalele sunt închise: In(x)=[0,an(x)], Jn(x)=[0,bn(x)]. Mai mult, cum f este strict descrescătoare, (an(x),bn(x)) este unicul punct

situat pe graficul lui f. Rezultă că pe graficul lui f există numai o mulţime numărabilă de puncte, absurd.  

6. Exerciţii cu funcţia indicator. Fie 1A: p ()   0,1- indicatorul mulţimii A, adică 1A(x)=

1

0

daca x A

daca x A

. Arătaţi că 

(i).1AB = max(1A, 1B ) = 1A + 1B -1A1B ; 1AB = 1A1B ; 1AB = 1A+1B - 21A1B

= 1A-1B = 1A+1B (mod 2) iar A = B 1A=1B .

(ii). (P (),,) este un inel izomorf cu (Z2, , ) unde Z2

={f  f:Z2- iar ““,”“ înseamnă 

adunarea şi înmulţirea pe componente. 

(iii).

1 1 1 1 1 1 1 1 A A A  A

t T 

  A A A A

nt 

t T 

t t  t  t t n

n n

t T  t T t T t T  

sup max , inf min , liminf  liminf 

  şi

1 1lim sup limsupn

n n A A

n

, unde

liminf , lim supn

n n k 

k n

n n k 

k n

 A An

 A A

01 01

.

Indicaţie (ii). Un izomorfism este aplicaţia T:P ()Z2, T(A)=1A.  

7. Arătaţi că Top( M )= M d{,}.

8. Arătaţi că  Alg( M )=( M   m ’)sd.

9. Arătaţi că ( M ) =(n ) unde reuniunea se face după toate subfamiliile numărabile de mulţimi n  

ale lui  M.

Indicaţie. Arătaţi că familia de mulţimi din dreapta este o-algebră.  

10.Să presupunem că mulţimile din M  formează o partiţie a lui: (adică  M ={ Mt : tT },

stMsMt= iar reuniunea tuturor mulţimilor Mt este ). Atunci Alg( M )= { t J 

Mt : JT este finită 

sau T \ J este finită } iar ( M )= {t J 

Mt : JT este cel mult numărabilă sau T \ J este cel mult numărabilă }( reuniunile numărabile sau conumărabile de atomi formează -algebră ) 

11. Algoritm pentru construcţia algebrei generate de o familie finită de mulţimi. Dacă  M  este

finită, atunci ( M )= Alg( M ) şi Alg( M ) este o putere a lui 2. Dacă  M ={A1,A2,...,An} atunci atomii sunt

mulţimile J=

 A A j

 j J 

 j

c

 j J 

 

 

 

 

 

 

 

 

  unde J parcurge toate submulţimile lui 1,2,...,n-. Deduceţi că numărul

de mulţimi din algebra generată de n mulţimi este 2k cu k numărul de atomi nevizi . Cum acesta este

cel mult 2n rezultă că  Alg( M )   22n

.

Indicaţie. Verificaţi că JJ’  JJ’ =  şi că reuniunea atomilor este ; reţineţi apoi numai atomii

nevizi şi aplicaţi exerciţiul precedent. .

12. Algoritm pentru construcţia -algebrei generate de o familie de mulţimi. Fie  o mulţime

oarecare şi m o familie de părţi ale sale. Fie m 1 = ( m   m ‘), m 2 = ( m 1  ( m 1)’),..., m n+1 = ( m n  ( m n)’),

...şi procedeul continuă pînă la primul ordinal cu o mulţime nenumărabilă de predecesori, 1, astfel :

dacă  este un ordinal limită, atunci m   =  

m   iar dacă  are predesor (adică =+1 cu alt

ordinal), atunci m  +1 = ( m    ( m  )’) 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 15/139

Atunci ( m  ) =   1

m  . 

13. Fie X,Y sunt două spaţii topologice şi f:XY o funcţie . Dacă f este (B (X), B (Y) )-măsurabilă,

atunci f se numeşte măsurabilă Borel. Considerăm cazul X=Y=. Arătaţi că:

- orice funcţie monotonă este măsurabilă Borel;

- orice funcţie continuă la dreapta sau la st înga este măsurabilă Borel.Indicaţie. Dacă f este monotonă, preimaginea oricărui interval este interval iar intervalele generează 

B (). Dacă f este continuă la dreapta, este limita şirului f n(x)=

 f k 

nn Z 

n

n

 

 

 

1

1 1[ , )

(x) iar dacă este

continuă la stînga procedăm analog.  

14. Fie f : continuă şi injectivă. Atunci (f)= B () .

Indicaţie. f este monotonă . Din teorema lui Darboux, Im(f) este interval, deci mulţime boreliană ;funcţia

f:  Im(f) este bijectivă. Dacă g:Im(f) este inversa ei, atunci f(B ()) = g-1(B ()) = g-1((i )) (unde

reprezintă intervalele de pe dreaptă) = (g

-1

(i )) = (f(i ))  B () .deoarece dacă I este un interval, f(I) este de asemenea interval (Darboux!) deci mulţime boreliană. Apoi

se va folosi faptul că B=f -1(f(B)).

15. Fie f: pară, continuă cu proprietatea că f [0,) este injectivă. Atunci arătaţi că (f)={B B () :

-B=B} cu -B := {-x: xB }.

Indicaţie. Dacă B este boreliană, şi -B este la fel datorită măsurabilităţii funcţiei h(x)=-x. Fie

g:[0,), g= f [0,). Funcţia g este monotonă. Arătaţi ca la exerciţiul precedent că (g)= B ()[0,) .

Dacă B=-B, atunci B= (B[0,)) (-(B[0,))) = g-1

(D) (-g-1

(D))=f -1

(D) unde B[0,)=g-1

(D), D

boreliană. Deci orice mulţime din -algebra din dreapta este în (f). Cealaltă incluziune este evidentă :

f -1(B)=-f -1(B).

16. Calculaţi (f) dacă :

- f:, f(x)=x2;

- f:, f(x)=[x];

- f:, f(x)=sin(x);

Indicaţie. În primul caz se aplică exerciţiul (3); În al doilea arătaţi direct că (f) este familia reuniunilor

de intervale de forma *n,n1), n întreg; în al treilea folosiţi faptulş că funcţia sinus restricţionată la

intervalul [-/2,,2] este injectivă şi arătaţi că (f)= {   B B k  

k Z 

 2: B B ()[-/2, /2)] }.

17. Fie f:2, f(x,y)=x2+y

2. Arătaţi că (f)={ C x  x x B( , ), 00 : BB () }, unde C (0,x) este cercul de

centru 0 şi rază x.

18. Fie 1,2,...,n mulţimi oarecare şi m  j p ( j), 1 jn ca  j m  j . Arătaţi că   j

n

1( m  j) = ( j

n

1

[ m  j]), unde j

n

1[ m  j+ însemnă prin definiţie mulţimea “dreptunghiurilor” A1A2...An cu A j m  j, 1 jn.

Indicaţie. Dacă  este produsul cartezian al celor n mulţimi şi p j:   j sunt proiecţiile canonice, atunci

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 16/139

 j

n

1   ( m  j) = (  j

n

1p j-1

(( m  j))) = (  j

n

1(p j-1

( m  j))) = (  j

n

1p j-1

( m  j)) = ((  j

n

1 p j-1

( m  j))d). Ultima expresie

este exact ce trebuie, deoarece  j m  j. )  

19. b (n) = ({ (-,a1] (-,a2]... (-,an] : a1,a2,...an  } ).

Indicaţie. În general( m 1)( m 2)...( m n) = ({A1A2...AnA j m  j,1 jn})

20. Dacă (,k ) este un spaţiu măsurabil şi este generat de o partiţie cel mult numărabilă (Ai)iI atunci f 

este variabilă aleatoare f este variabilă aleatoare etajată.

Indicaţie. Mulţimea f=a- este o reuniune cel mult num\rabilă de atomi.

21. Dacă  este o mulţime nenumărabilă şi k   p () este -algebra generată de mulţimile cu un singur

punct atunci o funcţie f:   este măsurabilă Borel f este constantă cu excepţia eventuală a unei

mulţimi cel mult numărabile.

Indicaţie:consideraţi mulţimile Ex:={f<x}; există un x ca Ex să fie cel mult numărabilă iar >0 Ex+ este

conumărabilă. Atunci f=x cu excepţia eventuală a unei mulţimi cel mult numărabile .

22. Preimaginea unui U-sistem nu mai este neapărat U-sistem. Fie =0,1,2,3,4- şi

 m  = {,,{0,1},{0.2},{0,3},{0,4},{0,1}c,{0.2}c,{0,3}c,{0,4}c}.

Fie apoi E = \ 0- şi f:E  funcţia identică.

Verificaţi că  m  este U-sistem (singurele perechi de mulţim disjuncte sunt de tipul A, Ac ) dar f -1() nu

mai este sistem .

Curs 2. Măsurabilitate.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 17/139

Fie ,X mulţimi oarecare şi f:  X o funcţie. Dacă BX atunci f -1

(B)={ :

f()B } va desemna preimaginea mulţimii B prin funcţia f. Dacă  M   P (X) este o familie

oarecare de mulţimi, atunci f -1( M ) va desemna familia { f -1

(B) : B M  - . În acest fel putem

privi operaţia f -1 ca o funcţie de la P (X) la P ().

Propoziţia 1. Dacă   M   P (X) este o -algebră (respectiv U-sistem, algebră, topologie),

atunci f -1

( M ) este de asemenea -algebră (respectiv U-sistem, algebră, topologie).

Demonstraţie. Evident. Preimaginea reuniunii (respectiv intersecţiei, complementarei) este

reuniunea (respectiv intersecţia, complementara). 

In plus, f -1

se comportă bine şi faţă de operatorii de închidere introduşi în Cursul1:

comută cu ei.

Propoziţia 2.  Întotdeauna ( f -1

( M )) = f -1

(( M )) ( şi respectiv ( f -1

( M )) = f -1

(( M )),

 Alg( f -1

( M )) = f -1

( Alg( M )), Top( f -1

( M )) = f -1

(Top( M )) ).

Demonstraţie. ““: Fie E = { BX : f -1

(B) ( f -1

( M )) }.Evident M    E   . În al doilea rînd E  

este o -algebră.  Într-adevăr,E  deoarece ( f -1

( M )) şi f -1()=. Apoi, dacă B  E, 

atunci şi Bc  E  căci f 

-1(B

c)=(f 

-1(B))

c  şi ( f 

-1( M )) este o -algebră. În sfîrşit, dacă (Bn)n este

un şir de mulţimi din E , reuniunea lor va fi de asemenea în E  căci

  f B f Bn

n

n

n

 

 

  1 1

.

Rezultă că ( M )  (E )= E . Deci B( M ) f -1

(B) ( f -1

( M )) adică f -1

(( M )) (

f -1

( M )).

““: Evident f -1

( M ) f -1

(( M )) deci (f -1

( M ))   (f -1

(( M )))= f -1

(( M )), căci ultima familie

este deja o -algebră conform Propoziţiei. Acelaşi raţionament funcţionează dacă  înlocuim operatorul ““ cu ““, respectiv “ Alg”

sau “Top”. .

Definiţie. Spaţiu măsurabil, funcţie măsurabilă. O pereche (,k ) unde  este o mulţime

oarecare şik 

   p 

()este o -algebră  se numeşte spaţiu măsurabil. Dacă (,k 

) şi (X,f 

) suntdouă spaţii măsurabile şi f:  X este o funcţie, atunci funcţia f se numeşte (k , f )-măsurabilă 

dacă f -1

(f ) k , adică dacă B f  f -1

(B) k . Dacă nu este pericol de confuzie, (adică dacă 

-algebrele k  şi f se subînţeleg) vom spune doar că „f este măsurabilă”. Dacă f este bijectivă şi

funcţia f -1 este de asemenea (f , k )-măsurabilă vom spune că f este un izomorfism de spaţii

măsurabile sau, mai scurt, un izomorfism. Dacă , X sunt spaţii topologice şi ă -algebrele k  

şi f sunt -algebrele mulţimilor boreliene, atunci o funcţie măsurabilă se va numi funcţie

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 18/139

boreliană.

Observaţie. Dacă k  şi f ar fi topologii în loc să fie -algebre, noţiunea de măsurabilitate ar

coincide cu noţiunea de continuitate. Într-adevăr, se ştie că f este continuă  f -1

(G) este

deschisă G deschisă. Altfel scris, f este continuă  f -1

(f ) k , ceea ce arată o similaritate

remarcabilă  între cele două noţiuni. În acest caz izomorfismul (funcţie bijectivă bimăsurabilă)

s-ar numi homeomorfism (= funcţie bijectivă şi bicontinuă). Ca şi în topologie, este valabilurmătorul rezultat:

Propoziţia 3. (i). Fie (,k ), (E,e ) (F,f ) trei spaţii măsurabile şi f:  E, g:E F două funcţii

măsurabile. Atunci compunerea lor gf este de asemenea măsurabilă.

(ii). Fie (,k ), (E,e ) două spaţii măsurabile şi f :   E o funcţie oarecare. Să presupunem că 

e =( m ) cu m   p () . Atunci f este măsurabilă  f -1

( m ) k  

Demonstraţie. (i) este evident iar (ii) este o consecinţă imediată a propoziţiei 2: f -1

(e ) = f -1

(( m ))

= (f -1

( m ))  ( k ) = k .  

Importanţa punctului (ii) din Propoziţia 3 este vizibilă: pentru a demonstra

măsurabilitatea unei funcţii f nu este nevoie să verificăm neapărat că f 

-1

(B) k  pentruorice B din e , ci este suficient să verificăm acest lucru pentru B m  lucru mai uşor. 

Definiţie. -Algebra generată de o familie de funcţii. Fie (Xt,F t)tT o familie de spaţii

măsurabile, X o mulţime oarecare şi f t:X Xt  o familie de funcţii. Atunci -algebra (

 f t 

t T 

1( F t)) se va numi -algebra generată de funcţiile (f t)tT şi se va nota, în cazul

că ne există pericol de confuzie asupra spaţiilor măsurabile (Xt,F t)tT,cu (f t : tT).

Propoziţia 4. Fie (,K ) un spaţiu măsurabil, X o mulţime oarecare şi Fie (Xt,F t)tT o familie de

spaţii măsurabile. Fie f t:X Xt  o familie de funcţii şi f:  X .

Atunci f este (K ,(f t : tT ))-măsurabilă  f tf sunt (K , F t)-măsurabile tT.

Demonstraţie. ““ este evident : compunerea de funcţii măsurabile este măsurabilă.

““. f -1((f t : t T ))=f -1

(( f t 

t T 

1( F t)))=(f 

-1(

 f t 

t T 

1( F t))) (Propoziţia 2!)=(

 f t 

t T 

1(f 

-1(F t)))

(datorită proprietăţilor aplicaţiei f -1) =(( ) f f t 

t T 

1

( F t)) K   deoarece toate funcţiile f tf sunt măsurabile.  

Definiţie. Produsul unei familii de spaţii măsurabile. Să considerăm în definiţia de mai

sus cazul particular în care X= X t 

t T 

  şi funcţiile f t:X Xt sunt proiecţiile canonice, adică f t(x)=xt 

tT. Atunci vom nota -algebra (f t : tT) cut T  F t. Dacă T={1,2,...,n} vom mai scrie

spaţiul măsurabil produs şi direct, adică (X1X2....Xn, F 1 F 2.... F n). În cazul particular în

care (Xt,F t)tT coincid, deci dacă (Xt,F t )=(E, F ) tT, produsul acestor spaţii

măsurabile se va nota (ET, F 

T) . Dacă   în plus T=1,2,...,n- vom prefera scrierea mai obişnuită 

(En, F 

n) în loc de (ET, F 

T). Să remarcăm analogia acestei definiţii cu cea de topologie produs:

produsul unei familii de spaţii topologice se defineşte la fel .O consecinţă imediată a Propoziţiei 4 este 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 19/139

Propoziţia 5. Fie (Xt,F t)tT o familie de spaţii măsurabile şi X= X t 

t T 

, F =t T  F t. Fie (,K ) un alt

spaţiu măsurabil şi f:  X, f()=(f t())tT . Atunci f este (K ,t T  F t)-măsurabilă  f t sunt (K ,

F t)- măsurabile pentru orice tT.

Demonstraţie. Evident :dacă pt:XXt sunt proiecţiile canonice, atunci ptf = f t şi aplicămPropoziţia 3. .

Un alt caz particular de -algebră generată de o funcţie este cea de urmă a unei

-algebre pe o mulţime. Fie (,K ) un spaţiu măsurabil şi A   o mulţime oarecare. Injecţia

canonică este funcţia iA : A   dată de relaţia iA()=. Atunci -algebra (iA) = iA-1

(K ) se

numeşte urma lui K   pe A şi se notează cu K A.

 În cazul spaţiilor topologice este interesantă legătura între borelianul produs şi produsulborelienilor. Dacă am şti că ele coincid, de exemplu, atunci orice funcţie continuă ar fi

măsurabilă, lucru care ar fi de ajutor în stabilirea măsurabilităţii. 

Propoziţia 6. Fie (Xt, T t) o familie cel mult numărabilă de spaţii topologice numărabil generate.

Atunci B ( X t 

t T 

) =t T  B (Xt).

Demonstraţie. Fie O t baze numărabile de topologie în (Xt, T t), adică T t = ( O t) şi O t sunt

numărabile tT. Atunci topologia produs pe X := X t 

t T 

va fi T =Top( pt 

t T 

1

(( O t))) = Top(

( pt t T 

1

( O t))). Fie U t mulţimile pt-1

(O t). Deci T = Top((

t T 

U t)) =((

t T 

U t))d (Exerciţiu : Top( M )= 

 M  d) =( t T 

U t)d   (datorită distributivităţii reuniunii faţă de intersecţie) . Fie O  familia de

mulţimi O = ( t T  U t)d. Cum T este cel mult numărabilă, familiile U t sunt de asemenea

numărabile iar intersecţiile finite care se pot realiza cu o familie numărabilă de mulţimi

formează de asemenea o mulţime numărabilă de mulţimi, rezultă că O este numărabilă.

 Înseamnă că T = O  = O  (reuniunile de mulţimi dintr-o familie numărabilă sunt întotdeauna

reuniuni cel mult cel mult numărabile), cu alte cuvinte O  este o bază de topologie pentru T .

Rezultă că B ( X t 

t T 

)=(T )=( O )=( O )= ( t T 

U t) = ( pt 

t T 

1

(O t)) = (

 ( pt 

t T 

1

(O t)))

(cf. Propoziţia Curs 1) = ( pt 

t T 

1((O t))) (cf. Propoziţiei 2) = (

 pt t T 

1(((O t))) = (

 pt t T 

1

( (T t)))) (deoarece O t  sunt baze de topologii în Xt) = (  pt t T 

1

( b (Xt))) (din definiţia

mulţimilor boreliene ale unui spaţiu topologic) =t T  B (Xt).  

 În cazul particular în care (X t, T t) = (,Top()) coincid cu dreapta reală cu topologia sa

canonică obţinem următoarea consecinţă foarte importantă a Propoziţiei 5: 

Corolar 7. Dacă T este cel mult numărabilă, atunci B (T) = ( B ())

T.

Demonstraţie. Este uşor de demonstrat că Top() este o topologie cu bază numărabilă : de

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 20/139

exemplu Top()=Top( (a,b) :a,b raţionale- ). Se aplică apoi Propoziţia 5. 

Corolar 8. Fie f:n   o funcţie continuă. Atunci f este (( B ())

n, B ()) - măsurabilă.

Demonstraţie. f -1

(B ())=f -1

((Top())) = (f -1

(Top())) (cf. Propoziţiei 2)  ( Top(n)) (f 

continuă  înseamnă că preimaginea oricărei deschise este de asemenea deschisă!) = B (n) = ( 

B ())n conform Corolarului 6.  

Este importantă de asemenea legătura între borelian şi urmă.

Propoziţia 9. Fie (X,T ) un spaţiu topologic şi AX. A este înzestrat cu topologia de subspaţiu. 

(i). B (A)= B (X)A.

(ii). Dacă A B (X), atunci B (A) ={ B B (X) : BA }

(iii). B ([-,+) unde dreapta încheiată este înzestrată cu topologia canonică.

(iv). B ([-,]) =( { [-,b) :b } ) =( { (a,] : a } ).

(v). B ([-,]) = { BJ : B B (), J{-1,1} }.

Demonstraţie. 

(i). B (A) = ( T  A) = (iA-1

(T ))=iA-1

((T )) (conform Propoziţiei 2) = iA-1

( B (X)) = B (X)A.

(ii). Din definiţia urmei, B (A) ={ CA : C B (X) }. Dacă A B (X), atunci şi B=AC B (X) .

(iii). este deschisă  în *-,], deci boreliană.

(iv). Fie F =( {[-,b) :b } ). Evident F   B ([-,]) deoarece toate intervalele [-,b) fiind

deschise, sunt boreliene. Reciproc, ar trebui arătat că orice deschisă din [-,+ este în F . Dar

deschisele sunt reuniuni cel mult numărabile de intervale de tipul (a,b) sau [-,b) sau (a,] cu

a,b. Scriind (a,]c= n1

[-,a+xn) cu (xn)n un şir descrescător de numere pozitive

convergent la 0, rezultă că (a,] F . În sfîrşit, un interval deschis mărginit se poate scrie

(a,b)=[-,b)(a,+, deci şi el aparţine la F , de unde cealaltă incluziune.

(v). ““: Fie F   mulţimea din dreapta. Se verifică imediat că F este o -algebră. Toate

intervalele [-,b), b sunt în F , deci şi -algebra generată de ele care, conform punctului (iv)

coincide cu B ([-,]).

““: Conform punctului (ii) şi (iii) orice mulţime boreliană de pe dreaptă,B, este în B ([-,]). O

mulţime finită,J, este de asemenea în B ([-,+) deoarece este închisă.  

Definiţie. Variabilă aleatoare. Punct aleator. Vector aleator. Fie (,K ) un spaţiumăsurabil şi T o mulţime cel mult numărabilă. O funcţie f:  T

care este

(K ,B (T))-m[surabilă se numeşte vector aleator. Dacă T are două elemente vom numi

vectorul f punct aleator, iar dacă T are un singur element, f se va numi variabilă aleatoare.

Dacă f este o variabilă aleatoare cu proprietatea că f() este finită, atunci f se numeşte

variabilă aleatoare simplă. Dacă f() este cel mult numărabilă. atunci f se numeşte variabilă 

aleatoare etajată. Dacă f:  [-, +] este (K , b ([-,])-măsurabilă, atunci f se

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 21/139

numeşte variabilă aleatoare extinsă. Din Propoziţia 8 rezultă că orice variabilă aleatoare

este şi variabilă aleatoare extinsă şi, mai mult, orice variabilă aleatoare extinsă f cu proprietatea

că f() este chiar variabilă aleatoare. 

Iată o consecinţă a Propoziţiei 4 care ne dă un criteriu de a recunoaşte un vector aleator: 

Propoziţia 10. Fie (,K ) un spaţiu măsurabil, T o mulţ ime cel mult numărabilă şi f:  T.

Atunci f este vector aleator ptf sunt variabile aleatoare tT.

Demonstraţie. “  “ : Din Corolarul 6, B (T) = ( B ())

T, proiecţiile canonice pt sunt

măsurabile iar compunerea de aplicaţii măsurabile este măsurabilă.

“  “ : Dacă toate componentele f t=ptf sunt măsurabile, atunci f este (K ,

B ()T)-măsurabilă cf. Propoziţiei 4. Apoi se aplică Corolarul 6.  

Acum putem prezenta cele mai importante proprietăţi ale variabilelor aleatoare, carevor fi folosite în restul cursului.

Propoziţia 11. Fie (,K ) un spaţiu măsurabil şi L (,K ) (respectiv S (,K ), E (,K ) ) familia

variabilelor sale aleatoare (respectiv variabilelor aleatoare simple, etajate).

(i). Dacă f 1, f 2,...,f n sunt variabile aleatoare şi g:n este (B (n),B ())-măsurabilă,atunci

funcţia compusă g(f 1,f 2,...,f n) este de asemenea variabilă aleatoare. În particular, dacă g este

continuă rămîne valabilă aceeaşi afirmaţie. (ii). Toate aceste familii de funcţii sunt algebre comutative peste , adică spaţii vectoriale reale

cu structură de inel comutativ.

(iii). f este variabilă aleatoare {f<x} K   x  {f x} K   x  {f>x} K  

x etc. În general f este variabilă aleatoare f -1

( M ) K dacă ( M )= B ().

(iv). f este variabilă aleatoare extinsă  {f<x} K   x  {f>x} K   x {f B}K  

B b () şi f=} K ,{f=-} K .

(v). Dacă f() este cel mult numărabilă atunci f este variabilă aleatoare {f=x} K  xf().

(vi). Fie f:  [-,+ o funcţie oarecare şi h: *-,] [-1,1] un homeomorfism crescător (de

exemplu funcţia h(x)=

arctgx

 

1

2 dacă x, h(-)=0, h()=1 ). Atunci f este variabilă aleatoare

extinsă dacă şi numai dacă hf este variabilă aleatoare.

(vii). Dacă (f n)n este un şir de variabile aleatoare extinse, atunci funcţiile limsup(f n) şi liminf(f n)

sunt de asemenea variabile aleatoare extinse.

(viii). În particular, dacă (f n)n este un şir convergent de variabile aleatoare atunci limita sa estede asemenea o variabilă aleatoare.

(ix). Dacă f este o variabilă aleatoare mărginită, atunci există un şir de variabile aleatoare simple,

(f n)n care converge uniform la f.

(x). Dacă f este o variabilă aleatoare oarecare, atunci există un şir de variabile aleatoare etajate,(f n)n care converge uniform la f.

(xi). Dacă f este o variabilă aleatoare oarecare, atunci există un şir de variabile aleatoare simple,(f n)n care converge punctual la f.

(xii). Spaţiul vectorial S (,K ) este dens în L (,K ) în topologia convergenţei simple iar

E (,K ) este dens în L (,K ) în topologia convergenţei uniforme. 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 22/139

Demonstraţie. 

(i).Funcţia f:ndată prin f()=(f 1(),f 2(),...,f n()) este ( K , b (n

)) măsurabilă din

Propoziţia 9 iar compunerea de funcţii măsurabile produce funcţii măsurabile.

(ii). Funcţiile g(x,y)=axbycu a,b, h(x,y)=xy, g,h:2 sunt continue, deci măsurabile.

 Înseamnă că dacă f 1 şi f 2 sunt variabile aleatoare şi af 1+bf 2, f 1f 2 vor fi de asemenea variabile

aleatoare, conform punctului (I).

(iii) f -1

(( m ))=(f -1

( m )) din Propoziţia 2. Din Cursul 1 se ştie că b () = ({( -,x) : x}) =

({(x,) : x}) = ({(-,x] : x}) = ([x,) : x}) etc.

(iv). Se aplică Propoziţia 8 şi Propoziţia 2. 

(v). Să presupunem că f() este cel mult numărabilă. Dacă f este variabilă aleatoare, atunci

{f=x}=f -1(x-) aparţne -algebrei K  din definiţia măsurabilităţii. Reciproc, dacă B este o mulţime

boreliană oarecare, atunci f -1

(B)=

 f x  x B f  

1

K datorită faptului că reuniunea în cauză este

cel mult numărabilă.

(vi). Faptul esenţial este că funcţia h:*-,][-1,1] este (b ([-,]),b ([-1,1]))-bimăsurabilă,adică atît h cît şi h-1

sunt măsurabile.

(vii). Să luăm, de exemplu funcţia f=limsup f n =

inf sup inf  n k 

 f n

gn k n

1 0 1 cu gn=sup{f n, f n+1,....} .

Arătăm mai întîi că gn sunt măsurabile. Fie gn,k=sup {f n, f n+1, ...,f n+k} = max {f n, f n+1, ...,f n+k}.

Funcţiile gn,k sunt variabile aleatoare extinse deoarece dacă h este homeomorfismul de la

punctul precedent, rezultă că h(gn,k)= max {h(f n), h(f n+1), ...,h(f n+k)} (datorită monotoniei lui h) =

(h(f n), h(f n+1), ...,h(f n+k)) este variabilă aleatoare din punctul (i) al propoziţiei ( funcţia :n,

(x)=max(x1,x2,...,xn) este continuă, deci măsurabilă) . Apoi, şirul de variabile extinse (gn,k)k este

crescător şi converge la gn. Fie x un număr real. Rezultă că {gn>x} = k  0

{gn,k>x} k , deci gn sunt

variabile aleatoare extinse conform punctului (iv). Şirul de variabile aleatoare extinse (gn)n 

este descrescător şi converge la f. Rezultă că {f<x} = k  0

{gn<x- aparţine -algebrei k  

x, deci f este variabilă aleatoare extinsă cf. (iv).

(viii). Dacă (f n)n este un şir convergent de variabile aleatoare, atunci f = limsup f n = liminf f n şiamîndouă aceste funcţii sunt variabile aleatoare extinse, conform punctului precedent. Dar

f(), deci f este o variabilă aleatoare.

(ix). Fie f o variabilă aleatoare mărginită şi a,b ca af b. Funcţiile hn: definite prin

hn(x)=[nx]/n sunt crescătoare, deci măsurabile Borel (mulţimile hn<x- sunt intervale) şihn(x)-x1/n, deci hn converg uniform la funcţia identică. Rezultă că variabilele aleatoare

hn(f)=[nf]/n converg uniform la f. Dar ele sunt simple căci mulţimile hn(f)() sunt finite (hn(f)()

hn([a,b])={k/n : ak/nb}).

(x). Dacă f nu este mărginită, variabilele aleatoare hn(f) de la punctul precedent sunt etajate.

(xi). Fie hn(x)=[nx]1[-n,n](x)/n. Variabilele aleatoare hn(f) sunt simple (căci hn()={k/n : -n2kn

2}

este finită) şi converg la f (deoarece x-hn(x)  1[-n,n](x)/n + (1(-,n][n,)(x)) 0 c]nd n ).

(xii). Este o reformulare a punctelor (x) şi (xi).  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 23/139

Exerciţii. 

1. Fie X,Y sunt două spaţii topologice şi f:XY o funcţie . Dacă f este (B (X), B (Y)

)-măsurabilă, atunci f se numeşte măsurabilă Borel. Considerăm cazul X=Y=. Arătaţi că:

- orice funcţie monotonă este măsurabilă Borel;

- orice funcţie continuă la dreapta sau la stînga este măsurabilă Borel.

Indicaţie. Dacă f este monotonă, preimaginea oricărui interval este interval iar intervalele

generează B (). Dacă f este continuă la dreapta, este limita şirului f n(x)=

 f k 

nn Z 

n

n

  

 

1

1 1[ , )

(x)

iar dacă este continuă la stînga procedăm analog.  

2. Fie f : continuă şi injectivă. Atunci (f)= B () .

Indicaţie. f este monotonă . Din teorema lui Darboux, Im(f) este un interval;apoi f(Ac)=Im(f) \

f(A) deci f este bimăsurabilă, adică f(B ())  B (). Folosiţi faptul că B=f -1

(f(B)).

3. Fie f: pară, continuă cu proprietatea că f [0,) este injectivă. Atunci (f)={B B () :

-B=B} cu -B := {-x: xB }.Indicaţie. Dacă B este boreliană, şi -B este la fel datorită măsurabilităţii funcţiei h(x)=-x. Fie

g:[0,), g= f [0,). Funcţia g este monotonă. Arătaţi ca la exerciţiul precedent că (g)= 

B ()[0,) . Dacă B=-B, atunci B= (B[0,)) (-(B[0,)))=g-1

(D) (-g-1

(D))=f -1

(D) unde

B[0,)=g-1

(D), D boreliană. Deci orice mulţime din -algebra din dreapta este în (f). Cealaltă 

incluziune este evidentă : f -1

(B)=-f -1

(B).

4. Calculaţi (f) dacă :

- f:, f(x)=x2;

- f:, f(x)=[x];

- f:, f(x)=sin(x);

Indicaţie. În primul caz se aplică exerciţiul (3); În al doilea arătaţi direct că (f) este familiareuniunilor de intervale de forma [n,n1), n întreg; în al treilea folosiţi faptulş că funcţia sinus

restricţionată la intervalul [-/2,,2] este injectivă şi arătaţi că (f)= {   B B k  

k Z 

 2: B 

B ()[-/2, /2)] }.

5. Fie f:2, f(x,y)=x2+y

2. Arătaţi că (f)={

C x  x x B

( , ),

00

: BB () }, unde C (0,x) este

cercul de centru 0 şi rază x.

6. Fie 1,2,...,n mulţimi oarecare şi m  j p ( j), 1 jn ca j m  j . Arătaţi că   j

n

1( m  j) = (

 j

n

1

[ m  j]), unde

 j

n

1

[ m  j+ însemnă prin definiţie mulţimea “dreptunghiurilor” A1A2...An cu A j

m  j, 1 jn.(Indicaţie. Dacă  este produsul cartezian al celor n mulţimi şi p j:   j sunt

proiecţiile canonice, atunci  j

n

1   ( m  j) = (  j

n

1p j-1

(( m  j))) = (  j

n

1(p j-1

( m  j))) = (  j

n

1p j-1

( m  j)) = ((  j

n

1p j-1

( m  j))d). Ultima

expresie este exact ce trebuie, deoarece  j m  j. )  

7. b (n) = ({ (-,a1] (-,a2]... (-,an] : a1,a2,...an  } ).

8. Dacă (,k ) este un spaţiu măsurabil şi este generat de o partiţie cel mult numărabilă (Ai)iI 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 24/139

atunci f este variabilă aleatoare f este variabilă aleatoare etajată.

9. Dacă  este o mulţime nenumărabilă şi k   p () este -algebra generată de mulţimile cu unsingur punct atunci o funcţie f:   este măsurabilă Borel f este constantă cu excepţiaeventuală a unei mulţimi cel mult numărabile. (Indicaţie:consideraţi mulţimile Ex:={f<x}; există 

un x ca Ex să fie cel mult numărabilă iar >0 Ex+ este conumărabilă. Atunci f=x cu excepţia

eventuală a unei mulţimi cel mult numărabile ).  

Curs 3. Măsura. Prelungirea lui Caratheodory

Definiţie.Măsura. Fie (,K ) un spaţiu măsurabil. O măsură este o funcţie : K  [0,] care

nu este identic egală cu şi are proprietatea că pentru orice şir de mulţimi disjuncte din K, 

(An)n avem

(1) ( n

1

An) = n

1 (An)

Tripletul (,k 

,) format dintr-un spaţiu măsurabil (,k 

) şi o măsură  pek 

se numeşte spaţiucu măsură.

Observaţie. Proprietatea (1) se numeşte -aditivitate. Deci măsura este o funcţie de mulţime

-aditivă. Putem observa că pentru ca definiţia să aibă sens nu era nevoie neapărat ca K  să 

fie -algebră : putea fi U-sistem şi (1) avea sens . Dacă ()<, atunci  se numeşte măsură 

finită sau mărginită. Dacă, în plus, ()=1, măsura  se numeşte probabilitate. Ea formează 

obiectul de studiu al teoriei probabilităţilor. A nu se confunda “-aditivă” cu “-finită” !

Teoremele importante ale teoriei măsurii se referă la măsuri -finite.

Observaţie. Dacă  înlocuim (1) cu

(1’) A,B K , AB=  (AB)=(A)+(B)

obţineam o funcţie de mulţime (simplu) aditivă. Unii numesc acest obiect măsură finitaditivă. 

Propoziţia 1. (i).Dacă  este o măsură, atunci ()=0.

(ii).Orice măsură este finit aditivă.

Demonstraţie. (i).Fia Ak astfel ca (A)<. Fie şirul de mulţimi A1=A, A2=A3=...=. Mulţimile

sunt disjuncte şi reuniunea lor este A. Deci (A)=(A)+lim nn(). Cum (A)< rezultă că 

()=0 deoarece altfel membrul drept ar tinde la .

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 25/139

(ii). Luăm şirul A1=A, A2=B, A3=A4=... =. Mulţimile sunt disjuncte şi reuniunea lor este AB.

Conform punctului (i), rezultă că  (AB)= ( n

1

An) = n

1 (An) = (A)+(B).  

Exemplu. Măsura Dirac. Fie x un punct oarecare. Definim funcţia x(A)=1A(x). Cum, dacă 

mulţimile (An)nN sunt disjuncte,

1 1

1

1 A A

nn

n

n

, rezultă că x este o măsură.

Propoziţia 2.(i). Dacă 1 şi 2 sunt două măsuri şi a1, a2 [0,), atunci a11+a22 este o

măsură.

(ii). Dacă (n)n este un şir de măsuri atunci n

1 n este de asemenea o măsură.

Demonstraţie.(i).Fie =a11+a22. Fie (An)n un şir de mulţimi disjuncte din K . Atunci ( n

1

An)

= a11( n

1 An) + a22( n

1 An) = a1 n

1 1(An) + a2 n

1 2(An) = n

1 (An). Pe de altă parte nu este

identic egală cu deoarece ()=0.

(ii). Fie k=1+2+...+k şi (An)n un şir de mulţimi disjuncte din . Fie = n

1 n = sup k (putem

 înlocui “lim” cu “sup” deoarece sumanzii sunt nenegativi) . Atunci nu este constant egală cu

, deoarece ()=0. Pe de altă parte ( n

1

An) = sup{ k( n

1

An) : k1 } = sup { n

1 k(An) :

k1 } (căci k sunt măsuri conform primului punct) = supsup

k nk j

 j

n

 A 

1 =

supsupk n i

i j

 j

n

 A

1 1

 

 

= supsup

n k i j

i

 j

n

 A 

11   (întotdeauna două “sup” comută) = suplim

n k i j

i

 j

n

 A 

11 =

sup limn k 

i j

i

 j

n

 A 

11 (limita sumei este suma limitelor) = sup

ni j

i j

n

 A 

11 =

supn

 j

 j

n

 A 

1 =

  A j

 j

1 .  

Exemplu de aplicare. Fie (x(n))n un şir de elemente din  şi (pn)n  un şir de numere

nenegative. Atunci funcţia = n

1 pnx(n) este o măsură şi (A)=n x n A: ( )

pn. Măsurile de această 

formă se numesc măsuri discrete iar numerele pn se numesc ponderi. Dacă toate ponderile

sunt egale cu 1, atunci (A)= AE unde E={x(n)n 1} . Dacă  este numărabilă şi E= am

obţinut ceea ce se cheamă măsura cardinal .

Nu toate măsurile sunt discrete. Dimpotrivă, cele mai interesante - cum ar fi măsura

Lebesgue - nu sunt aşa. Ele nu se dau printr-o formulă, ci se construiesc plecînd de la o măsură 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 26/139

-aditivă pe o algebră conform metodei lui Caratheodory.

Definiţie. Fie  o mulţime oarecare şi a o algebră de părţi ale lui . O funcţie : a  [0,]

care nu este identic egală cu +, cu proprietatea

(1’’) (An)n  a   disjuncte şin

1

An  a   (

n

1

An) =

n

1

(An)se numeşte măsură pe algebra a . A fost nevoie să punem condiţia ca reuniunea mulţimilor An 

să fie în a deoarece o algebră de mulţimi nu este stabilă la operaţia de reuniune numărabilă.

Dacă există un şir de mulţimi Cn a  ca (An)< şi n

1

Cn = , atunci  se numeşte

-finită. 

 În propoziţia următoare vom da criterii de a cunoaşte dacă o funcţie de mulţime simplu

aditivă este -aditivă.

Propoziţia 3. (Criteriul lui Kolmogorov).

(i). Fie  a  [0,) o funcţie de mulţime aditivă mărginită. Atunci următoarele afirmaţii suntechivalente:

(i1). este -aditivă;

(i2). Pentru orice şir descrescător de mulţimi din a , (An)n cu proprietatea că  n

1

An =  

rezultă că limn(An) = 0.

(i3). Pentru orice şir descrescător de mulţimi din a , (An)n cu proprietatea că limn(An) > 0

rezultă că  n

1

An  .

(ii). Dacă  este -aditivă,atunci  este şi -subaditivă, adică 

(2) (An)n  a   şi n

1

An  a   ( n

1

An)   n

1 (An)

Demonstraţie. (i). (i2)  (i3) este evident : nu sunt decît două forme de a spune acelaşi lucru. 

(i1) (i2). Disjunctăm mulţimile An astfel : B1=A1 \ A2, B2=A2 \ A3, ..., Bn = An \ An+1, ... . Cum

(An)n este un şir descrecător rezultă că A1= n

1

Bn, A2= n

2

Bn, şi, în general, Ak= n k 

Bn k1.

Rezultă că toate aceste reuniuni, deşi infinite, aparţin algebrei a . Din -aditivitatea lui rezultă 

că (A1)= n

1 (Bn) <. Deci (Ak)= n k 

(Bn) formează resturile unei serii convergente care,

evident tind la 0 cînd k  . (i2)(i1): .Fie (An)n un şir de mulţimi disjuncte cu proprietatea că 

reuniunea lor A aparţine algebrei a . Vrem să arătăm că (A)= n

1 (An). Fie Sn=A1A2...An.

Cum este finit aditivă rezultă că (Sn) = (A1)+(A2)+...+(An) . Deci ceea ce vrem este să 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 27/139

arătăm că (A)=limn(Sn). Putem însă scrie A=SnRn cu Rn= j

1

An+j. Cum A şi Sn sunt în algebra a  

şi Rn=A \ Sn rezultă că şi Rn a  . Dar şirul (Rn)n este descrescător şi n

1

Rn =  (într-adevăr,

xA există un unic n(x) ca xAn(x) - căci mulţimile An sunt disjuncte; atunci x Rn(x)+1  nici

un x nu aparţine intersecţiei mulţimilor Rn). Din ipoteză rezultă că limn(Rn) = 0. Aşadar

(A)=(Sn)+(Rn) şilimn(Rn) = 0  (Sn)  (A).

(ii). Fie B1=A1, B2=A2 \ A1,...., Bn=An \(A1A2...An-1), .. mulţimile obţinute prin disjunctarea

mulţimilor (An)n. Cum a  este algebră, Bn a   n1. Mulţimile Bn sunt disjuncte şi

reuniunea lor este A. Cum este -aditivă, (A) = n

1 (Bn)   n

1 (An) (evident BnAn 

(Bn)(An).  

Ideea lui Caratheodory.

Fie :a   [0,) o măsură -aditivă pe algebra a . Deocamdată vom presupune că  

este mărginită, deci ()<. Vom prezenta un algoritm, datorat lui Caratheodory, de a extinde

pe la o măsură veritabilă pe ( a ). Algoritmul acţionează  în doi paşi. 

Pasul 1. Construcţia măsurii exterioare.

Definiţie. Fie E   o mulţime oarecare. Orice şir de mulţimi din a , (An)n, astfel încît E   n

1

An  se numeşte a -acoperire a lui E. Fie *: p () [0,) definită prin

(3) *(E) = inf { n

1 (An) : (An)n este a -acoperire a lui E }

Funcţia se numeşte măsura exterioară generată de . Noţiunea are sens pentru

orice măsură finit aditivă pe A, nu neapărat -aditivă şi mărginită. Iată unele proprietăţi ale

măsurii exterioare în cazul general, cînd este numai aditivă:

Propoziţia 4. Dacă  este finit aditivă pe a , atunci

(i). * este -subaditivă, adică *( n

1

En)   n

1 *(En) En  .

(ii). *() = 0.

(iii). E F    *(E)  *(F) .

(iv). Dacă A  a, atunci (A)  *(A).

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 28/139

Demonstraţie. (i).Fie (En)n  , E =n

1

En şi >0. Pentru fiecare n1 considerăm a -acoperiri

ale lui En, (An,j) j ca

(4) *(En)    j

1 (An,j)  *(En) + /2

n

 Atunci mulţimile (An,j)n,j realizează o acoperire a lui E. Din definiţia măsurii exterioare

*(E) n j,

1 (An,j) =

 jn

11 ( An,j) n

1 (*(En)+/2

n) = n

1 *(En) + . Cum este arbitrar

rezultă că *(E)   n

1 *(En), adică ceea ce voiam. (ii). Evident: putem lua toate mulţimile

An=. (iii) rezultă din faptul că orice acoperire a lui E este şi acoperire a lui F. (iv). Şirul

(A,,,...) este o a -acoperire a lui A deci *(A)(A)+()+()+... = (A) conform cu (iii).  

Exemplu. Fie =Q  (mulţimea numerelor raţionale) şi a  algebra dată de intervalele de

numere raţionale de tipul (-,a)Q . Deci o mulţime din a este de forma A=([ , )a bi i

i

n

1

B )Q  

cu [ai  ,bi ) intervale disjuncte şi B o mulţime care poate fi : vidă, un interval de tipul (-,a),

interval de tipul [b,) sau, în sfîrşit, o reuniune de tipul (-,a)[b,). Definim (A)= dacă 

mulţimea este de ultimele trei tipuri . Dacă mulţimea A este de primul tip, atunci (A) o definim

ca suma lungimilor intervalelor din care se compune A Obţinem o măsură finit aditivă pe a  cu

proprietatea că *(E)=0 EQ . Într-adevăr, cum Q este numărabil, putem enumera E sub

forma E={x1,x2,...}. Fie  > 0 arbitrar şi An=[xn - /2n+1

,xn + /2n+1

). Evident (An)n formeazî o a  

-acoperire a lui E şi n

1 (An) = n

1 /2n = , deci *(E) < . In concluzie în acest caz *0.  

 În cazul în care este -aditivă restricţia lui * la a coincide cu .

Propoziţia 5. Dacă  este -aditivă, atunci A a   *(A)=(A).

Demonstraţie. Fie >0 arbitrar. Fie (An)n o a -acoperire a lui A ca *(A)  n

1 (An)  *(A)+.

Atunci mulţimile (AAn)n realizează o altă a -acoperire a lui A (căci a este algebră). Deci (A) 

n

1(AnA) (căci este -subaditivă din Propoziţia 3)   n

1(An)  *(A)+.  Pasul 2.

Intoducerea mulţimilor -măsurabile. 

Aici vom presupune că  este -aditivă şi mărginită.

Definiţie Spunem că mulţimea A   este -măsurabilă dacă 

(5) E    *(EA)+*(EAc) = *(E)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 29/139

Notaţie. Vom nota mulţimile -măsurabile cu k ().

Observaţie. Datorită subaditivităţii lui , întotdeauna *(E) *(EA)+*(EAc). Deci

(6) A este -măsurabilă  *(EA)+*(EAc)  *(E) E   

Propoziţia 6. a   k () .

Demonstraţie. Fie A a  şi E   oarecare. Fie >0 oarecare şi (An)n o a -acoperire a lui E ca

n

1 (An)  *(E) + . Cum a  este algebră, rezultă că mulţimile (AAn)n şi (Ac

An)n sunt a  

-acoperiri pentru EA şi EAc. Deci *(EA) + *(EA

c)   n

1 (AAn) + n

1 (A

cAn) =

n

1 ((AAn)+ (Ac An)) = n

1   (AAnAc An) = n

1   ( An)  *(E) + . Cum este arbitrar

rezultă că *(EA) + *(EAc) *(E) adică A este -măsurabilă.  

Definiţie. O mulţime A   cu proprietatea că (A)=0 se numeşte -neglijabilă.

Propoziţia 7. Dacă A este -neglijabilă, atunci A este şi -măsurabilă.

Demonstraţie. Fie E   oarecare. Atunci *(EA)+*(EAc) = *(EA

c) (deoarece

*(AE)*(E)=0)  (E). Deci relaţia (6) este satisfăcută, deci A este -măsurabilă.  

Propoziţia 8. k () este o algebră şi *: k () [0,) este finit aditivă.

Demonstraţie. Dacă A este -măsurabilă, atunci şi A

c

este la fel datorită simetriei definiţiei.  este de asemenea -măsurabilă. Mai rămîne să arătăm că dacă A,B  k () atunci AB k ().

 Într-adevăr, dacă B k (), atunci *(EB)+*(EBc)=*(E) pentru orice E. Egalitatea este

valabilă atunci şi dacă  înlocuim E cu EAc. Obţinem atunci 

(7) E    *(EBAc)+*(EB

cA

c)=*(EA

c)

 Înlocuind (7) în (5) găsim

*(E)=*(EA)+*(EAc)=*(EA)+*(EBA

c)+*(EA

cB

c) *(EAEBA

c)+*(E \ (AB)) (căci * este

subaditivă) = *(E(ABAc))+ *(E \ (AB)) = *(E(AB))+*(E \ (AB)) (căci evident

ABAc=AB ) şi deci conform cu (6) obţinem că 

(8) E    *(E (AB))+*(E \(AB))=*(E)

adică AB este -măsurabilă.Dacă A şi B sunt disjuncte, atunci, înlocuind în (5) pe E cu AB

găsim că *(AB)=*(A)+*(B), deci pe k () * este aditivă.  

Observaţie.Analizînd demonstraţia Propoziţiei 8 vedem că dacă A k () şi B este disjunctă 

de A, atunci *(AB) = *(A)+(B).Putem demonstra mai mult, şi anume 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 30/139

Propoziţia 9. Fie (Ai)1in mulţimi disjuncte din k () şi E  . Atunci *(E(

 Aj j

n

1

)) =  j

n

1

*(EA j).

Demonstraţie. Inducţie după n. Dacă n=2, fie E*=E(A1A2). Cum A1 este -măsurabilă, *(E*) =

*(E*A1) + *(E* \ A1) = *(E(A1A2)A1) + *(E(A1A2)A1

c

) = *(EA1) + *(EA2). În general,presupunem afirmaţia adevărată pentru n-1 şi o demonstrăm pentru n. Ca mai sus, fie E*= E(

 Aj j

n

1

). Cum An este -măsurabilă, *(E*)=*(E*An) + *(E*An

c) = *(EAn) +

*(E(A1A2...An-1)) şi aplicăm apoi ipoteza de inducţie.  

Propoziţia 10. k () este U-sistem.

Demonstraţie. Singurul lucru de verificat este stabilitatea la reuniuni numărabile disjuncte. Fie

(An)n un şir de mulţimi disjuncte din k (), A reuniunea lor şi Bn=A1A2...An  k () (am văzut

 în propoziţia 8 că k () este algebră) Deci pentru orice E   avem *(E) = *(EBn) + *(E \ Bn) =

 j

n

1 *(EA j) +*(E \ Bn) (din propoziţia 9)    j

n

1 *(EA j) +*(E \ A) (deoarece Bn

c  A

c). Cum

acest lucru este valabil pentru orice n, este valabil şi la limită, deci *(E)    j

1 *(EA j) +*(E \

A)  *(EA) + *(EAc) (din -subaditivitate). Rezultă că A k ().  

Corolar 11. k () este -algebră.

Demonstraţie. Din propoziţiile 8 şi 10 k () este atît algebră cît şi U-sistem. Dar un U-sistem

stabil la intersecţii finite este -algebră (Curs 1).  

Teorema 12 (Caratheodory). * : k () [0,) este măsură şi restricţia sa la a coincide cu .

Demonstraţie. Că  restricţia lui * la a este am văzut în propoziţia 5.Mai rămîne să 

demonstrăm -aditivitatea. Fie (An)n un şir de mulţimi disjuncte din k (), Bn=A1A2...An  

k () şi E  . Atunci *(E) = *(EA)+*(EAc)  *(EBn)+*(EA

c) (căci ABn)

=  j

n

1 *(EA j) +*(E \ A) (din propoziţia 9). Cum acest lucru este valabil pentru orice n, rezultă 

că *(E)    j

1 *(EA j) +*(E \ A).Înlocuind E cu A, reuniunea mulţimilor An, rezultă că *(A)  

 j

1 *(A j) +*(A \ A) = j

1 *(A j) . Dar inegalitatea contrară este valabilă  întotdeauna : rezultă 

din -subaditivitatea oricărei măsuri exterioare.  

Deci orice măsură mărginită şi -aditivă pe o algebră se poate extinde la o măsură pe

-algebra generată. Vom studia apoi condiţii în care această extensie este unică precum şi

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 31/139

criterii de a putea decide dacă o anumită formulă ne generează o măsură sau nu.

Exerciţii. 

1. Fie =1,2,...,n- o mulţime finită. Arătaţi că  în acest caz toate măsurile finit aditive sunt şi

măsuri. Ele sunt toate discrete şi pot fi puse în bijecţie cu *0,]n prin aplicaţia 

(({1},({2}),...,(n-). Identificaţi măsurile mărginite şi probabilităţile . 

2. Dacă  este numărabilă, atunci orice măsură pe p() este discretă; o măsură poate fi

identificată cu un şir de ponderi (pn)n.

3. Dacă  este infinită, funcţia (A)=0 dacă A este finită şi (A)= dacă A este infinită defineşte

o măsură aditivă dar nu -aditivă. Ea nu este -finită?

4. Dacă  nu este numărabilă, atunci măsura cardinal (A)=A nu este -finită . De asemenea

măsura a(A)= dacă aA şi a(A)=0 dacă aA este -aditivă dar nu -finită.

5. Reguli de calcul cu o măsură finit aditivă : (AB)=(A)+(B)-(AB) ; (A \ B)= (A)-(AB);

formula lui Poincare : (A1A2...An) = S1-S2+S3-..... cu Sk=suma măsurilor intersecţiilor de k

mulţimi din familia (A j)1 jn .

6. Dacă  nu este mărginită, atunci criteriul lui Kolmogorov nu funcţionează. Se poate ca An 

dar (An) nu converge la 0. De exemplu dacă An = {n,n+1,...}, =N, este măsura cardinal,

atunci (An)=  n deşi An.

7. Dacă  este -aditivă, An şi există n ca (An)<, atunci (An)0.

8. Dacă  este finit aditivă şi nu este -finită, se poate ca să aibă proprietatea

(*) (A1)<, An  (An) 0

şi totuşi să nu fie -aditivă. De exemplu măsura finit aditivă de la ex. 3. Deci pentru ca criteriul

Kolmogorov să fie un criteriu de -aditivitate este esenţial ca să fie mărginită, sau măcar

-finită.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 32/139

 

Curs 4. Prelungirea măsurii de la o algebră la -algebra generată. 

Principalul rezultat al cursului anterior a fost deci:

Teoremă (Caratheodory).Fie  o mulţime oarecare şi a o algebră de părţi ale lui . Fie : 

a   [0,) o funcţie de mulţime -aditivă şi mărginită. Atunci se poate prelungi la o măsură 

veritabilă pe ( a ).

Problemele care se pun acum sunt:

1. Nu există un rezultat asemănător şi pentru măsuri nemărginite?

2. Este unică o asemenea prelungire?

3. Ce criterii avem de a recunoaşte dacă o funcţie de mulţime definită pe o algebră este

sau nu -aditivă? 

Răspunsurile la primele două  întrebări sunt afirmative.

Propoziţia 1. Fie o mulţime oarecare şi a o algebră de părţi ale lui . Fie : a   [0,] o

funcţie de mulţime -aditivă şi -finită ( în sensul că există  un şir crescăror de mulţimi din a , 

notat cu (Cn)n1 cu proprietatea că (Cn) <  şi Cn = ). Atunci există o măsură :(a )[0,]

a cărei restricţie la a este exact .

Demonstraţie. Fie 1=C1,2=C2 \ C1,.n=Cn \ Cn-1 .. Cum a  este algebră, aceste mulţimi

sunt în a . Fără a restrînge generalitatea, putem presupune că (Cn) > 0 n1. Într-adevăr,

dacă mulţimea acelor n cu proprietatea că (Cn) > 0 este finită, atunci  este ea însăşi finită şiatunci nu e nimic de demonstrat. Deci mulţimea în cauză este infinită, şi atunci putem foarte

bine să reţinem numai acei indici n pentru care (Cn) > 0 şi să-i renumerotăm. Fie n noile

măsuri -aditive pe a definite prin n(B)=(Bn). Măsurile n sunt mărginite (căci n() =

(n )< ) şi = n

1 n (căci B a    (B) = (B( n

1

n)) = ( n

1

(Bn)) = n

1 (Bn)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 33/139

= n

1 n(B) ). Deci toate măsurile n se pot prelungi la măsuri veritabile

n: (a ) [0,). Fie = n

1 n. Atunci este o măsură pe (a ) (conform Propoziţiei 1 Curs 3) şi

dacă B a , atunci (B) = n

1 n(B) = n

1 n(B) (căci n sunt prelungiri ale lui n ) = (B),

deci este o prelungire a lui .  

Vom răspunde acum la a doua întrebare.

Propoziţia 2. Fie (,k ) un spaţiu măsurabil şi , două măsuri mărginite pe k . Presupunem în

plus că ()=(). Atunci e , = { A k  (A)=(A) } este un U-sistem.

Demonstraţie. Dacă A e , atunci (Ac)=()-(A)=()-(A)=(A

c) deci A

c e ,. Dacă (An)n 

este un şir de mulţimi disjuncte din e ,, atunci ( n

1

An) = n

1 (An) = n

1 (An) = (n

1

An)

deci n

1 An aparţine de asemenea la e , .  

Propoziţia 3. Fie Fie  o mulţime oarecare şi a o algebră de părţi ale lui . Fie ,  două 

măsuri -finite pe (a ). Dacă  şi coincid pe a , atunci =.

Demonstraţie. Să presupunem întăi că  şi sunt mărginite. Cum a rezultă că ()=() .

Atunci, din propoziţia 2, e , este un U-sistem. Din ipoteză a   e , deci (a )  e ,. Dar a ,

fiind algebră, este stabilă la intersecţii finite. Din Cursul 1 rezultă atunci că (a )=(a )  e ,. Cu

alte cuvinte =.

Tratăm acum cazul general, cînd  şi sunt -finite. Fie (n)n un şir de mulţimi disjuncte

din a cu proprietatea că (n) = (n) <. Fie n şi n restricţiile lui  şi lan definite ca în

propoziţia 1, adică n(A)=(An), n(A)=(An) A(a ). Atunci Aa   n(A)=n(A)

deoarece Ana  şi pe a   coincide cu . Rezultă că n coincide cu n şi pe (a ). Din

egalitatea = n

1 n, = n

1 n rezultă că  coincide cu .  

Combinînd aceste rezultate găsim

Teoremă . Fie  o mulţime oarecare şi a o algebră de părţi ale lui . Fie de asemenea

: a   [0,) o funcţie de mulţime -aditivă şi -finită. Atunci se poate prelungi la o măsură 

veritabilă pe (a ). Această prelungire este unică şi va fi notată, prin abuz, de asemenea cu .

Obiectivul următor este a treia întrebare. Aici cheia este noţiunea de măsură regulată faţă de o familie semicompactă de mulţimi. 

Definiţie. Fie  o mulţime oarecare şi c  p (). Familia c  se numeşte semicompactă dacă şi

numai dacă  pentru orice şir de mulţimi Cn c cu proprietatea că  n

1

Cn = rezultă că există 

n0 natural ca n

n

1

0

Cn = .

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 34/139

Exemplu. Fie (X,t ) un spaţiu topologic separat şi k  mulţimea compactelor sale. Atunci k  este

o familie semicompactă. Într-adevăr, Fie (Cn)n un şir de compacte cu proprietatea că  n

1

Cn =

. Atunci rezultă că C1( n

1

Cn)=  C1 ( n

2

Cn)

c

= n

2

Cn

c

. Deci (Cnc

)n2 realizează oacoperire cu deschise (în spaţii separate compactele sunt şi închise deci complementarele lorsunt deschise) a compactului C1. Din definiţia compacităţii, rezultă că există o subacoperire finită 

a lui C1 cu mulţimi de această formă: deci există n0 2 ca C1   n

n

2

0

Cn

c. Cu alte cuvinte, n

n

1

0

Cn = .  

Definiţie. Fie a o algebră de părţi ale lui  şi : a   [0,+ o funcţie oarecare. Spunem că  este

regulată faţă de o familie semicompactă  există c   a o familie semicompactă cu

proprietatea că 

(1)  >0, A a, C c , C A ca (A \ C) <  

Importanţa acestei noţiuni rezidă  în 

Propoziţia 4. Fie a   p () o algebră şi : a   [0,) o funcţie de mulţime aditivă şi mărginită.

Dacă  este regulată faţă de o familie semicompactă, atunci este -aditivă.

Demonstraţie. Vom utiliza criteriul lui Kolmogorov (Propoziţia 3, Curs 3). Fie (An)n un şir

descrescător de mulţimi din a  cu proprietatea că  n

1

An= şi (A1)<. Trebuie să arătăm că 

limn(An)=0. Fie atunci c   a o familie semicompactă faţă de care este regulată. Fie >0

oarecare şi CnAn, Cn c cu proprietatea că (An \ Cn) < /2n. Cum n

1

An= şi CnAn rezultă că 

n

1

Cn=. Dar c  este semicompactă; deci există n0 ca n

n

1

0

Cn = . Fie n n0. Atunci An = An \

= An \  j

n

1

0

Cn =  j

n

1

0

(An \ C j)    j

n

1

0

(A j \ C j) (căci şirul (An)n este descrecător ) de unde (An)  

( j

n

1

0

(A j \ C j)) =  j

n

1

0

(A j \ C j)    j

n

1

0

 j/2 j

< . Aşadar  >0 n0 ca nn0  (An). Deci

(An)0.  

Exemplu de aplicare al Propoziţiei 4. Măsura Stieltjes. 

Fie f:    o funcţie monoton crescătoare. Fie m=f(-) şi M=f(). Aceste valori pot fi şiinfinite.Fiind monotonă, funcţia f are limite laterale în orice punct, notate ca de obicei cu f(a-0)

şi f(a0) . Tot din monotonie, rezultă că f(a-0) f(a) f(a+0) a.

Fie a algebra pe generată de intervale. Din Cursul 1 ştim că (a )= b (). Este uşor devăzut că mulţimile din A sunt reuniuni finite de intervale disjuncte şi puncte (complementara

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 35/139

punctului este o reuniune de două intervale, deci mulţimile formate dintr-un singur punct

aparţin algebrei a ). Cu ajutorul lui f vom construi o măsură finit aditivă pe a , notată f  

conform următoarelor reguli:

R1. Dacă I=(a,b], atunci f (I) = f(b)-f(a).

R2. Dacă I=(-,b], atunci f (I) = f(b) - m.

R3. Dacă I=(a,), atunci f (I) = M - f(a)

R4. Dacă I = [a,a] = {a}, atunci f (I) = f(a)-f(a-0)

R5. Dacă I1, I2 sunt intervale disjuncte, atunci f (I1I2)= f (I1) + f (I2).

Propoziţia 5. Regulile R1 - R4 definesc o măsură finit aditivă pe a .Ea mai are proprietatea că 

R6. Dacă I=(a,b), atunci f (I) = f(b-0)-f(a).

R7. Dacă I=[a,b], atunci f (I) = f(b)-f(a-0).

R8. Dacă I=[a,b), atunci f (I) = f(b-0)-f(a-0).

R9. Dacă I=(-,b), atunci f (I) = f(b-0) - m.

R10. Dacă I=[a,), atunci f (I) = M-f(a-0).

Demonstraţie. Să verificăm întîi afirmaţiile simple R6 - R10. Putem scrie (a,b]=(a,b){b} . Din R5

şi R1 găsim că f(b)-f(a) = f ((a,b]) = f ((a,b){b}) = f ((a,b)) + f ({b}) = f ((a,b)) + f(b)-f(b-0) de

unde rezultă R6. Scriind [a,b] = (a,b}  a- şi aplicînd din nou R5, R1 şi R4 rezultă R7. Scriind

[a,b) = (a,b)a- şi aplicînd succesiv R5,R4,R6 rezultă R8. Cum f(b)-m = f ((-,b]) =

f ((-,b){b}) = f ((-,b)) + f(b)-f(b-0) rezultă R9 şi, analog R10. Mai avem de demonstrat că definiţia este bună: adică, dacă I1, I2 sunt două intervale

disjuncte, I1I2 este un alt interval, I, atunci f (I), definit prin regulile R1-R10 coincide cu

f (I1)+f (I2). Ca I1I2 să fie un interval iar I1 şi I2 să fie disjuncte, trebuie ca neapărat capătul

drept al celui din stînga şi capătul stîng al celui din dreapta să coincidă. Mai mult, acel punct,

notat cu b trebuie să fie în unul din cele două intervale, de exemplu în I1. Atunci I1=a,b],

I2=(b,c, unde ““ ţine loc de paranteză  închisă sau deschisă. Atunci f (I1)+f (I2)=f(b)-h(a) +

g(c)-f(b) (unde h(a)=f(a) dacă =(, h(a)=f(a-0) dacă =[ etc ) . Important este că f(b) se reduce şideci f (I1)+f (I2)=g(c)-h(a)=f (I) (sunt de analizat,ca exerciţiu, toate cazurile care pot apare). Odemonstraţie mai elegantă se poate da dacă lucrăm numai cu intervale deschise şi puncte. 

Deci f este bine definită. Că este aditivă este evident din însăşi definiţie: Dacă A este o

reuniune finită de intervale disjuncte (I j)1<j<m iar B este o altă reuniune de intervale disjuncte

(Jk)1kn atunci AB=  intervalele I j, Jk sunt disjuncte  f ((1  j m

I j )( 1 k n

Jk)) =

1

 j m f (I j) +

1

 j m f (Jk) (datorită regulii R5 aplicată  în mod repetat) = f (I1) + f (I2).  

Propoziţia 6. Dacă f este mărginită şi continuă la dreapta, atunci f este regulată faţă de o

familie semicompactă şi deci, conform propoziţiei 4,este -aditivă. Familia semicompactă c 

poate fi cea formată din reuniuni finite de intervale închise şi mărginite. Rezultă că f se poate

extinde unic la o măsură pe b (), notată tot cu f . Aceasta se numeşte măsura Stieltjes 

generată de f.

Demonstraţie. Fie c familia formată din reuniuni finite de intervale compacte.Vom arăta mai

 întîi că pentru orice >0 şi orice interval I   deschis există un interval compact, K astfel ca f (I

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 36/139

\ K) < . Sunt trei cazuri de analizat:

Cazul 1. I=(a,b). Atunci f (I)=f(b-0)-f(a). Fie (an)n un şir strict descrescător care converge la a şi

an>a, (bn)n un şir crescător care converge la b şi bn<b. Atuncilimnf(an)=f(a+0) = f(a) (căci am

presupus f continuă la dreapta) de unde f(a)=f(a+0)  limnf(an-0) (căci f(an-0) f(an))  

limn

f(an+1)=f(a)  limnf(an-0) =f(a). Pe de altă parte, din definiţia limitei la stînga, lim

nf(bn)=f(b-0).

Dacă n este destul de mare, putem prespune an<bn şi atuncilimnf ([an,bn])=

limn

(f(bn)-f(an-0))=f (I) . Deci dacă n este destul de mare, f ((a,b) \ [an,bn]) =

f ((a,an))+f ((bn,b))=(f(an-0)-f(a))+(f(b-0)-f(bn)) < .

Cazul 2. I=(a,). Atunci f (I)=f()-f(a) . Fie (an)n un şir strict descrescător care converge la a şi

an>a. Putem scrie, ca mai suslimnf ([an,n]) =

limn(f(n)-f(an-0)) =

limnf(n) -

limn f(an-0) = f()-f(a)

= f (I) deci afirmaţia este valabilă şi în acest caz. Cazul 3. I=(-,b). Fie (bn)n un şir crescător care converge la b şi bn<b. Ca la cazul 2 se arată 

imediat că 

limnf ([-n,bn]) =

limn(f(bn-0)-f(-n-0)) = f(b-0)-f(-) = f (I).

Fie acum A a  oarecare. Cum orice interval se poate scrie ca o reuniune între uninterval deschis şi maximum două puncte, putem scrie mulţimea A sub forma unei reuniuni

finite de intervale disjuncte şi puncte. Deci A= j

m

1

(a j,b j)  K unde K este o mulţime finită. Fie

>0. Trebuie să construim o mulţime C c ca f (A\ C) < . Fie I j  (a j,b j) intervale compacte ca

f ((a j,b j) \ I j) < /m, construite ca mai sus. Atunci mulţimea C= j

m

1

I j  K este în c   şi f (A \ C) <

.  Condiţia din Propoziţia 6 ca f să fie mărginită nu este esenţială, ci numai cea ca f să fie

continuă la dreapta. Putem renunţa la ea. În schimb demonstraţia anterioară nu mai

funcţionează, deoarece f acum nu mai este regulată faţă de familia reuniunilor finite de

intervale compacte. Avem nevoie acum de o mică generalizare a criteriului lui Kolmogorov.

Propoziţia 7 (Continuitatea monotonă a unei măsuri). Fie a   p () o algebră de părţi ale lui  

şi : a   [0,+ o funcţie aditivă. Următoarele proprietăţi sunt echivalente: 

(p1) este -aditivă.

(p2) (An)n a, An A, A a     (An)  (A).

Demonstraţie. (p1)(p2). Fie B1 = A1, B2=A2 \ A1, ...,Bn = An \ An-1,.... Toate aceste mulţimi sunt

 în a , sunt disjuncte iar B1B2...Bn = An n. De aceea reuniunea lor este chiar A. Cum este

-aditivă rezultă că (A)=( n

1

Bn) = n

1 (Bn) =

limn ((B1)+...+(Bn)) =

limn(B1...Bn) =

limn

(An). (p2)(p1). Fie (An)n un şir de mulţimi disjuncte din a   şi A reuniunea lor. Presupunem

A a .Fie Bn=A1...An. Şirul de mulţimi din a,(Bn)n este crecător şi limita sa este chiar A. De

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 37/139

aceea (A)=limn(Bn) =

limn ((A1)+...+(An)) = n

1 (An) deci este -aditivă.  

De asemenea, vom folosi rezultatul următor drept criteriu de -aditivitate:

Propoziţia 8. Fie a   p () o algebră de părţi ale lui  şi : a   [0,+ o funcţie aditivă.

Presupunem că  satisface următoarele două proprietăţi: (a1) Există un şir crescător de mulţimi (n)n a  ca Aa    (An)(A);

(a2) Funcţiile n: a   [0,), n(A) := (An) sunt -aditive.

Atunci este de asemenea -aditivă.

Demonstraţie. Vom folosi echivalenţa (p3)  (p1) din Propoziţia 7. Fie (Ak)k un şir crescător de

mulţimi din a  şi A reuniunea lor. Atunci (A) =limn(An) (din (a1)) =

limnn(A) =

supn 1 n(A)

(şirul este crescător!) =sup

n1

supk 1 n(Ak) (căci Ak  A şi n sunt -aditive) =

supk 1

supn 1 n(Ak) (două “sup”

comută  întotdeauna) =sup

k 1

supn1 (Akn) =

supk 1 (Ak) (din (a1)). Conform cu “(p3)(p1)” rezultă că 

 este ea însăşi -aditivă.  Acum putem demonstra generalizarea propoziţiei 6 pentru cazul general. 

Propoziţia 9. Fie f: o funcţie crescătoare şi continuă la dreapta. Atunci f este -aditivă pe

a   şi deci poate fi prelungită la o măsură pe b ().

Demonstraţie. Fie n(A)=f (A(-n,n]). Vom arăta că sunt satisf ăcute condiţiile (a1) şi (a2) din

propoziţia precedentă. Vrem să arătăm deci că limnn(A)=f (A). Cum A a , A se poate scrie

ca o reuniune de intervale deschise disjuncte la care se mai adaugă, eventual, o mulţime finită şi

n sunt finit aditive, fi suficient deci de demonstrat această convergenţă  cînd A este uninterval deschis sau A este finită.

Să presupunem că A este un interval deschis. Dacă este mărginit şi n este destul de

mare, atunci A (-n,n] deci n(A)=f (A) şi afirmaţia este trivial adevărată. Dacă A=(-,b) şi n>batunci n(A)=f ((-n,b)) = f(b-0) - f(-n) f(b-0)-f(-) = f (A) . Dacă A=(a,) şi -n < a, atunci

n(A)=f(n-0)-f(a) f()-f(a) deci în cazul că A este interval, problema este rezolvată. Dacă A este

o mulţime finită, ea este inclusă  în (-n,n] dacă n este destul de mare deci afirmaţia (a1) esteverificată.

Să arătăm acum că se verifică şi condiţia (a2). Fie n fixat şi g definit astfel: pe intervalul

(-,-n], g(x)=f(-n); pe (-n,n], g coincide cu f iar pentru x(n,), g(x)=f(n). Atunci n(A) (:=

f (A(-n,n]) ) = g(A) pentru orice A a , după cum se vede uşor luînd A un interval deschis

sau un punct. Dar funcţia g este mărginită, continuă la dreapta, deci din Propoziţia 6 g este o

măsură. Restul rezultă din propoziţia anterioară.  

Funcţia de repartiţie a unei măsuri Stieltjes. 

Legătura dintre funcţiile crescătoare contiune la dreapta şi măsuri este mai profundă.

Definiţie. Fie :b ()[0,] o măsură. Dacă (C)<  C   compactă, atunci  se numeşteo măsură Stieltjes (sau măsură Borel). 

Definiţie. Fie o măsură Stieltjes. Funcţia 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 38/139

(2) F(x) =

m ( , x] daca m este marginita

m (0, x] daca x 0

m (x,0] daca x 0  î n caz contrar

 

se numeşte funcţia de repartiţie a măsurii Stieltjes .Propoziţia 11. Orice măsură Stieltjes este -finită. Dacă  este o măsură Stieltjes, atunci funcţia

F:= F este o funcţie crescătoare, continuă la dreapta şi F = .

Demonstraţie. Cazul 1: mărginită. Evident că F este crescătoare. Pentru continuitatea la

dreapta să remarcăm că F(x+0)=limn F(x+1/n) =

limn ((-,x+1/n]) = ( n1

(-,x+1/n])

(continuitatea monotonă a măsurii ) = ((-,x]) =F(x). Apoi F((a,b])=F(b)-F(a) (conform regulilor

de definire ale lui F) = ((-,b]) - ((-,a]) = ((-,b] \ (-,a]) = ((a,b]), adică  coincide cu F 

pe mulţimea J  a interalelor semideschise la stînga. Deci coincide cu F pe (J ).Dar (J )= 

b () iar J = J  d ; rezultă că (J )=( J )= b () deci =F.

Cazul 2. este nemărginită. Monotonia este evidentă . Dacă x 0, continuitatea la dreapta se

demonstrează la fel. Dacă x<0, atunci F(x+0)=limn (-((x+1/n,0]) = - ( n

1

(x+1/n]) (din nou

continuitatea monotonă a măsurii, de data asta monotonia crescătoare) = - ((-,x]) = F(x). Deci

F este continuă la dreapta.. Pentru a demonstra că  şi F coincid pe J  avem de analizat trei

situaţii. Dacă 0a<b, demonstraţia este la fel ca în cazul mărginit. Dacă a < 0 b, atunci

F((a,b])= F(b)-F(a) = ((0,b])+((a,0])=((0,b](a,0])=((a,b]), deci egalitatea este valabilă şi în

acest caz. În sfîrşit, dacă a<b<0 atunci F(b)-F(a)=((a,0]0-((b,0])=((a,b]).  

Exerciţii. 

1. Dacă F şi G sunt două funcţii crescătoare de la la cu proprietatea că F=G atunci

F-G=constantă. Dacă  şi sunt două măsuri Stieltjes cu aceeaşi funcţie de repartiţie F, atunci

=

 

2.Fie F: dată prin F(x)=[x]. Atunci F = n

n, adică F(A)=AZA b (),Z fiind

mulţimea numerelor întregi.Dacă F(x)=sign(x), F este aditivă, dar nu -aditivă. Indicaţie. Fie

(an)n un şir strict descrescător de numere pozitive care converge la 0. Verificaţi că F((an+1,an])=0

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 39/139

n dar F( n

1

(an+1,an])=F((0,a1])=1.  

3. Fie M mulţimea măsurilor Stieltjes pe (,b ()) şi F mulţimea funcţiilor crescătoare continui la

dreapta de la la . Ambele aceste mulţimi sunt conuri. Considerăm funcţiile F: M  F şi : F 

M date prin F(

)=F

,

(F)=

F

F,

M. . Atunci aceste funcţii sunt liniare (în sensul că 

a,b0  F(a1+b2)=a F(1)+b F(2), (aF1+bF2) = a(F1) +b (F2) ) şi F((F))=F+a cu a o

constantă iar ( F())= F F,M. .Indicaţie. Fie F F şi =F. Atunci F(b)-F(a) =

((a,b])=F(b)-F(a) deci F diferă de F((F)) printr-o constantă.  

4. Dacă F este numai crescătoare, dar nu continuă la dreapta, atunci F nu este -aditivă.

Indicaţie. Dacă :=F ar fi -aditivă ar trebui ca funcţia sa de repartiţie F() să difere de F

printr-o constantă, deci ar trebui ca F însăşi să fie continuă la dreapta.  

5. Dacă F este crescătoare continuă la dreapta mulţimea punctelor sale de discontinuitate estecel mult numărabilă.

Indicaţie.Fie sF(x):=F(x)-F(x-0). Fie Disc(F) ={x  sF(x)>0-mulţimea discontinuităţilor lui F.

Arătaţi că dacă F este mărginită, atunci s x

F  x S F  ( )   F()-F(-)<, deci Disc(F) este cel mult

numărabilă. În cazul general, consideraţi funcţiile Fn:=max(-n, min(n,F)) şi arătaţi că Disc(F)=

n

1

Disc(Fn).  

6.Scriem Q, mulţimea numerelor naturale sub forma unui şir, Q =(an)n. Fie (pn)n strict pozitive

ca n

1 pn < . Atunci măsura := n

1 pn(an) este mărginită (aici am notata cu (an) măsura

Dirac concentrată  în an). Fie F funcţia sa de repartiţie F(x)=((-,x]). Atunci Disc(F)= Q, . cu alte

cuvinte F este o funcţie crescătoare continuă pe \ Q şi discontinuă pe Q. Indicaţie.

F(x)-F(x-0)=(x-). În cazul nostru xQ ({x})0 iar x \ Q  ({x})=0.

7. Dacă := n

1 pn(an) este o măsură discretă, atunci toate mulţimile sunt -măsurabile.

Indicaţie. Măsura Dirac a este definită pe mulţimea tuturor părţilor lui .

. este măsură şi ({x})=F(x)-F(x-0).  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 40/139

 

Curs 5. Măsuri pe dreaptă. Integrala.

Măsuri discrete. Măsuri continue.

Există unele măsuri Stieltjes pe dreaptă, , cu proprietatea că ({x})=0 x.

Măsurile acestea, pentru care toate punctele sunt neglijabile se numesc măsuri continue. Ele

admit o caracterizare foarte simplă  în termeni de funcţie de repartiţie. 

Propoziţia 1. Măsura Stieltjes este continuă dacă şi numai dacă F este continuă.

Demonstraţie. Conform definiţiei, dacă F este o funcţie crescătoare continuă la dreapta, măsura

Stieltjes generată prin regulile R1-R5 din cursul anterior are proprietatea că F({x})=F(x)-F(x-0).

Deci dacă F este continuă, F este continuă. Reciproc, dacă  este continuă, funcţia sa de

repartiţi F=F construită  în cursul precedent are proprietatea că F=; deci F(x)-F(x-0)=({x})=0

deci F este continuă.  

Amintim că măsura  se numeşte discretă dacă  se poate scrie sub forma =a J 

p(a)a 

unde J este o mulţime cel mult numărabilă, a sunt măsurile Dirac definite în Cursul 3 prin

a(A)=1A(a) iar p(a) sunt numere pozitive.

Propoziţia 2. Fie o măsură Stieltjes pe deaptă. Atunci se poate descompune sub forma

(1) = c + d 

unde c este o măsură continuă iar c una discretă.

Demonstraţie. Fie F funcţia de repartiţie a lui . F este crescătoare, continuă la dreapta şi deciare o mulţime cel mult numărabilă de discontinuităţi. Fie J mulţimea punctelor de

discontinuitate ale lui F. Pentru fiecare aJ fie p(a)=F(a)-F(a-0). Fie d = a J 

p(a)a. Vom arăta că 

- d este o măsură continuă. Într-adevăr, fie x. Dacă ({x})=0, atunci x este un punct de

continuitate pentru F deci xJ d({x})=0 de unde c({x})=0-0=0. Dacă ({x})>0, atunci x este un

punct de discontinuitate pentru F, deci xJ şi ({x})=F(x)-F(x-0)=p(x)=d({x})  

c({x})=p(x)-p(x)=0. Adică c este continuă.  

Măsura Lebesgue.

Fie funcţia identică F:, f(x)=x x. Evident F este crecătoare şi continuă, deci cu

atît mai ult continuă la dreapta. Măsura Stieltjes corespunzătoare se numeşte măsura Lebesgue 

şi se notează cu . Deci ((a,b])=b-a reprezintă lungimea intervalului (a,b+. Din Propoziţia 1

această măsură este continuă deci neglijează punctele. Rezultă că (I)=0 pentru orice mulţime

cel mult numărabilă.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 41/139

Prin procedeul lui Caratheodory, putem construi măsura exterioară * care este

-aditivă pe o -algebră mai bogată decît B (), şi anume pe mulţimile -măsurabile definite în

cursul 3, Am văzut că orice mulţime A -neglijabilă (deci cu proprietatea că (A)=0) este şi

măsurabilă Lebesgue. Orice submulţime a unei mulţimi neglijabile Lebesgue este de asemenea

-neglijabilă. Cum există mulţimi de puterea continuului neglijabile Lebesgue (de exemplumulţimea numerelor x(0,1) care se pot scrie în baza 10 fără a folosi o anumită cifră) rezultă că 

mulţimile -măsurabile sunt o -algebră de cardinalitate 2c, c fiind cardinalitatea lui . Pe de

altă parte se poate arăta că Card(b ())=c, deci mulţimile -măsurabile sunt cu mult mai multe

decît cele boreliene. De aceea, dacă vom da un exemplu de mulţime nemăsurabilă Lebesgue, ea

va fi cu atît mai mult neboreliană.

Completarea unei -algebre faţă de o măsură.

Prin procedeul lui Caratheodory am extins o măsură ,-aditivă şi -finită, definită pe o

algebră a  la o măsură veritabilă definită pe -algebra a () a mulţimilor -măsurabile.

Procedeul are sens şi dacă măsura de plecare este definită pe o -algebră, deci dacă plecăm

de la un spaţiu cu măsură (,k ,). În acest caz -algebra k () se numeşte completata lui k  faţă 

de . Ea este, de regulă mai mare decît k . Cît de mult diferă ea faţă de ? Pentru a răspunde la

 întrebare, vom cerceta mai întîi dacă măsura exterioară generată, * nu se poate exprima mai

uşor în acest caz particular.

Propoziţia 3. Dacă (,k ,) este un spaţiu cu măsură, atunci pentru orice E   avem

(2) *(E) = inf {(C) C k, EC }

Mai mult, pentru orice E   există o mulţime E1  k ca E E1 şi *(E)=(E1).

Demonstraţie. Conform definiţiei, *(E) = inf {n1(An) E  n1An, An  k }. Fie (An)n o

acoperire a lui E realizată cu mulţimi din k . Fie A reuniunea lor. Atunci *(E)  *(A) = (A) (căci

A k )  n1(An) (căci este -aditivă), şi acest lucru este valabil pentru orice acoperire a luiE. Trecînd la infimum, rezultă  în acest fel inegalitatea *(E) inf {(A) Ak, EA }. Cealaltă 

inegalitate este evidentă.

 În legătură cu afirmaţia a doua, dacă *(E)=, punem E1=. Dacă nu, fie (an)n1 un şir

descrescător de numere pozitive care tinde la 0. Pentru orice n există o mulţime Cn ca (Cn) <

*(E)+an şi E Cn . Fie E1 intersecţia acestor mulţimi. Atunci evident că E1  k  şi E E1,

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 42/139

(E1)*(E), deci *(E)=(E1).  

Observaţie. Mulţimea E1 seamănă cu „aderenţa” mulţimii E în k . Am putea defini analog şi

„interiorul” mulţimii E în k . Relaţia (2) ne sugerează să introducem prin analogie

(3) *(E) = sup {(C) C k, C E }

numită măsura interioară generată de .

Propoziţia 4. Există o mulţime E2 E ca (E2) = *(E) . În plus, dacă A k  şi EA, (A)<,

atunci

(4) *(A \ E) + *(E) = *(A \ E) + *(E) =(A)

Demonstraţie. Dacă *(E)=, există un şir de mulţimi Cn  E ca (Cn)  . Putem pune

E2=n1Cn . Dacă *(E) < , luăm ca mai sus un şir an0 şi CnE ca (Cn)>*(E)-an. Evidentmulţimea E2 =n1Cn convine. În legătură cu a doua afirmaţie, avem 

*(A \ E) = sup {(C) C k, C A \ E } = sup {(A)-(A\C) C k, C A\E } = (A) - inf {(A\C)

C k, C A\E }=(A) - inf {(D) D k, D E } (căci C A\E E A \ C, iar dacă E D A,

D k atunci D poate fi scris sub forma D = A\C cu C =A\D A\E) = (A)-*(E), conform cu (2).  

Această abordare ne permite să dăm o caracterizare absolut remarcabilă noţiunii de

mulţime -măsurabilă.

Propoziţia 5. (i).Dacă *(A) < , atunci A este -măsurabilă  *(A) = *(A).

(ii).Dacă  este -finită, atunci A este -măsurabilă  există A1, A2  k ca A2  A A1 şi

(A1\A2)=0.

Demonstraţie. (i).Să presupunem că A este măsurabilă. Deci

(5) *(EA)+*(EAc) = *(E) pentru orice E 

Fie E  k ca (E)< şi AE ( o asemenea mulţime există deoarece am presupus că 

*(A)<) . Atunci (5) devine *(A) + *(E\A) = (E) . Dar, din egalitatea (4) rezultă că  *(EAc

) =(E) - *(A) de unde imediat rezultă că *(A)=*(A).

Reciproc, să presupunem că *(A) = *(A) < . Vrem să verificăm (5). Fie A1, A2 din k ca

A2  A A1 şi (A2)=*(A)=*(A)=(A1) (deci (A2\A1)=0) . Dacă *(E)=, atunci relaţia este

verificată, deoarece din subaditivitatea măsurii exterioare avem că *(EA) < *(A)<  *(EAc)

 *(E) - *(EA) =   (5) se verifică. Dacă *(E)<, fie >0 arbitrar şi F k ca EF, (F) <

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 43/139

*(E)+ . Fie A1, A2 mulţimile de mai sus. Atunci avem : *(EA)+*(EAc)   *(EA1) + *(EA2

c)

(căci Ac  A2

c)   (FA1)+(FA2

c) = (FA1 FA2

c) + (FA1FA2

c) = (F(A1A2

c))+(F(A1\A2))  

(F) + (A1\A2) < *(E)+ şi, cum este arbitrar, rezultă că  *(EA)+*(EAc)  *(E) ceea ce,

coroborat cu subaditivitatea lui * devine exact (5).

(ii). Fie (Cn)n un şir de mulţimi disjuncte din k cu proprietatea că n1Cn =  şi (Cn)<. Fie A o

mulţime -măsurabilă. Atunci mulţimile ACn vor fi de asemenea măsurabile şi *(ACn)<. Din (i),

există mulţimile din k An,1 şi An,2 ca An,2  ACn  An,1  şi (An,1\An,2)=0. Dacă vom pune A1 =

n1An,1 şi A2 =n1An,2, atunci este clar că A2AA1 şi (A1\A2)=0. Reciproc, Dacă A satisface

condiţia din enunţ şi Cn sunt mulţimile de mai sus, CnA2  CnA CnA1 şi (Cn(A1\A2)) =0  

*(CnA)=*(CnA) <  deci, din (i), mulţimile CnA sunt -măsurabile. Cum familia mulţimilor

-măsurabile formează o -algebră, A este de asemenea măsurabilă.  

Concluzia care se desprinde din Propoziţia 5 este : mulţimile -măsurabile sunt acelemulţimi care pot fi încadrate între două mulţimi k din a căror diferenţă este neglijabile. Sau, şi

mai intuitiv, mulţimile -măsurabile sunt cele cu „frontiera” neglijabilă, „frontiera” fiind

„aderenţa” \ „interiorul”.

 În cazul mulţimilor boreliene ale unui spaţiu metric, putem spune ceva mai mult. Dacă 

măsura este mărginită, mulţimile -măsurabile sunt cele care pot fi încadrate între o mulţime

G  şi una f  avînd aceeaşi măsură. Amintim că o mulţime G  este una care se poate scrie ca o

intersecţie numărabilă de deschise iar o mulţime f  este una care se poate scrie ca reuniune

numărabilă de închise. 

Propoziţia 6. (Regularitatea măsurilor Stieltjes pe spaţii metrice -compacte).

(i).Fie (X,d), un spaţiu metric şi o măsură mărginită pe b (X) . Atunci A este -măsurabilă  

există deschisele (Un)n cu intersecţia A1 şi închisele (Fn)n, cu reuniunea A2 astfel încît A2  A  

A1 şi (A1\A2) = 0.

(ii).Dacă  este o măsură Stieltjes iar X este -compact (adică X se poate scrie ca o reuniune

numărabilă de compacte) atunci (i) se modifică  în sensul: orice mulţime măsurabilă se

 încadrează  între o mulţime f  şi una g .

Demonstraţie.(i). Fie f  familia acelor submulţimi A ale lui X cu proprietatea

(6)  >0 F,G X ca F A G, (G\F)<, F închisă şi G deschisă 

Atunci f conţine deschisele ( dacă G este o deschisă şi an este un şir de numere strict pozitive

ca an0, mulţimile Fn={xXd(x,Gc)an} formează un şir crescător de mulţimi închise cu

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 44/139

reuniunea G deci pentru n suficient de mare, continuitatea monotonă a măsurii implică 

(G\Fn)<. Dacă AX, d(x,A) înseamnă inf{d(x,y)yA-) şi f   este o -algebră. Intr-adevăr, este

evident că A f   Ac f . Dacă (An)n este un şir de mulţimi din f  cu reuniunea A, fie >0

arbitrar şi fie Fn  închise, Gn deschise ca Fn  An  Gn şi (Gn\Fn) < 2-n. Fie H intersecţia

mulţimilor Fn şi G reuniunea mulţimilor Gn. Fie F= F1F2...Fno cu n0 ales cu proprietatea că (H \ F) <  . Atunci F este închisă, G este deschisă F A G iar (G \ F) = (G \ H) + (H\F)  

n1(Gn\Fn) + < 2. Cum este arbitrar, am verificat că A f .

 În concluzie f  este o -algebră care conţine pe b (X). Deci orice mulţime boreliană A

are proprietatea

(7) există A2 o mulţime f  şi A1 una G  cu proprietatea că A2AA1 şi (A1\A2)=0

Din propoziţiile 3,4,5, orice mulţime -măsurabilă se încadrează  între două boreliene de aceeaşi

măsură. Dacă A este -măsurabilă, există B2 şi B1 boreliene ca B2  A B1 şi (B2\B1)=0. Din (7)

există mulţimile A2 B2 (o mulţime f ) şi A1B1 (o mulţime g ) ca (A2)=(B2), (A1)=(B1) şi

acest lucru încheie demonstraţia primului punct. 

(ii). Dacă X este o reuniune numărabilă de compacte (Kn)n şi A este - măsurabilă, atunci AKn 

este -măsurabilă pentru orice compact Kn. Deci Bn, Cn ca BnAKnCn şi (Cn\Bn)=0, Bn sunt

mulţimi f  iar Cn sunt g . Concluzia rezultă cu B şi C reuniunea mulţimilor Bn, respectiv Cn.  

Corolar 7. Pe spaţiul cu măsură canonic dat pe dreapta reală, (,b (),) mulţimile măsurabile

Lebesgue mărginite sunt exact acele mulţimi care se pot încadra între un g  şi un f  avîndacceaşi măsură. 

Transportul măsurilor. Mulţimi nemăsurabile Lebesgue. 

Fie (,k ) şi (X, b ) două spaţii măsurabile, : b [0,+ o funcţie de mulţime şi f:X

o funcţie (k , b )-măsurabilă. Pe (X, b ) considerăm funcţia de mulţime f -1 definită prin relaţia 

(*) f -1(B) = (f -1

(B)).

Propoziţia 8. Să presupunem că  este o măsură pe k .Atunci

(i). funcţia f -1 definită prin (*) este o măsură pe (X, b ). Ea se numeşte imaginea măsurii prin

funcţia măsurabilă f.

(ii). Întotdeauna este valabilă inegalitatea (f -1)*   *f -1, unde () înseamnă măsura

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 45/139

exterioară construită  în cursul 3.

(iii).Dacă f este bijectivă şi f -1 este (b , k )-măsurabilă (deci f este un izomorfism) atunci

(f -1)*= *f -1 şi f(k ())=(b (f -1)) iar f 

-1(b (f -1)) = k (). Altfel spus imaginea unei mulţimi

-măsurabile este o mulţime f -1 - măsurabilă şi preimaginea unei mulţimi f -1 - măsurabile

este o mulţime -măsurabilă. 

Demonstraţie.(i). Fie (Bn)n un şir de mulţimi disjuncte din b . Atunci f -1( n

1

Bn)

= (f -1

( n

1

Bn)) = ( n

1

-1(Bn)) = n

1 (f 

-1(Bn)) (deoarece mulţimile f 

-1(Bn) sunt de asemenea

disjuncte iar este -aditivă) = n

1 f -1(Bn) deci f -1 este -aditivă.

(ii). Fie acum EX oarecare. Prin definiţie

(2) ( f -1 )*(E) = inf { n

1 f -1 (Bn) : (Bn)n este o b -acoperire a lui E }

= inf { n

1 (f 

-1(Bn)) : (Bn)n este o b -acoperire a lui E }

iar

(3) *f -1

(E) = inf { n

1 (An) :

 (An)n este o k -acoperire a lui f 

-1(E) }

Dar dacă (Bn)n este o b -acoperire a lui E, atunci (f -1

(Bn))n este de asemenea k  

-acoperire ale lui f 

-1

(E) de unde *f 

-1

( f -1

)* .(iii). Dacă, în plus, f este bijectivă şi bimăsurabilă şi (An)n este o k -acoperire a lui f 

-1(E) atunci

(f(An))n este o b -acoperire a lui E deoarece reuniunea acestor mulţimi acoperă pe f(f -1(E))=E şi

este clar că acum avem egalitate între (2) şi (3),deci ( f -1 )*= *f 

-1.

Să verificăm acum egalităţile între completatele -algebrelor.

Dacă A este -măsurabilă, atunci *(E) = *(EA)+*(EAc) E. Fie B=f(A). Problema este să 

arătăm că ( f -1 )*(F)= ( f -1 )*(FB)+ ( f -1 )*(FBc) FX deci, ţinînd seama de egalitatea ( f -1

)*= *f -1

, trebuie verificat că *(f -1

(F)) = *(f -1

(FB)) + *(f -1

(FBc)) sau, ţinînd seama de faptul că 

f -1

(B)=f -1

(f(A))=A, că *(f -1

(F)) = *(f -1

(F)A) + *(f -1

(F)Ac) ceea ce rezultă chiar din ipoteză: A a fost

presupusă -măsurabilă. Deci B este f -1 - măsurabilă adică f(k ()) (b (f -1)). Pentru

incluziunea cealaltă se raţionează la fel: dacă B  b (f -1

), atunci *(f -1

(F)) = *(f -1

(FB)) +*(f 

-1(FB

c)) =*(f 

-1(F)A) + *(f 

-1(F)A

c) unde A=f 

-1(B) . Trebuie verificat că A este -măsurabilă,

adică *(E) = *(EA)+*(EAc) E. Or acest lucru este imediat datorită bijectivităţii lui f: f -1(F)

poate fi orice mulţime E. Scriind B=f(A) rezultă că B f(k ()). Cealaltă egalitate rezultă 

raţionînd analog cu inversa lui f, f -1.  

Fie acum =X=, k = b = b () şi =, măsura Lebesgue. O proprietate fundamentală a

măsurii Lebesgue este aceea de a fi invariantă la translaţii.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 46/139

Definiţie. Fie a. Funcţia ta: se numeşte a-translaţie. Dacă A  , ta(A):=a+A este

a-translatata lui A.

Propoziţia 9. Toate translaţiile sunt izomorfisme boreliene, ta-1

= iar *ta-1

=*. Deci atît  

cît şi * sunt invariante la translaţii. În plus, translatata oricărei mulţimi -măsurabile va fi de

asemenea o mulţime -măsurabilă.

Demonstraţie. Că translaţiile sunt bijective este evident. Inversa lui ta este t-a deci, fiindcontinue, atît ta cît şi inversa t-a sunt măsurabile Borel. Dacă x<y  şi A=(x,y) atunci evident

că(ta)-1

(A) = (x-a,y-a)   ta-1

(A) = (x-a,y-a) = y-x = (A) deci ta-1 şi coincid pe familia

intervalelor deschise. Dacă două măsuri -finite coincid pe o familie de mulţimi închisă la

intersecţii finite, atunci ele coincid pe -algebra generată. Deci ta-1

= . Din Propoziţia 3 rezultă 

acum că *ta-1

= (ta-1

)* = *. Din Propoziţia 3(iii) rezultă că dacă A este măsurabilă Lebesgue,

atunci şi ta-1

(A) = A-a este de asemenea măsurabilă Lebesgue.  

Putem da acum un exemplu de mulţimi care nu sunt măsurabilă Lebesgue, şi deci,cu atîtmai mult nu este boreliană. Ele se numesc mulţimi de tip Vitali. 

Fie G   un grup aditiv numărabil şi dens (de exemplu G=Q sau G=Z( 2 )). El defineşte

relaţia de echivalenţă 

(5) x~y x-yG.

Definiţie. Orice familie de reprezentanţi pentru relaţia de echivalenţă (5) se numeşte mulţimede tip Vitali.

Propoziţia 10.(i). Dacă V este o mulţime de tip Vitali, atunci  x G

(x+V) = .

(ii). În orice interval (a,b)   există o mulţime de tip Vitali. (iii).Nici o mulţime mărginită de tip Vitali nu este măsurabilă Lebesgue, deci nu este boreliană.

Demonstraţie. (i).Fie t. Cum V este o familie de reprezentanţi există un unic vA ca t~v  

x=t-vG t=v+x x+V. (ii). Sensul afirmaţiei este că pentru orice interval (a,b) şi pentru orice

t Ct(a,b), unde Ct este clasa de echivalenţă a lui t. Dar aceasta este evident : Ct = {x :t~x } ={x : x-tG} = {x : xt+G} = t+G . Cum G este dens, t+G este de asemenea densă,

deci intersectează orice interval deschis într-o infinitate de puncte. (iii). Fie V o mulţime Vitalimărginită. Presupunem prin absurd că ea este măsurabilă Lebesgue. Atunci toate translatatele

x+V vor fi de asemenea -măsurabile, din Propoziţia 4. Mai mult, x,yG,xy  

(x+V)(y+V)= (t(x+V)(y+V)  u,vV ca x+u=y+v u~v, absurd: într-o familie de

reprezentanţi nu există elemente echivalente) deci toate mulţimile din descompunerea de la (i)sunt disjuncte. Cum pe -algebra mulţimilor -măsurabile * este -aditivă, rezultă că  =

*() = * ( x G

(x+V)) =  x G

*(x+V) . Dar *(x+V)=(V), din propoziţia anterioară. Rezultă că 

*(V)0, deoarece în caz contrar toate mulţimile xV ar fi neglijabile, deci ar fi neglijabil,absurd.

Contradicţia apare din faptul că (V) nu poate fi nici stric pozitiv. Într-adevăr, am

presupus că V este mărginită, deci există a< b ca V (a,b) . Atunci  x G ( , )0 1

(x+V) (a,b+1)

*( x G ( , )0 1

(x+V))  *((a,b+1)) = b+1-a <     x G

0 1, *(x+V) <  *(V)Card(G(0,1)) <  

 *(V)=0.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 47/139

  Absurditatea obţinută are o singură explicaţie: am presupus că V este măsurabilă 

Lebesgue. Deci V nu esta -măsurabilă.  

Observaţie. Acest tip de raţionament se poate face la orice măsură  de pe dreaptă care nu

 încarcă punctele, adică pentru orice măsură  cu proprietatea că ({x})=0 x. O teoremă 

celebră a lui Ulam afirmă că pentru orice măsură continuă de pe dreaptă există mulţimi care

nu sunt -măsurabile. Demonstrarea ei depăşeşte nivelul acestui curs. Ea poate să dea oexplicaţie la faptul că teoria măsurii nu se poate face renunţînd la conceptul abstract de

-algebră. Ar fi fost mult mai uşor dacă măsurile s-ar fi putut defini pe p (). Nu ar mai fi apărut

complicaţii legate de măsurabilitate. Din nefericire, acest lucru este imposibil Ar fi însemnat să 

nu se mai studieze măsura Lebesgue, ci numai măsurile discrete.

Repartiţii pe dreaptă.

 În cazul particular în care (,k ,) este un spaţiu probabilizat şi f este o variabilă 

aleatoare ( deci (X, b ) = (, b () ), măsura f -1 are o denumire specială. Ea se numeşte

repartiţia variabilei aleatoare f. Mai general, orice probabilitate pe (, b () ) se numeşte

repartiţie pe dreaptă. O probabilitate pe (n, b (n

) ) se numeşte repartiţie pen . Cum

orice repartiţie pe dreaptă este o măsură mărginită, deci o măsură Stieltjes, ea admite o funcţie

de repartiţie care o determină, anume F(x) = f -1 ((-,x]). Această funcţie se numeşte prin abuz

funcţia de repartiţie a variabilei aleatoare f  şi se mai notează Ff . Ca orice funcţie de repartiţie

a unei măsuri Stieltjes, ea este crescătoare şi continuă la dreapta. În plus, cum este

probabilitate, F mai are proprietăţile evidente 

(6) F(-)=0, F()=1

Din motive tipografice,de multe ori vom scrie Ff (x)=(f x) în loc de (f -1

(-,x+). Este şi o

notaţie mai sugestivă.

Propoziţia 11. Fie  o repartiţie pe dreaptă. Atunci există un spaţiu probabilizat (,k ,P) şi o

variabilă aleatoare astfel ca Pf -1

=.

Demonstraţie. Putem alege=, k = b (), f funcţia identică f(x)=c x şi P=..  

Observaţie. De multe ori în Teoria Probabilităţilor şi în Statistică sunt afirmaţii care încep cu

propoziţia “Fie o variabilă aleatoare X cu repartiţia ”. Rostul Propoziţiei 2 a fost de a demonstracă nu se vorbeşte despre mulţimea vidă : obiectul în cauză (variabila aleatoare cu repartiţia

cutare) există  întotdeauna. Din punct de vedere practic, însă Propoziţia 2 nu este foarte utilă.

Problema ar fi următoarea : să se găsească un algoritm pentru a se construi pe un spaţiu

probabilizat standard o variabilă aleatoare f avînd o repartiţie dată. Mulţi algoritmi statistici au

nevoie de o fază prealabilă  în care se simulează variabile aleatoare cu o anumită repartiţie dată.

Calculatorul ne pune la dispoziţie ceva care simulează foarte bine spaţiul probabilizat =(0,1), k  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 48/139

= b ((0,1)), P=(0,1). Sensul următoarei propoziţii este de a indica un procedeu de a simula o

variabilă aleatoare cu o anumită repartiţie pe acest spaţiu probabilizat. 

Fie deci o probabilitate pe (,b ()) şi F funcţia sa de repartiţie, F(x)=((-,x]). Pentru

orice 0<y<1 definim funcţia 

(7) F+(y) = sup {x : F(x) y} = sup F

-1((-,y]) = inf F

-1((y,))

Funcţia F+:(0,1) se numeşte pseudoinversa lui F. Din (7) rezultă imediat

(8) x < F+(y) F(x) y x F

+(y)

Din (8) rezultă imediat

(9) F(F+(y)) y

deoarece t > F+(y) F(t) > y iar F este continuă la dreapta.

Propoziţia 12. Funcţia F+:(0,1)   definită prin (7) este măsurabilă şi P(F

+)

-1=.

Demonstraţie. Fie a. Atunci

(10) F+(y)a F(F

+(y))F(a) y F(a) (din 9).

Pe de altă parte din (8) rezultă şi că 

(11) y < F(a) F+(y) a

Combinînd (10) cu (11) rezultă că 

(12) (0,F(a)) {F+ a} (0,F(a)]

Din (12) rezultă că 

(13) F(a) = ((0,F(a))) = P((0,F(a))) P({F+ a}) P((0,F(a)]) =((0,F(a)]) = F(a)

Fie = P(F+)-1

. Din (13) rezultă că ((-,a]) = F(a) = ((-,a]) a . Intervalele de acest

tip formează un sistem de generatori închis la intersecţii finite pentru b () . Rezultă că  = =

P(F+)-1.

Observaţie.Cu acelaşi efort se putea demonstra un rezultat mai general: orice măsură Stieltjes

de pe dreaptă este imaginea măsurii Lebesgue de pe un interval deschis I printr-o funcţie F+ 

crescătoare continuă la dreapta. Nu aveam decît să luăm funcţia F := F şi să-i luăm

pseudoinversa F+:(F(-),F())  . Aceeaşi demonstraţie de la Propoziţia 7 arată că  = (F+

)-1

 

datorită faptului că 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 49/139

(14) (F(a),F(b)) { a < F+  b } [F(a),F(b)]

deci

(15) (F+)-1

((a,b]) = F(b)-F(a) = ((a,b])

pentru orice interval (a,b], iar aceste intervale formează sistem de generatori închis la intersecţii

finite pentru b () .

Integrala.

Curs 6. Integrala 

Marea reuşită a teoriei măsurii a fost să generalizeze integrala Riemann, care se

cunoştea deja. S-a găsit condiţia necesară şi suficientă ca o funcţie f:*a,b+   să fie integrabilă Riemann şi s-au găsit multe funcţii care nu sunt integrabile Riemann dar sunt integrabile

Lebesgue, cum ar fi funcţia lui Dirichlet 1Q.

Principiul fundamental al lui Lebesgue a fost : dacă f =1A, atunci

fd = (A). Chiar

dacă cititorul va uita restul cursului, reţinerea acestui principiu va ajuta la reconstituirea uşoară 

a teoriei.

Paşii esenţiali în construcţia integralei sunt trei: Pasul 1. Integrarea funcţiilor simple pozitive. Pasul 2. Integrarea funcţiilor pozitive. Pasul 3. Integrarea funcţiilor oarecare. 

Integrarea funcţiilor simple pozitive. 

Fie (,k ,) un spaţiu cu măsură şi f o variabilă aleatoare simplă. Fie de asemenea Im(f) =

{a1,a2,...,an- şi Ai=f -1

({ai}):={f=ai}.

Definiţie. Scrierea f = i

n

1 ai1 Ai   se numeşte scrierea canonică a variabilei aleatoare simple f.

Notaţie. Fie S + = S +(,k ,) = { f:   + : f este variabilă aleatoare simplă}. Evident că dacă 

f,gS +  şi a,b0 atunci af+bgS +, adică S + este un con pozitiv.

Definiţie. Fie f = i

n

1 ai

1 Ai o variabilă aleatoare simplă  în scriere canonică. Numărul

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 50/139

(1) I(f)=  i

n

1 ai(Ai)

se numeşte integrala lui f faţă de  şi se notează fd..

Propoziţia 1. Funcţia I: S +   are următoarele proprietăţi: 

(I1). f  g  I(f) I(g) (monotonie)

(I2). a,b0, f,gS +  I(af+bg)=aI(f)+bI(g) (liniaritate) 

(I3). Dacă f  S +, atunci funcţia de mulţime (A):= I(f1A) este o nouă măsură pe k  notată f .

Demonstraţie. 

(I1). Scriem f şi g canonic: f = i

n

1 ai

1 Ai , g = j

m

1 b j

1 B j. Familiile {A1,...,An- şi B1,...,Bm} formează 

partiţii ale lui  cu mulţimi din k . Din condiţia f  g rezultă că xAiB j  f(x)g(x) aib j. Deci

(2) AiB j    ai  b j

Atunci I(f) =  i

n

1 ai(Ai) = I(f)=  i

n

1 j

m

1 ai(AiB j) ( {B1,...,Bm- partiţie ( Ai)=   j

m

1(AiB j) )

= j

m

1 i

n

1 ai(AiB j) (am schimbat ordinea de sumare) j

m

1 i

n

1 b j(AiB j) (din (15) : în sumă 

contează numai acele perechi (i,j) pentru care AiB j   ) = j

m

1 b j(B j) (căci {A1,...,An} este de

asemenea partiţie a lui ) = I(g).

(I2). Arătăm mai întîi că 

(3) a0  I(af) =aI(f) (omogenitatea lui I).

Ca mai sus, scriem canonic f = i

n

1 ai1 Ai , cu Ai = {f=ai} . Dacă a>0, {f=ai} = {af=aai} deci af se

scrie de asemenea canonic af= i

n

1 (aai)

1 Ai deci I(af) = i

n

1 aai(Ai) = aI(f). Dacă a=0, atunci

af=01  I(af) = 0 =0I(f) deci în acest caz omogenitatea este şi mai evidentă.

Arătăm acum

(4) f,gS +  I(f+g) = I(f)+I(g) (aditivitatea lui I).

Scriem f şi g canonic: f = i

n

1 ai

1Ai , g = j

m

1 b j

1 B j. Familiile {A1,...,An- şi B1,...,Bm} formează 

partiţii ale lui  cu mulţimi din k . Fie {c1,...,cp- imaginea lui fg şi Ck={f+g=ck}. Fie Jk={(i,j) : 1in,

1 jm, ai+b j=ck }. Atunci Ck= i j J k ,

AiB j şi evident J1J2...Jp={1,2,...,n}{1,2,...,m}. Din

definiţia integralei avem I(f+g) = k 

 p

1 ck(Ck) = k 

 p

1 ck( i j J k ,

AiB j) = k 

 p

1 ( , )i j Jk 

ck(AiB j) = k 

 p

1 ( , )i j Jk 

(ai+b j)(AiB j) (deoarece (i,j)Jk  ck=ai+b j ) = ( , ) ...i j J J J   p

1 2 (ai+b j)(AiB j) = i

n

1 j

m

1 (ai+b j)(AiB j)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 51/139

= i

n

1 j

m

1 ai(AiB j) + i

n

1 j

m

1 b j(AiB j) = i

n

1 ai

 j

m

1 (AiB j) +  j

m

1 b j i

n

1 (AiB j) = I(f)+ I(g).

(I3). Este suficient de demonstrat afirmaţia pentru f=c1C deoarece o sumă finită de măsuri este

de asemenea o măsură. Dar aceasta este evident.  

Observaţie. Dacă  în (I2) b=0, pproprietatea devine I(af) = aI(f) a0, f simplă. Dacă a=0,

membrul stîng este 0 deoarece I(af)= I(0)= I(1)=()=0. Dacă I(f)= membrul drept

devine 0 . În analiză, aceasta este operaţie fără sens. În teoria măsurii se face convenţia că 

0=0, prin această  înţelegîndu-se exact faptul că I(0.f)=0I(f)=0 chiar dacă I(f)=.

Vom continua acum construcţia, scopul fiind de a putea integra şi alte funcţii măsurabile,

nu neapărat simple.

Integrarea funcţiilor pozitive.

Fie L+(,k ) mulţimea funcţiilor f:   k -măsurabile şă pozitive. Este imediat de observat că 

L+(,k ) este un con de funcţii care conţine pe S + (,k ).

Definiţie. Numărul

(5) I(f) := sup { s d  s f, s S + (,k ) }

se numeşte integrala funcţiei f din L+(,k ) şi se notează fd.

Propoziţia 2. Operatorul I: L+ (,k )   definit de (1) este monoton.Demonstraţie. Fie f  g măsurabile şi pozitive. Dacă s este o funcţie simplă şi pozitivă sf  

s g deci în calculul lui I(g) apare supremul unei familii mai bogate de funcţii decît în calculul lui

I(f).  

Propoziţia 3. (Teorema lui Beppo-Levi ). Operatorul I este monoton continuu în snsul că 

(6) f n  L+(,k ), f n  f  I f n)  I(f)

Demonstraţie. Din Propoziţia 1 f n  f  I(f n)  I(f) n sup I(f n)  I(f). Problema este să 

demonstrăm inegalitatea inversă. Fie kn=I(f n) şi k=lim kn = sup kn. Dacă există n ca kn=, nu este

nimic de demonstrat. Presupunem deci că kn<  n.

Fie s o funcţie simplă pozitivă cu proprietatea că s f. Dacă vom putea demonstra că 

s d  k, atunci din (1) ar rezulta că fd  k, deci propoziţia ar fi demonstrată. Fie >0

arbitrar. Construim mulţimile En (= En() ) definite prin En = { f n > (1-)s }. Din cursul 2, aceste

mulţimi sunt în -algebra . Ele au proprietatea că 

(7) En  {f >0}

 Într-adevăr En  f n() > (1-)s() 0 f() f n()>0   {f>0}.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 52/139

Reciproc,fie {f>0} oarecare. Vrem să arătăm că   En

n

1

, adică există n ca f n()>(1-)s().

Apar două situaţii. Dacă s()>0, atuncilim

n f n() = f() s() > (1-)s() deci pentru n suficient

de mare f n() > (1-)s() adică pentru n suficient de mare En  E

nn

1

. Dacă s()=0,

atunci există n ca f n()>0 = (1-)s() deci afirmaţia este adevărată şi în acest caz. 

Atuncif dn f dn En

1 (deoarece f 0 f f1E  E şi, conform Propoziţiei

1integrala este un operator monoton) ( )s1 1 End

  (deoarece din definiţia mulţimilor En 

En  f n()>(1-)s() şi aplicăm iarăşi monotonia lui I) =(1-)s dEn1

(proprietatea (I2):

pentru funcţii simple I este omogen) = (1-)(s)(En) (definiţia de la (I3)). Rezultă că k =lim

n kn 

=lim

n  sd

   lim

n (1-)(s)(En) = (1-)(s)({f>0}) (En  {f>0} din (3), s este

măsură conform cu proprietatea (I3) şi orice măsură este monoton continuă ) = (1-) s df 1 0  

= (1-) sd( căci s>0 f>0 deci s=s1{s>0}=s1{f>0}) sau, altfel spus

(8) k (1-)sd

    > 0

Cum este arbitrar, din (4) rezultă imediat că k=lim kn = supf dn

  sd . Trecînd la

supremum după toate funcţiile simple pozitive s cu proprietetea că sf rezultă că lim

nf dn

fd.  

O consecinţă a teoremei Beppo-Levi este următoarea formulă de calcul a integralei: 

Corolar 4. Fie f  L+(,k ) şi (sn)n un şir de funcţii simple pozitive cu proprietatea că snf (de

exemplu sn=

2

2

n

n

). Atuncifd

=lim

ns dn

.

Demonstraţie. Este un caz particular al Propoziţiei 3.  

Corolar 5. Operatorul I: L+ (,k ,)   definit prin I(f)=fd

are următoarele proprietăţi: 

(J1) f  g  I(f) I(g) (Monotonie) 

(J2) f,g L+ (,k ,) şi a,b0 I(af+bg) = a I(f)+b I(g) (linearitate) 

(J3) (f n)n  L+ (,k ,), f nf  I(f n) I(f) (continuitate monotonă) 

(J4) Dacă f  L+ (,k ,

) atunci funcţia de mulţime f : k   [0,) definită prin (f )(A)=f dA1

este o nouă măsură pe k , numită măsura de densitate f.

Demonstraţie. (J1) şi (J3) au fost deja demonstrate. Demonstrăm (J2). Fie (f n)n şi (gn)n două şiruri

de funcţii simple pozitive cu proprietatea că f nf şi gng. Atunci af n+bgn  af+bg. Din (J3) avem

atunci: I(af+bg) =lim

n I(af n +bgn) =lim

n (aI(f n) + b I(gn)) (pentru funcţii simple I este deja liniară 

din (I2)) =alim

n I(f n) +blim

n I(gn) = a I(f)+b I(g) (iarăşi (J3)). În ceea ce priveşte demonstraţia lui (J4),

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 53/139

fie (An)n un şir de mulţimi disjuncte din . Fie Bn=A1A2...An. Atunci (f )(A n

n

1

) =

f dA

nn

1

1

 

=

f dB

nn

1

1

=lim

nBf d

n1

  (şirul de mulţimi (Bn)n este crescător şi BnA n

n

1

) =

limn

f dBn1

 

(căcif  Bn1 f1B şi aplicăm Teorema Beppo-Levi) =

limn

f dA j

n

 j1

1

=lim

nj

n

Af d j

1

1 (din

proprietatea (J2) aplicată repetat) = n

1 (f )(An).  

Integrarea funcţiilor măsurabile oarecare.

Fie f: măsurabilăoarecare. Ea se poate scrie întotdeauna sub forma 

(9) f=f + - f - unde f +=max(f,0)=f1{f>0} şi f - = -min(f,0) = -f 1{f<0}

Cum funcţiile x x+ şi x x- sunt măsurabile Borel (sunt continue) rezultă că 

dacă f este variabilă aleatoare, atunci f +  şi f - sunt de asemenea variabile aleatoare. Avantajul

este că acestea sunt acum pozitive, deci ştim să le integrăm.

Definiţie. Fie f: măsurabilă oarecare. Atunci

(10)fd f - f  -

Def 

d d 

Funcţiile pentru care definiţia are sens (adică nu apare operaţia - ) se numescfuncţii care admit -integrală, sau -sumabile  iar formula (10) defineşte integrala lui f faţă de

. Pentru ca o funcţie să admită integrală faţă de  trebuie ca integrala părţii sale pozitive saucea a părţii negative să fie finită. Dacă atît integrala părţii pozitive cît şi a celei negative sunt

finite, f se numeşte -integrabilă. Familia funcţiilor -integrabile se notează cu L 1(,k , ). În

caz că nu va fi pericol de confuzie, se va omite (,k ) şi se va nota mai scurt, L 1(). Integrala

devine atunci un operator

(11) I : L 1()  , I(f)= fd 

Propoziţia 6. f  L 1()   f d < .

Demonstraţie. Rezultă din identitatea f =f + + f - . Dacă f  L 1(), atunci din definiţie f +d 

< şi f -d<  f +d + f -d <   (f ++ f -)d< (Proprietatea (J2))   f d< 

. Reciproc, dacă  f d< atunci (f ++ f -)d<  f +d + f -d <   f +d < şi

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 54/139

f -d< (căci a,b0, a+b <   a<,b<) f  L 1().  

Propoziţia 7. Să acceptăm prin convenţie că 0 = 0. Dacă f are integrală faţă de  şi c 

atunci şi cf are integrală faţă de  şi

(12) (cf)d = c fd.

Demonstraţie. Dacă c=0 şi acceptăm convenţia noastră, ambii membri din (12) devin egali cu 0.

Dacă c>0, atunci (cf)+ = c(f +) şi (cf)- = c(f -). Din (6) avem

(cf)d =

(cf)+d -

(cf)-d = c

f + d-c f - d (proprietatea (J2)). Am presupus că f are integrală faţă de , deci ultima

diferenţă are sens, nu este -. Atunci putem da pe c factor comun şi obţinem în continuare

(cf)d =c( f  + d- f - d) = c fd. (conform definiţiei (10)). Dacă c<0 avem: (cf)+ =-c(f -),

(cf)- =-c(f +) (cf)d = (cf)+d - (cf)-d = -c f  - d + c f + d = c( f  + d- f - 

d) = c fd..  

Propoziţia 8. Fie f o funcţie care are integrală faţă de . Considerăm funcţia de mulţime 

(13) (A):=

f1A d 

Atunci funcţia :k  este aditivă. Ea se notează =(f ).

Demonstraţie. Fie A,B k două mulţimi disjuncte. Se verifică uşor egalităţile 1AB = 1A +1B ,

(f1AB)+ = f +1AB şi (f1AB)-= f -1AB . Atunci (AB) =

f1AB d =

(f1AB)+ d -

(f1AB)- 

d = f +1AB d - f - 1AB d = (f +)(AB) - (f -)(AB) = (f +)(A) + (f +)(B) - (f -)(A)-(f -)(B) (căci pentru funcţii pozitive afirmaţia din enunţ este (J4) ) =((f +)(A) - (f -)(A)) + (

(f +)(B) -(f -)(B) ) = f1A d+ f1B d (conform definiţiei (6) =(A)+(B).  

Propoziţia 9. Dacă f,g au integrală iar numerele a= fd [-,+ şi b= gd [-,] au

proprietatea că a+b are sens, atunci f+g are de asemenea integrală şi

(14) (f+g)d = fd + gd 

Demonstraţie. Fie h=f+g. Considerăm următoarele mulţimi 

(15) A++ = {f>0,g>0}, A+-+= {f>0,g0,f+g>0}, A+-+={f>0,g0,f+g0}

A-++= {f 0,g>0,f+g>0}, A-+- = {f 0,g>0,f+g0}, A-- = {f 0,g0}

Vom arăta că 

(16)

(f+g)1A d =

f1A d +

g1A d 

dacă A este una din cele 6 mulţimi definite la (15).Pe mulţimea A = A++ nu este nici o problemă. Atît h, cît şi f,g sunt pozitive deci (16) este chiarproprietatea (J2).

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 55/139

Dacă A = A+-+, atunci f 0,g0,h0 şi fg=h f=(-g)h. Funcţia (-g) are semnul +, deci f1A d 

=

((-g)+h)1A d =

(-g)1A d +

h1A d (conform cu (J2)) =-

g1A d +

h1A d 

(Propoziţia 6 cu c=-1)  

h1A d =

f1A d +

g1A d.

Dacă A = A+-- atunci scriem -g =f +(-h); cele trei funcţii sunt pozitive deci din (J2) avem că 

(-g)1A d = f1A d + (-h)1A d şi aplicînd iar Propoziţia 6, c=-1, rezultă - g1A d + f1A 

d - f1A d de unde rezultă (16).

Dacă A = A-++ scriem g = h +(-f) şi raţionăm la fel.

Dacă A = A-+- scriem -f=(-h)g şi aplicăm aceleaşi proprietăţi în aceeaşi ordine. Dacă A = A-- scriem -h = (-f)+(-g) .

Mai rămîne de verificat că (16) are sens pe fiecare din cele 6 mulţimi, adică nu apare o

nedeterminare de tipul - sau (-)+ . Dacă ar apare de exemplu undeva “-“, ar putea

apare numai pe mulţimile A+-+ sau A+--. Ar însemna ca f d =  şi g d = -, ceea ce noiam negat .  

Definiţie. Fie X un spaţiu vectorial. O aplicaţie N:X [0,) se numeşte seminormă dacă 

(i) N(x+y+ N(x)+N(y) x,y X

(ii) N(ax)=aN(x) x X 

Corolar 10 . L1() este un spaţiu vectorial, aplicaţia I : L1()  , I(f) = fd este liniară iar

funcţia N1(f)= I(f ) este o seminormă ; f  L 1() N1(f) < 

Demonstraţie. Ultima afirmaţie este o reformulare a Propoziţiei 6 . Dacă f,g  L1() şia,b, atunci N1(af+bg) = I(af+bg)  I(af +bg) (proprietatea de monotonie (J1)!) =

I(af )+ I(bg) (Propoziţia 8) = I(af ) + I(bg) =aI(f ) + bI(g) (propoziţia 5) <

(căci N1(f)<,N1(g)<) ceea ce înseamnaă că af+bg L1(). Deci L1() este un spaţiu vectorial.

Că N1 este seminormă şi I este linearărezultă imediat din propoziţiile 6 şi 9: I(af+bg) = I(af)+ 

I(bg) = a I(f)+b I(g) deci I este aplicaţie lineară iar N1(af)= I( af  ) = I(af )=aI(f ) =

aN1(f), N1(f+g)= I( f+g ) I( f +g ) = I(f ) + I(g) = N1(f) + N1(g).  

Proprietăţile fundamentale ale operatorului I(f) = fd 

Vom studia acum generalizarea proprietăţilor (J1)-(J4).Considerăm spaţiul I (,k ,) := 

I () format din mulţimea tuturor variabilelor aleatoare care admit integrală  faţă de . I () nu

este un spaţiu vectorial  dar conţine toate variabilele aleatoare pozitive precum şi spaţiul

vectorial L 1().Această mulţime este domeniu maxim de definiţie al operatorului I.

Propoziţia 11. Operatorul I: I () [-,] are următoarele proprietăţi 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 56/139

(R1) (Monotonie) f  g  I(f)  I(g)

(R2) (Continuitate monotonă; teorema Beppo-Levi)

(17) f n f, I(f 1) -   I(f n)  I(f)

(18) f n  f, I(f 1)     I(f n) I(f)

(R3) (Principiul lui Lebesgue de convergenţă dominată )

Dacă (f n) L 1(), f n  f şi există g0, g L 

1() ca f n  g, atunci I(f n)  I(f)

(R4) (măsură cu semn)

Dacă f  I () atunci f  : k  [-,] definită la fel ca în (J4) este -aditivă  

( -aditivă  înseamnă că dacă (An)n este un şir de mulţimi disjuncte din k , atunci seria n 1

(f )(An) are limită şi această limită este exact (f )( n =1

An ) ).

Demonstraţie. 

Monotonia. Fie f  g două funcţii care admit integrală. Atunci f +  g+ (căci funcţia x x+ este

crescătoare) şi f -  g- (căci funcţia x x- este descrescătoare) . Deci I(f) = I(f +)- I(f -)  I(g+)- I(f -) (f + 

g+ şi pe funcţii pozitive I este monoton)  I(g+)- I(g-) (căci f -  g-) = I(g)

Continuitatea monotonă. Fie (f n)n un şir crescător de variabile aleatoare şi fie de asemenea f 

=lim f n = sup f n. Atunci f n-f 1 este de asemenea un şir crescător şe funcţii pozitive care converge lafunctia f-f 1.Dacă I(f 1) = nu este nimic de demonstrat. Dacă nu, I(f 1) este un număr real. Aplicăm

atunci teorema Beppo Levi şirului (f n-f 1) şi găsim că limita lim I(f n-f 1) = I(f-f 1) de unde lim ( 

I(f n)- I(f 1)) = I(f)- I(f 1) . Cum I(f 1) operaţiile de scădere au sens şi rezultă că (lim I(f n))- I(f 1) = I(f) 

- I(f 1) lim I(f n) = I(f). Dacă şirul (f n)n este descrescător şi I(f 1)=- nu este nimic de demonstrat,

datorită monotoniei lui I. Dacă nu, I(f 1) este un număr real. Şirul (f 1 - f n)n  este un şircrescător de variabile aleatoare pozitive deci, din teorema Beppo-Levi lim I(f 1-f n) = I(f 1-f) de unde

I(f 1) - lim I(f n) = I(f 1) - I(f) lim I(f n)= I(f).

Convergenţa dominată. Fie (f n)n un şir convergent de variabile aleatoare şi f limita sa.

Presupunem, conform ipotezei că există o funcţie integrabilă pozitivă g ca -g f n  g n. Fiind

convergent, şirul (f n)n are proprietatea că limsup f n = liminf f n = f. Fie gn = inf{f n,f n+1,f n+2,....- şi hn =

sup{f n,f n+1,f n+2,...-. Şirul (gn)n este crescător iar (hn)n este descrescător. Din definiţia limiteisuperioare şi inferioare, f = sup gn = inf hn. Mai mult, -ggnhng deci atît I(g1) cît şi I(h1) sunt

cuprinse între - I(g) şi I(g), adică sunt numere reale. Din (17) şi (18) rezultă atunci că 

(19) lim I(gn) = I(f) = lim I(hn).

Pe de altă parte, cum gn f n+j  hn  j0 şi I este monoton, rezultă că şi I(gn )  I(f n+j)  

I( hn)  j. Înseamnă că 

(20) I(gn )  inf{ I(f n), I(f n+1), I(f n+2),...} sup{I(f n), I(f n+1), I(f n+2),...}  I( hn)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 57/139

Atunci limsup I(f n) =inf 

n sup{I(f n), I(f n+1), I(f n+2),...}  inf 

n I( hn) (din (20)) = lim I( hn) (căci (I( hn))n 

este descrescător) = I(f) = lim I(gn) (din (19)) =sup

n I(gn) (căci (I(gn))n este un şir crescător)  

supn inf{ I(f n), I(f n+1), I(f n+2),...} = liminf f n. Deci

(21) limsup I(f n)  I(f) liminf f n 

Afirmaţia rezultă acum din faptul că  întotdeauna liminf f n  limsup f n .

Demonstrăm acum, în sfîrşit,faptul că =f  este -aditivă. Fie f o funcţie care admite integrală  

faţă de . Deci sau I(f +)   sau I(f -)  . Ca să facem o alegere, să ne plasăm în primul caz. Fie

1 = f +  şi 2 = f -. Conform proprietăţii (J4), 1  şi 2 sunt măsuri pe k , prima din ele fiind

mărginită.   În plus, (A)=1(A) - 2(A) A k . Fie acum (An)n un şir de mulţimi disjuncte din k  

şi fie A reuniunea lor. Fie Bn = A1A2...An şi fie sn = 1(Bn), tn=2(Bn). Cum 1 şi 2 sunt măsuri

obişnuite 1(A) = lim sn şi 2(A) = lim tn . Limitele există, căci şirurile (sn)n şi (tn)n sunt crescătoare

şi pozitive. Mai mult, prima este finită. Atunci şirul (sn-tn)n are de asemenea limită (eventual

-) . Deci lim (sn - tn) =

lim (Bn) =lim j

n

1 (A j) există şi coincide cu 1(A) - 2(A), deci cu (A). Cazul în care I(f -)   se

tratează la fel.  

Definiţie. Fie (,k ) un spaţiu măsurabil. O funcţie : k   [-, ] care este -aditivă se

numeşte măsură cu semn. Dacă imaginea (k )  , adică (A)  A k  spunem că  este

măsură mărginită cu semn. Ceea ce am demonstrat la (R4) a fost că toate funcţiile de mulţime

de tipul f   unde f sunt funcţii care admit -integrală sunt măsuri cu semn. Sintetizăm acumunele proprietăţi ale acestor măsuri.

Corolar 12. Măsurile cu semn f : k   [-, ] au următoarele proprietăţi: (i). Dacă f  L 

1(), atunci f  este o măsură mărginită cu semn.

(ii) Dacă f  0, atunci f  este o măsură.

(iii) Dacă f  L 1() şi f  0 atunci f  este o măsură mărginită.

(iv) Dacă f 0 şi fd = 1 atunci f  este o probabilitate. În acest caz funcţia f se numeştedensitate de probabilitate.

Demonstraţie.(i). Dacă f 

L 1(

) atunci

d

<

 

 

(A)

=

 

f1A

d

 

 

f1A

d

 

f d < deci (f )(A). Celelalte afirmaţii sunt evidente.  

Propoziţia 14. Măsurile mărginite cu semn pe spaţiul măsurabil (,k ) formează un spaţiu

vectorial notat m (,k ) în care m +(,k ), mulţimea măsurilor mărginite este un con pozitiv.

Aplicaţia : L 1() m (,k ) dată prin (f)=f  este un operator linear.

Demonstraţie. Fie f,g L 1() şi a,b  . Atunci (af+bg) este o măsură cu semn care lucrează 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 58/139

astfel: dac[ A k atunci(af+bg) (A) = ((af+bg)) (A) = (af+bg)1Ad = a f1Ad + b g1A 

d = (a(f)+b(g))(A) .  

O paralelă  între integrala Lebesgue şi integrala Riemann  

Se pune problema firească : ce legătură este între integrala Lebesgue, construită mai

sus şi diversele tipuri de integrale învăţate anterior: integrala Riemann din liceu, integralele

pe domenii sau drumuri studiate la analiză sau integrala din cadrul analizei complexe ?  În

esenţă diferenţa este: la toate aceste integrale aproximarea funcţiei f care se integrează se face

 în domeniul de definiţie al lui f , pe cîtă vreme la integrala Lebesgue ea se face în codomeniu.

Ne propunem să clarificăm aceasta în cazul cel mai simplu, al integralei Riemann studiată  în

liceu.

Fie f:[a,b]   o funcţie oarecare. Orice submulţime finită care se poate scrie sub

forma D = {a=x0<x1<...<xn=b- se numeşte diviziune a intervalului [a,b]. Norma diviziunii D (

notată cu ║D║ )este cea mai mare dintre lungimile intervalelor [xi-1, xi] . Un sistem de puncte

intermediare este orice vector   E(D) unde am notat cu E(D) produsul E(D) = [x0,x1]  

[x1,x2] ... [xn-1,xn]. Prin suma Riemann ataşată diviziunii D şi sistemului de puncte intermediare

 se înţelege suma 

(22) S(f,;D) := f x xi i ii

n

( )

11  

Definiţie. Funcţia f se numeşte integrabilă Riemann pe intervalul [a,b] dacă există un număr I

  ( notat cu I =f x dx

a

b

( )) cu proprietatea că 

(23) >0  =() ca D diviziune a lui [a,b],  E(D)  I-S(f,;D)< 

Observaţie. Să comparăm aceasta cu integrala J=fd

unde (A)=(A *a,b+) este restricţiamăsurii Lebesgue la intervalul [a,b]. Ca J să aibă sens trebuie numai ca f să fie o funcţie boreliană 

şi una din integralele f +d, f -d să fie finite. Ca J să fie un număr real, trebuie ca ambele

integrale să fie finite. Cele două integrale au sens întotdeauna, cu condiţia să putem lămuri în cecondiţii o funcţie este măsurabilă Borel. Dimpotrivă,(23) pare să fie mai complicat: nu este clar

de ce un asemenea I ar exista, şi mai ales, în ce condiţii există, f ăcînd abstracţie de cazul banal încare f este continuă. Integrala Lebesgue nu are nevoie de nici o condiţie de continuitate.

Problemă. Care sunt criteriile de a recunoaşte dacă f este integrabilă Riemann? Un prim pas învederea găsirii unor criterii de integrabilitate Riemann ar fi s implificarea definiţiei prin

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 59/139

eliminarea punctelor intermediare. Acesta este criteriul lui Darboux.

Definiţie. Dacă , sunt numere reale cu proprietatea a      b să notăm

M(f; ,) = sup { f(x)x - şi m(f; ,) = inf { f(x)x }. Atunci sumele

(24) S(f,D) = i

n

1 M(f;xi-1,xi)(xi-xi-1) şi s(f,D) = i

n

1 m(f;xi-1,xi)(xi-xi-1)

se vor numi respectiv suma Darboux superioară (inferioară) ataşate diviziunii D şi funcţiei f. Esteuşor de văzut că 

(25) S(f,D) = sup { S(f,;D)  E(D) }, s(f,D) = inf { S(f,;D)  E(D) }

şi că, dacă D1 şi D2 sunt două diviziuni ale intervalului [a,b] atunci

(26) D1  D2  S(f,D1) S(f,D2) s(f,D2) s(f,D1)

Propoziţia 15. (Criteriul lui Darboux). Funcţia f este integrabilă Riemann pe [a,b] dacă şinumai dacă 

(27) >0  =() ca ║D║<  S(f,D)-s(f,D) <  

Demonstraţie. Să presupunem că f este integrabilă Riemann. Atunci, din (23) rezultă că >0  

=() ca D diviziune a lui [a,b],  E(D) I - < S(f,;D) < I + . Trecînd la supremum şiinfimum după E(D) şi aplicînd (25) rezultă că 

(28) I-  s(f,D) S(f,D) I+ deci S(f,D) - s(f,D) 2 

ceea ce implică evident (27)

Reciproc, să presupunem că (27) este adevărată. Trebuie să arătăm că f este integrabilă 

Riemann, adică să construim I   care să verifice (23). Fie în acest scop (Dn)n un şir de diviziuni

ale lui [a,b] cu proprietatea că D1  D2  ... şi ║Dn║  0. Din (26) rezultă că 

(29) S(f,D1)S(f,D2)....S(f,Dn) s(f,Dn) ....s(f,D1)

Şirul (S(f,Dn))n este descrescător, deci are o limită I1. La fel, (s(f,Dn))n, fiind crescător, are o limită 

I2. Din (29) rezultă că 

(30) S(f,Dn) I1  I2  s(f,Dn) n1Fie n cu proprietatea că ║Dn║<. Din (27) şi (28) rezultă atunci că 

I1-I2  S(f,Dn)-s(f,Dn)   şi, cum este arbitrar, rezultă că I1=I2. Notăm această valoare cu I.

Pretindem că I =f x dx

a

b

( ).

Mai întîi să observăm că limita I nu depinde de şirul particular de diviziuni (Dn)n ales. Într-adevăr,

să presupunem că (D’n)n este un alt şir crescător de diviziuni cu proprietatea că ║D’n║  0. Fie I’

limita şirului (S(f,D’n))n . Fie D*n=DnD’n şi I limita şirului (S(f,Dn))n . Atunci s(f,Dn)s(f,D’n)  

s(f,D*n) I* S(f,D*n) S(f,Dn)S(f,D’n) deci s(f,Dn) I* S(f,Dn) şi s(f,D’n) I*  S(f,D’n). Cum

s(f,Dn) I S(f,Dn) şi la fel s(f,D’n)  I’  S(f,D’n) rezultă că I-I*  S(f,Dn)-s(f,Dn) şi I’-I*  

S(f,D’n)-s(f,D’n) pentru orice n. Dacă n este destul de mare. ║Dn║< şi ║D’n║< deci, din (27)rezultă că I-I* , I’-I* . Cum este arbitrar rezultă că I = I’ = I. Mai mult, rezultă că 

(31) s(f,D) I S(f,D) D diviziune a lui [a,b]

(nu avem decît să  înlocuim şirul (Dn)n cu (DnD)n ). Fie acum o diviziune D cu ║D║< şi  E(D)

un sistem de puncte intermediare. Atunci s(f,D) S(f,;D) S(f,D) deci, din (31) rezultă că I -

S(f,;D)  S(f,D) - s(f,D)   de unde I =f x dx

a

b

( ).  

Importanţa criteriului lui Darboux este relevată de următorul corolar

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 60/139

 

Propoziţia 16. Să presupunem că f este integrabilă Riemann pe [a,b]. Atunci f este mărginită şiexistă două funcţii măsurabile Borel f 1 şi f 2 cu proprietatea că 

(32) f 1  f  f 2 şi f 1d =

f x dxa

b

( )=

f 2d 

 În consecinţă f 1 = f 2 (mod )Demonstraţie. Fie (Dn)n un şir crescător de diviziuni ale intervalului [a,b] cu proprietatea că 

║Dn║  0. Fie Dn = {a=xn,0 < xn,1 < ...<xn,k(n) = b- şi A(n,j)=(xn,j-1, xn,j], 1 j k(n). Fie de

asemenea Mn,j = M(f;xn,j-1,xn,j), mn,j = m(f;xn,j-1,xn,j). Să considerăm funcţiile simple gn =  j

k n

1

( )

Mn,j1A(n,j) şi hn= j

k n

1

( )

mn,j1A(n,j). Atunci este evident că 

(33) x(a,b] hn (x) f(x) gn(x),

(34) şirul (hn)n este crescător şi (gn)n este descrescător

(deoarece orice interval A(n,j) este o reuniune finită de intervale A(n+1,i) ). Mai mult, cum

(An,j) = xn,j - xn,j-1 avem că hnd = j

k n

1

( )

mn,j(A(n,j)), gnd = j

k n

1

( )

Mn,j(A(n,j)) deci

(35)

hnd = s(f,Dn) şi gnd = S(f,Dn)

Relaţiile (33) - (35) sunt valabile întotdeauna, fără nici o ipoteză suplimentară asupra funcţiei f.Dacă  însă ştim că f este integrabilă Riemann, atunci sumele s(f,Dn) şi S(f,Dn) trebuie să fie finite

 începînd de la un rang n0 deoarece, conform propoziţiei de mai sus, limita lor comună este

f x dxa

b

( ), care este un număr real. Este evident că dacă f este nemărginită superior, atunci

S(f,D)= pentru orice diviziune D iar dacă f este nemărginită inferior, atunci s(f,D)=-. Înseamnă 

că funcţia f trebuie să fie mărginită.

Mai mult, fie f 1 = lim hn şi f 2 = lim gn. Limitele există datorită relaţiei (34). Din (33), f 1  f  

f 2 . Din teorema Beppo-Levi avem că f 1d = lim hnd = lim hnd = lim s(f,Dn) =

f x dxa

b

( )  şi analog f 1d = lim S(f,Dn) =

f x dxa

b

( ). Pentru a demonstra că f 1=f 2(mod ) nu

avem decît să remarcăm că f 2-f 1 0 şi (f 2 - f 1)d = 0.  

Corolar 17. Dacă f este integrabilă Riemann pe [a,b], atunci f este mărginită, măsurabilă 

Lebesgue şi integrala sa Riemann coincide cu integrala Lebesgue.

Demonstraţie. Nu avem decît să observăm că f coincide cu f 1 -aproape sigur, iar f 1 este

măsurabilă Borel.  

Rezultă că orice funcţie integrabilă Riemann este integrabilă Lebesgue, adică integrala

Lebesgue este o generalizare a celei Riemann. Se poate pune întrebarea dacă nu este valabilă şireciproca: nu cumva şi orice funcţie integrabilă Lebesgue se poate integra şi în sensul Riemann?Răspunsul este negativ.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 61/139

Propoziţia 18. (Teorema lui Lebesgue de caracterizare a integrabilităţii Riemann). Fie

f:[a,b] o funcţie oarecare. Atunci

(36) f este integrabilă Riemann f este mărginită şi continuă aproape peste tot

(„continuă a.p.t.” înseamnă că mulţimea punctelor de discontinuitate ale lui f este

neglijabilă Lebesgue).

Demonstraţie. „”. Fie (Dn)n un şir crecător de diviziuni de normă tinzînd la 0. Că f este

mărginită, s-a văzut. Fie E mulţimea punctelor de discontinuitate ale lui f şi D reuniunea

mulţimilor Dn. D este o mulţime numărabilă, deci neglijabilă Lebesgue. Fie de asemenea f 1 şi f 2 

funcţiile construite în Propoziţia 2. Observaţia decisivă este

(37) E \ D {f 1f 2} E D

 Într-adevăr, fie xE \ D. Cum x nu este un punct al niciunei diviziuni Dn, el se află  într-unul din

intervalele deschise (xn,j-1, xn,j) . Fie j(n,x) acel unic 1 jk(n) cu această proprietate. Pe de altă 

parte, x este un punct de discontinuitate pentru f, deci există un şir (xi)i care converge la x şilimsup f(xi) > liminf f(xi). Pentru fiecare n fixat avem: f 2(x) = Mn,j(n,x) limsup f(xi) (căci pentru i

destul de mare xi (xn,j-1, xn,j) ) > liminf f(xi) mn,j(n,x) = f 1(x) f 1(x)f 2(x), de unde prima

incluziune din (37).

 În continuare, să presupunem că x[a,b] are proprietatea că f 1(x)f 2(x). Dacă x D nu

este nimic de demonstrat. Să presupunem că xD. Dacă prin absurd xE, atunci x ar fi un punct

de continuitate pentru f. Deci pentru orice >0 există  ca

x-x’<  f(x)-f(x’)<. Fie n suficient de mare ca║

Dn

║< . Atunci

f 2(x)-f 1(x) = Mn,j(n,x) - mn,j(n,x) = sup{f(y)-f(z) y,z[xn,j(n,x)-1, xn,j(n,x)] }

sup{f(y)-f(x)+f(x)-f(z) y,z[xn,j(n,x)-1, xn,j(n,x)] } 2 

(căci x-y<║Dn║< şi la fel x-z<) . Cum este arbitrar rezultă că f 1(x) = f 2(x), fals. Deci (37)

este verificată. În continuare, dacă f este integrabilă Riemann, atunci am văzut că f 1=f 2 ( 

a.p.t.) Deci {f 1f 2} este neglijabilă. Din (37) rezultă că (E) = (E \ D) + (ED) = (E\D)  ({f 1f 2})

= 0 .

„”. Este imediat din (37). Dacă f este continuă -a.p.t., atunci ({f 1f 2})  (ED) = (E) = 0  

f 1 = f 2 (mod ) f este integrabilă Riemann datorită Propoziţiei 2.  

Exerciţii. 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 62/139

 

1. Dacă  = x cu x  , atunci

fd =f(x).

2. Fie f o funcţie măsurabilă mărginită. Aplicaţia : m +(,k )   dată prin ()= fd este

liniară.

3.Dacă x1,x2,...xn  şi p1,...,pn 0 şi  = pn

n =1

 xn

, atunci fd =

pn

n =1

f(xn).

Indicaţie la 1.,2.,3. Verificaţi afirmaţiile întîi pentru funcţii indicator, apoi pentru funcţii simple,apoi pozitive (folosind Teorema Beppo-Levi) şi apoi în general. 

4. Fie =N*( mulţimea numerelor naturale nenule) şi k familia tuturor părţilor lui . Stabiliţi în

acest caz cine este m (,k ) şi m +(,k ).

Răspuns. Toate măsurile sunt de forma =pn

n =1

n cu pn  0. Dacă sunt mărginite, seria

pn

n =1

 

este convergentă. Dacă sunt măsuri mărginite cu semn, numerele pn pot fi negative, dar seria

pn

n=1

este absolut convergentă. Dacă sunt numai măsuri cu semn, una din seriile

pn

n =1

+ sau

pn

n=1

- sunt finite.

5. Măsura cardinal.  În contextul de la ex.4., alegem pn=1 n. Atunci  se numeşte măsura

cardinal. Găsiţi formulă de calcul pentru

fd, cercetaţi cine este L 1() şi care funcţii admit

integrală.

Răspuns. Funcţiile măsurabile sunt toate şirurile de numere reale, integrala este suma seriei,

funcţiile integrabile sunt seriile absolut convergente, funcţiile cu integrală sunt cele pentru care

seria termenilor pozitivi sau cea a termenilor negativi sunt finite.

6. Formulă de integrare faţă de o măsură dată prin densitate. Fie (,k ,) un spaţiu măsurabil,

  0 o variabilă aleatoare . Atunci

fd() =

f d  f 0 măsurabilă.

Indicaţie. Aceeaşi de la 1,2,3. Dacă f=1A, A k , afirmaţia este adevărată chiar din definiţie. 

7. Fie (,k ,) = (N,p (N), cardinal) şi f n=1{n,n+1,n+2,...}. Arătaţi că f n0 dar f n d = . De ce nu se

respectă continuitatea monotonă?

Răspuns.  În Teorema Beppo-Levi pentru şiruri descrescătoare este condiţia ca f 1 d  .

8. Aceeaşi întrebare pentru funcţiile gn=-f n care formează un şir crescător convergent la 0.

9. Pe acelaşi spaţiu de probabilitate funcţiile f n=1{n} au proprietatea că f n  0 dar f n d =1 .

De ce nu putem comuta limita cu integrala?

Răspuns . Se încalcă principiul dominării. Dacă g ar fi o funcţie cu proprietatea că f n  g n ar

trebui ca g1, deci g nu ar mai putea fi integrabilă.

10. Fie (,k ,) = (,b (),) cu măsura Lebesgue şi f n=n1(0,1/n]. Calculaţi lim f n şi verificaţi că

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 63/139

f n d =1.

Răspuns . Lim f n = 0 . Acelaşi fenomen de la exerciţiul precedent. 

11. Fie (,k ,) un spaţiu cu măsură cu   0. Este funcţia I: L 1()  , I(f)= f d injectivă?

Dar surjectivă?

Răspuns. Nu este injectivă, dar este surjectivă.

12. Fie (,k ,) = (N,p (N), cardinal) . Atunci N1 definită la Corolar 9 este o normă.

13. Fie (,k ,) = (N,p (N), cardinal) şi : L 1() m (,k ) dată prin (f)=f  . Atunci este

izomorfism de spaţii vectoriale. Indicaţie. Dacă  este o măsură mărginită cu semn, fie f(n)=({n}) . Fie J+={n f(n) 0}. Atunci

N1(f)=(J+) - (J+c) < deci f  L 

1(). Apoi, (f)({n}) = f 1{n} d =f(n) (exerciţiul 5) = ({n}) n 

(f)=, deci este surjectivă. Din cele de mai sus ecuaţia (f)= are soluţie unică, f,    

 m (,k ). Liniaritatea este evidentă.

14. Dacă  în Ex. 13 înlocuim măsura cardinal cu =n1 pnn cu pn >0  n, afirmaţia se păstrează.

Dar dacă  n ca pn=0?

Răspuns. Dacă există ponderi pn=0, nu mai este injectivă. Dacă f(j)=g(j) pentru jn, pn=0 dar

f(n—g(n), atunci (f)=(g).

15. Funcţia Dacă A este o mulţime numărabilă densă  în , atunci f =1A nu este integrabilă 

Riemann pe nici un interval [a,b] dar este integrabilă Lebesgue pe orice interval.

Indicaţie. f este discontinuă  în orice punct şi f=0(mod ).

16. Dacă este vorba de integrala Riemann improprie, atunci este posibil ca f să fie integrabilă 

Riemann f ără a fi integrabilă Lebesgue. Arătaţi că funcţia f:   dată prin f(x)=sin( )x

xdaca x

daca x

0

1 0 este integrabilă Riemann pe dar nu Lebesgue.

Indicaţie. Din definiţie, f este integrabilă Riemann pe dacă limitalim ( )

,a b a

b

f x dx

există 

Arătaţi că  în cazul nostru limita există, dar f nu are integrală Lebesgue deoarece

f +d =

f -d = .

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 64/139

Curs 7. Teorema Radon - Nikodym.

Fie (,k ,) un spaţiu cu măsură,  L 1() spaţiul vectorial al funcţiilor -integrabile şi

 m (,k ) spaţiul vectorial al măsurilor mărginite cu semn pe spaţiul măsurabil (,k ).. În cursul

precedent am construit un operator liniar =, : L 1() m (,k ) dat prin (f) = f .

Ne propunem să determinăm spaţiile Ker() şi Im().

Definiţii.  Relativizarea noţiunilor de egalitate, inegalitate şi incluziune.  Fie f,g: două 

funcţii măsurabile. Spunem că f şi g coincid -aproape peste tot dacă ({f()g()}) =

0, deci dacă mulţimea pe care cele două  funcţii diferă este neglijabilă faţă de măsura . Vom

nota pe scurt acest lucru prin “ f = g a.s. “ sau “f = g a.s.” (dacă măsura  se subînţelege) sau “f 

= g (mod ) ” . Analog o scriere de tipul “ f  g (mod ) ” (respectiv “ f > g (mod ) ”, “ f  g

(mod ) ”,

“ f < g (mod ) ”, “A = B (mod ) ”, “ A B (mod ) ”,“A B (mod ) ”) va însemna “ ({f <

g})=0 ” (respectiv “ ({f  g} ) = 0 ”, “ ({f > g})=0 ”, “ ({f  g})=0 ”, “ 1A= 1B (mod ) ” , “ 1A 1B 

(mod ) ”, “ 1A 1B (mod ) ”.

Lema 1. Fie f  0 măsurabilă. Atunci fd = 0 f=0 (mod ).

Demonstraţie. ““. Fie E={f>0}. Presupunem prin absurd că (E)>0. Să remarcăm că E= n1

E(n) cu E(n)=f > 1/n-. Mai mult, şirul de mulţimi (E(n))n este crescător deci şirul (f1E(n))n va fi un

şir crescător de funcţii măsurabile. Pe de altă parte, din continuitatea monotonă a oricărei

măsuri, rezultă că (E)=lim (En) > 0   n(0) ca (E(n(0))) > 0. Atunci avem : fd =

f1E d =lim

f1E(n) d (teorema Beppo-Levi) = sup

f1E(n) d   

f1E(n(0)) d   

1

n ( 1E(n(0)) d (deoarece E(n(0)) f() > 1/n(0) ) = (E(n(0))) / n(0) >0, absurd.

““. Fie f n = min(f,n). Atunci (f n)n este un şir crescător de funcţii măsurabile. Pe de altă parte,

f=0 (mod ) f n=0 (mod ) şi 0 f nd = f n 10f n d  n 1

0f n d (căci f nn)

=n({f n>0}) =0 f nd =0 n. În concluzie, folosind iarăşi teorema Beppo-Levi fd = lim

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 65/139

f nd=0.  

Lema 2. Fie f o funcţie care admite -integrală. Atunci

f1A d  0 A k f 0 (mod ).

Demonstraţie. ““. Să presupunem prin absurd că ({f<0}) > 0, atunci există n ca

({f<-1/n})>0. Fie A = {f<-1/n}. Atunci f1A d  (-1/n)(A) < 0, absurd.

““. Fie E=f<0-. Prin ipoteză (E)=0. Atunci f1A d = f1E1A d + f1\E 1A d. Funcţia

  -f()1EA() este nenegativă şi egală cu 0 -a.s. Din Lema 1 rezultă atunci că  f1E1A d = 0

  f1A d = f1\E 1A d   0 deoarece funcţia   f1\E 1A() este nenegativă. .

Propoziţia 3. f  Ker() f=0 (mod ).

Demonstraţie. ““.Dacă f  Ker(), atunci f  = 0   f1A d = 0 A k f=0 (mod )(am aplicat lema 2 pentru f şi pentru -f). ““.Dacă f=0 (mod ) atunci aplicînd Lema 2 rezultă că 

f1A d = 0 A k . deci f =0  

Corolar 4. (f)=(g) f=g (mod ).

Corolar 5. Dacă f=g (mod ), atunci fd = gd.

Convergenţa -aproape sigură. Plasarea teoremelor Beppo-Levi şi Lebesgue în

context natural. 

Definiţie. Fie (f n)n un şir de variabile aleatoare. Spunem că (f n) converge la 0 -aproape sigur 

şi scriem f n  0 -a.s. (sau f n  0 (mod ), sau încă f n(x) 0 aproape pentru toţi x ) dacă 

({ f n() 0 }c) = 0, adică dacă mulţimea acelor puncte  pentru care şirul f n() nu converge

la 0 este -neglijabilă. Dacă pentru orice >0 măsura mulţimii acelor puncte pentru care

f n()> tinde la 0, spunem că f n converge la 0  în măsură şi scriem f n     0 . Să remarcăm

echivalenţele „f n() nu converge la 0”   „ >0 ca f n() de o infinitate de ori”  „ 

k 1 ca f n()  1/k de o infinitate de ori”  „ k 1 ca n 1 p0 caf n+p()  1/k” . Cualte cuvinte

(1) f n  0 (mod )  ( k 

1

n

1

p

0

{f n+p1/k)=0

(2) f n     0 lim ({f n) = 0  >0

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 66/139

Definiţie. Spunem că f n f -aproape sigur dacă f n-f  0 (mod ).

Dacă f n-f      0 spunem că f n converge la f în măsură. 

Observaţie.În general nu este nici o implicaţie între aceste două tipuri de convergenţă . De

exemplu, dacă (,k ,)=(,b (),) cu măsura Lebesgue, atunci şirul f n=1[n,) converge la 0

aproape sigur (de fapt, peste tot), dar nu în măsură căci ({f n>1/2})=  n. Pe de altă parte,

dacă an este un şir crescător cu lim an=, lim(an+1-an)=0 şi An={x-[x] ; an  x < an+1 - atunci funcţiile

f n=1An converg în măsură la 0 (căci <1  ({f n > }) = (An)   ([an,an+1)) 0) dar f n nu

converge la 0 (mod ) deoarece pentru orice x(0,1), f n(x)=1 de o infinitate de ori: pentru

fiecare n cu proprietatea că [an,an+1){x,x+1,x+2,...}. Totuşi, dacă măsura este mărginită,

există o implicaţie.

Propoziţia 6. Dacă  este o măsură mărginită, atunci convergenţa -aproape sigură o implică 

pe cea în măsură.

Demonstraţie. Fie (f n)n un şir de variabile aleatoare care converge aproape sigur la f. Înlocuind

pe f n cu f n-f putem presupune că f=0. Fie Ek = n

1

p

0

{f n+p1/k- . Mulţimile Ek formează un

şir crescător şi din (1) avem că ( k 

1

Ek)= 0  (Ek)=0 k. Dar Ek este intersecţia unui şir

descrescător de mulţimi : Ek= n

1

Bk,n cu Bk,n = p

0

{f n+p1/k}. Cum (Bk,1)  , continuitatea

monotonă a unei măsuri implică 0 =(Ek)=limn (Bk,n) de unde limn ({f n1/k}) limn 

(Bk,n) = 0 ceea ce, evident implică (2).  

Corolar 7. Dacă  este o măsură mărginită, atunci

f n  f (mod ) limn ({supkf n+k-f 1/k})=0 k1.

Demonstraţie. Din raţionamentul precedent avem: f n  f (mod )  ( n

1

p

0

{f n+p-f >1/k})=0 ( n

1

{suppf n+p-f >1/k})=0 (căci sup ap >   p ca ap > ) limn 

({supkf n+k-f 1/k})=0 (din continuitatea monotonă a măsurii.  

Teorema 8 (Beppo-Levi). Fie (f n)n un şir de variabile aleatoare. 

(i). Dacă m<n f m  f n (mod ) şi f 1 d  - atunci (f n) este un şir convergent

-aproape sigur şi lim f n d = limf  n d unde prin lim f n se înţelege o variabilă aleatoare cu

proprietatea că f nf (mod ).

(ii). Dacă m < n f m  f n (mod ) şi f 1 d   atunci (f n) este un şir convergent

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 67/139

-aproape sigur şi lim f n d = limf  n d unde lim f n are aceeaşi semnificaţie ca la (i). 

Demonstraţie.Vom dovedi numai prima afirmaţie, deoarece cealaltă se obţine imediat din ea.

Fie m  n şi Nm,n={  f m()>f n()}. Din ipoteză Nm,n sunt toate neglijabile. Fie E reuniunea

acestor mulţimi. E este de asemenea neglijabilă. Fie gn=f n1 \ E . Atunci gn=f n (mod ), (gn)n 

formează un şir crescător şi din Corolarul 5 f nd = gnd. Fiind un şir crescător, (gn)n are o

limită, f. Atunci f n converge aproape sigur la f deoarece mulţimea punctelor pentru care f n()

nu converge la f() este inclusă  în E, deci este neglijabilă. Şirului (gn)n  îi aplicăm teorema Beppo

Levi clasică, din cursul anterior .  

Teorema 9.(Principiul dominării) Dacă f nf (mod ) şi există g  L 1(), g0 ca f n  g (mod

) n, atunci fd = lim f nd.

Demonstraţie. Similară cu cea anterioară. Punem E={  f n() nu converge la f() sau

există k ca f k()>g() -. Mulţimea E este neglijabilă şi înlocuind funcţiile f n cu f n1 \ E putem

aplica teorema Lebesgue clasică.  

Ne va preocupa acum să găsim imaginea operatorului introdus în cursul anterior.

Pentru fiecare f   L 1() ştim deja că (f) := f  va fi o măsură mărginită cu semn.

Măsuri cu semn. Descompunerea Hahn - Jordan .  

Fie : k   o măsură cu semn mărginită.

Lema 11. (Continuitatea monotonă). Dacă AnA (respectiv AnA) atunci (An)A.

Demonstraţie.  Este o consecinţă a -aditivităţii. Demonstraţia este aceeaşi ca în cazul

măsurilor.  

Propoziţia 11. Există o mulţime E k - măsurabilă cu proprietatea că 

(E) = sup{(A) A k }

Demonstraţie. Fie k= sup{(A) A k  - şi An k ca (An)k . Dacă am şti că (An)n este un şir

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 68/139

crescător de mulţimi, ar fi foarte simplu: am pune E reuniunea mulţimilor A n. Neavînd nici o

garanţie a faptului acesta, va trebui să adoptăm o altă cale.

Fie d n partiţiile generate de mulţimile A1,A2,...,An}. Atomii lor sunt de forma

(3) (I,n)=

A Ai

i I

i

c

i I,1 i n

  

  

   

 

, I {1,2,...,n}

Partiţiile d n sunt din ce în ce mai fine în sensul că orice atom al lui d n se împarte în atomi ai lui

d n+1. Deci dacă  d n şi * d n+1, atunci nu sunt decît două posibilităţi: sau *  , sau

*c. Dintre atomii lui d n, unii vor avea măsura pozitivă, alţii negativă.

Să-i numim pe primii atomi pozitivi şi pe ceilalţi atomi negativi.

Fie En reuniunea tuturor atomilor pozitivi ai partiţiei d n. Cum mulţimile A j, 1 jn la rîndul

lor se compun din atomi, cu unii posibil negativi, (A j)  (En) 1 jn. Nici despre şirul demulţimi (E

n) nu putem garanta că este crescător, dar putem demonstra că 

(4) (EnEn+1...En+p)  (En) p1.

 Într-adevăr, putem scrie En,p := EnEn+1...En+p sub forma

(5) En,p = En  C1 ...Cp 

unde C1 este reuniunea atomilor pozitivi care nu sunt în E n, C2 reuniunea atomilor pozitivi care

nu sunt nici în En şi nici în En+1, ...,Cp reuniunea atomilor pozitivi care sunt numai în En+p. Atunci

(En,p)=(En) +(C1)+...+(Cp) iar numărul din dreapta este mai mare sau egal cu (En) căci 1 jp

(C j) este o sumă de măsuri de atomi pozitivi.

Fie

(6) Fn = p

0

En,p

Cum şirul de mulţimi (En,p)p este crescător. (Fn)=limp(En,p)  (En) (An). În plus, (Fn)n este

un şir descrescător de mulţimi. Fie E reuniunea lor. Din continuitatea monotonă a măsurii  

(7) (E) = limn(Fn) limn(An) = k

deci (E)=k datorită definiţiei lui k.  

Propoziţia 12. Mulţimea E construită mai sus are proprietăţile 

(7) A k, A E  (A) 0

(8) A k,, A Ec  (A) 0

Demonstraţie.Fie AE. Dacă (A)<0, atunci (E\A)=(E)-(A)>(E), ceea ce contrazice faptul că 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 69/139

(E)(B) B k  . La fel, dacă A Ec şi (A)>0, atunci (E A)=(E)+(A) >(E) contradicţie. 

Definiţie.  Mulţimea E construită  la Propoziţia 1 se numeşte mulţimea lui Hahn  ataşată 

măsurii  şi o vom nota E=H().

Propoziţia 13. H() este unică  în sensul că dacă D  k este o altă mulţime ca (D)=sup (k ) şi

A D E, atunci (A)=0.

Demonstraţie. Dacă ar exista A  k ca A (D \ E) (E \ D) şi (A)0, atunci sau (ADEc)0 sau

(AEDc)0. Ambele situaţii sunt absurde. Într-adevăr, dacă de exemplu (ADE

c)>0, atunci (E  

ADE

c

)>(E), absurd. Dacă (ADE

c

) < 0, atunci (D \ ADE

c

) > (D) şi la fel se întîmplă  în celelaltedouă situaţii.  

Teorema 14  (Descompunerea lui Hahn).Orice măsură cu semn mărginită  se poate scrie sub

forma

(9) = + - -

unde + şi - sunt două măsuri obişnuite mărginite. Mai mult, + şi - pot fi alese ca să satisfacă 

(10) +(A) = sup{(B) BA, Bk }, --(A) = inf {(B) BA, Bk }

 În plus, dacă se respectă condiţia (10),descompunerea (9) este unică.

Demonstraţie.  Fie E=H() mulţimea lui Haar. Punem +(A)=(AE) şi - (A)=-(AEc). Cele două 

măsuri sunt pozitive datorită Propoziţiei 12 şi evident este satisfăcută relaţia 9. Să verificăm

(10). Să presupunem prin absurd că există BA ca +(A) < (B) adică  (AE) <(B). Cum

(B)=(BE)+(BEc) şi al doileatermen este negativ, rezultă că (BE)  (B) > (AE) de unde ((A \

B)E)=(AE)-(BE)<0 ceea ce este absurd datorită lui (7) : (A\B)E   E. Deci condiţiile (10) sunt

verificate. Unicitatea este acum evidentă deoarece (10) introduce o nouă definiţie pentru + şi

-.

Definiţie. Măsura =++- se numeşte variaţia lui . Funcţia ║.║: m (,k )   definită 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 70/139

prin ║║ := +()+-() este o normă se numeşte norma variaţie a lui .

Legătura între aceste noţiuni şi funcţia este dată de 

Propoziţia 15. Fie (,k,) un spaţiu cu măsură oarecare şi f  L1().

Atunci (f )+ = (f +), (f )- = (f -), şi f =f .

Demonstraţie. Este clar că pentru măsura f   mulţimea sa Hahn H(f ) este chiar mulţimea

{f>0}.  

Propoziţia 16. Dacă  este o măsură mărginită cu semn, atunci =f  unde

f = 1E -1 \ E = 21E - 1 cu E=E().

Demonstraţie. Este o consecinţă imediată a propoziţiei anterioare.  

Teorema Radon-Nikodym.

Revenim acum la problema determinării imaginii lui . O observaţie imediată este că 

dacă f este o funcţie care admite integrală, atunci măsura cu semn = f  are proprietatea

(11) A k , (A)=0 (A) = 0

(Într-adevăr, (A)= f1Ad iar f1A = 0 (mod ) de unde (11) rezultă din Lema 2 aplicată pentru f 

şi -f)

Definiţie. Fie o măsură şi o măsură cu semn . Dacă se verifică relaţia (11) vom spune că  

este absolut continuă faţă de  şi vom nota acest lucru prin “ << “. Este imediat că 

 întotdeauna <<  şi că dacă 1, 2 şi 3 sunt măsuri cu proprietatea că 1 << 2 şi 2 << 3,

atunci 1 << 3. O consecinţă imediată a definiţiei este

Propoziţia 17. Fie o măsură oarecare şi : L 1() m (,k ) dat prin (f) = f .

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 71/139

Atunci Im() {   m (,k )  <<}.

Interesant este că uneori este valabilă şi incluziunea inversă. Aceasta este celebra

teoremă Radon-Nikodym.

Lema 18. Fie o măsură oarecare şi o măsură mărginită. Fie f (,) = {f 0f    }. Atunci

(f (,),) este o mulţime inductiv ordonată, unde “ f g “ înseamnă 

“ f g” (mod )

Demonstraţie. Fie  m   f (,) o familie total ordonată. Trebuie să demonstrăm că orice

familie total ordonată admite un majorant. Fie k = sup{

fd  f  m }. Atunci există un şir de

funcţii (f n)n  m   ca şirul ( f n d)n  k. Rezultă că m < n f m  f n. Într-adevăr, familia

fd 

fiind total ordonată, nu sunt decît două posibilităţi : f m f n sau f n  f m. Dar m<n f m d 

f n d deci a doua variantă este exclusă. În concluzie şirul (f n)n este crescător. Deci are o limită 

aproape sigură, f. Pentru orice A k  teorema Beppo Levi arată că f1A d = limn 

f n1A d = limn  (f n)(A)  (A) f    sau, altfel spus f  f (,). Să arătăm că f este un

majorant pentru m . Fie g m . Să presupunem prin absurd că nu este adevărat că g f. Atunci

mulţimea A=g > f- va avea măsura (A)>0. Cum f nf rezultă că ({g>f n})>0 n f n  g n

(căci m  este total ordonată) f  g  k = fd  g d . Dar g d - fd   

(g - f)1A d >0 ceea ce este absurd căci ar rezulta că g d > k ceea ce contrazice

proprietatea de supremum a lui k=

fd.  

Propoziţia 19. Fie  şi două măsuri mărginite ca <<. Atunci există f  0, f  L 1() ca

=f  .

Demonstraţie. Din Lema lui Zorn mulţimea f (,) din Lema 18 admite elemente maximale. Fie

f unul din ele, fixat. Vom arăta că f  = .

Să admitem contrariul. Oricum, f  f (,) deci f     . Fie = - f . Atunci este o

măsură obişnuită, f ără semn. Nefiind identic nulă, () > 0. Deci pentru k suficient de mare

k() > (). Măsura = k -  are semn (în caz contrar   0 k - kf     (f+1/n)   

ceea ce contrazice alegerea lui f ca fiind maximal în f (,)). Fie E=E(k - ) mulţimea lui Haar .

Deci (AE) 0 Ak (din definiţia lui E) k(AE)-(AE) 0 Ak  deci

(12) Ak   (AE)/k  (AE)

Mai mult, (E) > 0.  Într-adevăr, (E)=0 (f )(E)=0 (din (11) şi (E)=0 (din ipoteză)

 (E)=0 (k-)(E)=0 (E)=0. Dar (E)() (din definiţia lui E) = k()-() > 0, absurd.

(Aici este singurul loc unde am avut nevoie ca << ! )

Fie atunci

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 72/139

(13) f 1 = f +

1

E

 

Vom arăta că f 1  f (,), ceea ce este o absurditate căci f era presupus element

maximal în f (,) iar f 1 > f pe o mulţime de măsură  strict pozitivă.

 Într-adevăr, A  k  (f 1)(A) = (f )(A) + (AE)/k (f )(A) + (AE) (din (12)) =(f )(A) + ( - f )(AE) = (f )(A) - (f )(AE) + (AE) = (f )(AE

c) + (AE)   (Ae

c) + (AE)

(căci f  f (,)) = (A) f 1  , absurd.  

Teorema 20 (Radon-Nikodym).Fie  şi  -finite. Dacă <<, atunci există f  0 ca =f  .

Demonstraţie. Să presupunem mai întîi mărginită. Fie (Cn )n o partiţie a lui  cu mulţimi

din k cu proprietatea că 0<(Cn)<. Pentru orice n definim măsurile A  k n(A)=(ACn), Ele

sunt absolut continue faţă de  şi suma lor este . Fie f n 0 ca n=f n şi f= n 1

f n. Atunci (f )(A)=

( n 1

f n)d = n 1

f nd (Beppo-Levi) = n 1

(f n)(A) = n 1

n(A) = (A) deci afirmaţia este

adevărată  în acest caz.  În cazul general, fie (Cn)n o partiţie cu proprietatea că 0<(Cn)<. Definim măsurile n şi

n prin

(14) A  k   n(A)=(ACn), n(A) = (ACn)

Atunci = n 1

n, = n 1

n şi n<<n (deoarece n(A)=0  (ACn)=0 (ACn)=0 n(A)=0 ).

Fie f n densităţile garantate la pasul precedent. Deci n = f nn  n 1. Fie f = n 1

f n

1Cn . Cum este

uşor de observat că g 0 gdn = g1Cn d  rezultă imediat că (f )(A) = f1A d 

= n 1

f n1Cn 1A d = n 1

f n1A

1Cn d = n 1

f n 1A dn = n 1

( f nn)(A) = n 1

n(A) =

(A) pentru orice A  k deci în consecinţă  = f .  

Corolar 21. Dacă  este o măsură -finită atunci Im() = {   m (,k )  <<} 

Demonstraţie. Datorită propoziţiei 17 este suficient de demonstrat că orice măsură cu semn

mărginită,  admite densitate faţă de . Descompunem sub forma = + - - . Dacă E = E()

atunci observăm că (A)=0 (AE)=0 (AE)=0  +(A)=0 deci +<<. Analog -<< . Deci

există densităţile f + şi f - ca + = f +, - = f -. Rezultă că  = + - - = (f + -f -).  

Definiţie. Fie  şi două măsuri -finite astfel ca <<. Atunci densitatea f garantată deteorema Radon Nikodym se notează f = d / d şi se mai numeşte derivata Radon - Nikodym a

lui  faţă de . Ea este unică (mod ) deoarece f  = g  f=g (mod ). Raţiunea acesteidefiniţii este 

Propoziţia 22. Fie (,k ,) = (,b (), ) cu măsura Lebesgue. Fie o măsură Stieltjes şi F

funcţia sa de repartiţie. Presupunem că F este de clasă C1. Atunci << şi d / d = F’, deci

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 73/139

derivata Radon-Nikodym este chiar derivata funcţiei de repartiţie. Afirmaţia se menţine şi dacă F

este numai de clasă C1 pe porţiuni.

Demonstraţie. Fiind de clasă C1, F’ este continuă şi deci (F’)((a,b+) = (F’)([a,b]) F’1[a,b]d =

a

b

F’(x)dx ( se verifică imediat că pentru funcţii continue integrala Riemann pe intervale

compacte coincide cu integrala Lebesgue) = F(b)-F(a) (Leibniz-Newton) = ((a,b]). Intervalele de

acest gen formează un sistem de generatori pentru b ().  

Spaţiile Lp.

Fie X un spaţiu vectorial. O aplicaţie N:X [0,) se numeşte seminormă dacă 

N(x+y)N(x)+N(y) x,yX şi N(ax)=aN(x). Dacă, în plus, ea are proprietatea că N(x)=0 x=0

atunci N este chiar o normă. Orice seminormă induce o semidistanţă pe X, (adică o funcţie d

care satisface proprietatea triunghiului , este simetrică  şi d(x,x)=0) prin relaţia d(x,y):=N(x-y).

Perechea (X,N) unde X este un spaţiu vectorial şi N o seminormă   pe el se numeşte spaţiu

seminormat. Un şir (xn)n din X se numeşte şir Cauchy dacă  >0 n  ca m,n>n  N(xm-xn)   

. Un spaţiu seminormat în care orice şir Cauchy este convergent se numeşte spaţiu seminormat

complet. În orice spaţiu seminormat relaţia xy N(x-y)=0 este în mod evident o relaţie de

echivalenţă. Această relaţie de echivalenţă este compatibilă cu structura de spaţiu vectorial în

sensul că 

(1) xx’, yy’ a,b   ax+by  ax’by’ 

(căci 0 N((ax+by)-(ax’by’)) =N(a(x-x’)b(y-y’))  aN(x-x’)bN(y-y’) = 0) 

şi deci toate elementele unei clase de echivalenţă x*:={yX yx- au aceeaşi seminormă,

adică 

(2) xy N(x)=N(y)

Lucrînd eventual cu o familie de reprezentanţi, X:= X/ devine un nou spaţiu vectorial

pe care funcţia N definită prin N*(x*)=N(x) unde xx este un reprezentant (definiţia are sens

datorită lui (2) ) este chiar o normă (căci N*(x*)=0 N(x)=0 x0 x*=0). Cu alte cuvinte

oricărui spaţiu seminormat i se ataşează spaţiul factor X care este spaţiu normat. Dacă X este

spaţiu normat complet, atunci X devine spaţiu normat complet, adică spaţiu Banach.

Vom introduce acum o familie de spaţii clasice seminormate complete construite cu

ajutorul unui spaţiu cu măsură (, k, ) şi anume spaţiile notate tradiţional cu L p

(, k, ). Prin

factorizare la relaţia de echivalenţă definită de relaţia f g  f=g (mod P) ele devin spaţiile

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 74/139

Banach clasice Lp(, k, ).

Definiţie. Fie p [1,+ şi f :    o variabilă aleatoare. Numărul

(17) Np(f)

f d daca p

M f M daca p

p p 

 

1

0 0inf  

se numeşte ( prin abuz de limbaj ) „ norma p a lui f  ”. Vom arăta că, de fapt, funcţiile Np sunt

seminorme.

Propoziţia 23. Inegalitatea lui HÖlder. Fie p,q [1,] două numere cu proprietatea că 

(18)

1 1

p q

= 1

(cu convenţia că 1/ = 0; asemenea numere se numesc conjugate). Fie f,g două variabilealeatoare. Atunci este valabilă următoarea inegalitate (numită Inegalitatea lui HÖlder):

(19) fgd  Np(f)Nq(g)

Demonstraţie. Avem de analizat două cazuri:

Cazul 1. p = 1 q =. Fie M>0 ca

(20) ({g> M }) = 0

adică g  M (mod ). Atunci fgd   f Md = MN1(f). Trecînd la infimum după toţi

M care satisfac (20) rezultă  fgd  N1(f) N(f), adică exact (19).

Cazul 2. 1 < p,q < . Cazul Np(f)=0 sau Nq(f)=0 este banal: atunci f = 0 (mod ) sau g=0 (mod )

fg = 0 (mod ) deci (19) devine 0 0, ceea ce este adevărat. De asemenea, dacă Np(f) Nq(f)=

nu este nimic de demonstrat. Vom presupune de aceea că 0 < Np(f), Nq(f) < . Să considerăm

inegalitatea elementară 

(21) x,y 0 xy  

x

p

y

q

p q

 

(care rezultă imediat calculînd maximul funcţiei x xy -

x

p

p

)  în care punem însă x:=

N f 

p

p  

şi y:= 

g

N g

q

q . Integrînd inegalitatea obţinută găsim inegalitatea

fg d N f N g

f d

pN f 

g d

qN gp q

p

p

p

q

q

q

 

 

 

 

= Np(f)Nq(g)(

1 1

p q

) = Np(f)Nq(g) (datorită condiţiei

(18) ).  

Propoziţia 24. (Inegalitatea lui Minkowski). Pentru orice p 1 avem

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 75/139

(22) Np(f+g) Np(f) + Np(g)

Demonstraţie. Cazul p = 1 s-a demonstrat deja. Cazul 1<p< rezultă astfel : Np(f+g)p

=

Np(f+g)p

=f g d

p

   

f g f g dp

1

  Np(f)Nq(f+gp-1

) + Np(g) Nq(f+gp-1) =

(Np(f)+Nq(g))Nq(f+gp-1), iar pe de altă parte Nq(f+gp-1) = f g d

p q q

( )11

=

f g dp

p

p

1

 

(deoarece q =

p

p 1 ) = (Np(f+g))p-1

. A rezultat deci

(23) (Np(f+g))p  (Np(f) + Np(g)) (Np(f+g))

p-1 

de unde rezultă exact (22). Cazul p= rezultă mai simplu: din definiţia (17) este clar că f  N(f)

(mod ) şi g N(g) (mod ). Deci f+g  f  + g  N(f) + N(g) (mod ) N(f+g) N(f)

+ N(g) (căci N(f+g) este cea mai mică constantă C cu proprietatea că f+g C ).  

Notaţie. Spaţiile Lp(,k ,) . Norma ║.║p. Fie 1 p  . Mulţimea variabilelor aleatoare f:  

cu proprietatea că N(f) < se notează cu Lp(,k ,) iar mulţimea claselor de echivalenţă de

variabile aleatoare f  Lp(,k ,) faţă de relaţia de echivalenţă f  g f = g (mod ) se notează 

cu Lp(,k ,). În acest caz se obişnuieşte a se nota ║f ║p  în loc de Np(f).

Propoziţia 25. Fie 1 p  . Mulţimile Lp(,k ,) sunt spaţii vectoriale iar aplicaţiile Np: 

Lp(,k ,)  + sunt seminorme.

Demonstraţie. Este uşor de văzut că a    Np(af) = aNp(f). Deci, dacă a,b   şi f,g  

Lp(,k ,), atunci Np(af+bg) Np(af) + Np(bg) (din inegalitatea Minkowski) = aNp(f) + bNp(g)

<   af+bg Lp(,k ,). Că Np este o seminormă este implicit.  

Propoziţia 26. Fie 1 p  . Seminormele Np au proprietatea că 

(24) Np( n – 1

f n)   n – 1

Np(f n)

Demonstraţie. Fie p<. Să notăm cu s suma din dreapta. Dacă s= nu avem nimic de

demonstrat. Dacă s<, fie Sn = f 1+f 2+...+f n. Şirul Sn este crescător, deci are o limită finită 

sau infinită, S. Din inegalitatea Minkowski avem că Np(Sn) s n0. Pe de altă parte Np(Sn)p

=

(f 1+f 2+...+f n)

p

d  (Np(f 1)+...+Np(f n))

p

  s

p

  n . Din teorema Beppo-Levi, (Sn)S  

Np(Sn)p  S

pd  s

p<   Np(S) <   S < (mod ). Înseamnă că seria f 1+f 2+... este absolut

convergentă, deci convergentă. Fie f = n – 1

f n limita sa . Funcţia f este finită (mod ) . Fie rn = f n+1

+ f n+2 + ... restul seriei. Cum rn  S – Sn iar (S –Sn)0 din teorema Beppo – Levi rezultă acum

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 76/139

că Np(rn) 0 dacă n  . Înseamnă că Np( n – 1

f n) = Np(f 1+...+f n+rn) Np(f 1) + Np(f 2) + ...+ Np(f n) +

Np(rn) s + rn  n fixat. Făcînd n   rezultă exact (24).

Pentru cazul p= demonstraţia este imediată : inegalitatea modulelor implică inegalitatea f  =

n – 1

f n  n – 1

f n   n – 1

N(f n) (mod ) iar N( n – 1

f n) este cea mai mică constantă C cu

proprietatea că f C (mod ).  

Cu ajutorul propoziţiei 26 putem acum demonstra 

Propoziţia 27. Spaţiile Lp(,k ,) sunt spaţii seminormate complete iar Lp

(,k ,) sunt spaţii

Banach.

Demonstraţie. Fie (f n)n  Lp(,k ,) un şir Cauchy în norma ║.║p. Cu preţul trecerii la un subşir,

putem presupune că Np(f n –f n+1) 2-n, unde am pus prin convenţie f 0 = 0. Din demonstraţia

anterioară, seria n – 1

(f n –f n-1) este absolut convergentă la o limită f. În plus, tot din propoziţia

anterioară f  –f n =  j

1 (f n+j –f n+j –1) Np(f  –f n)    j

1 2

 –n – j= 2

 –n  0 dacă n  deci f n  f în

Lp(,k ,). Înseamnă că orice şir Cauchy este convergent, deci Lp

(,k ,) este un spaţiu

seminormat complet.  

Observaţie.  În general nu există nici o incluziune 1ntre spaţiile Lp. Totuşi, dacă  este o măsură 

mărginită, se poate demonstra

Propoziţia 27 (inegalitatea normelor). Dacă ()<, atunci avem inegalitatea

(25) 1 p < q Np(f)p  Nq(f)q q p

q

 – 

 

deci în particular rezultă că Lp(,k ,) L

q(,k ,)

Demonstraţie. Fie f  Lq(,k ,). Atunci Np(f)

p  –  f p.

1 d  Nr(f)Ns(1) (din inegalitatea lui

Holder) . Alegem r =

q

p   şi rezultă exact (25).  

Exerciţii. 

1. Formulă de integrare. Să se arate că fd() = (f )d dacă 0 şi f este în aşa fel încît f   

L1(,k ,).

Indicaţie. Se urmează procedeul standard: verificaţi pentru f indicator, apoi funcţie simplă, apoi pozitivă 

şi apoi măsurabilă oarecare.

2. Regulă pentru  înmulţirea densităţilor . Arătaţi că dacă 1<<2 şi 2<<3 atunci 1<<3 şi

d

d

d

d

d

d

1

3

1

2

2

3

 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 77/139

Indicaţie. Se aplică eserciţiul 1. Dacă 1= 

d

d

1

2   şi 2= 

d

d

2

3   atunci (f 12)d3 = (f 1)d(23) =

(f 1)d2 = fd(12) = fd1 .

3. Dacă  =

p j x

 j J

 j

este o măsură discretă, atunci f  –g (mod ) f(x j)=g(x j) jJ.

4. Fie cel mult numărabilă, o măsură pe p (), p():=({-) . Definim mulţimea Supp():= {   

p()>0 }. Arătaţi că  <<   Supp() Supp().

5. Dacă  = = măsura Lebesgue pe dreapta reală şi f(x) =

1 1[ , ) ( ) x

x , g(x)=

1 0 1( , ] ( )x

x , atunci arătai că f  

L2 \ L1 iar g L1 \ L2 ; deci nu există incluziuni ţntre spaţiile Lp dacă măsura  este nemşrginită.

6. Orice măsură  este absolut continuă faţă de măsura cardinal. Are densitate măsura Lebesgue  faţă 

de măsura cardinal pe dreaptă?

Indicaţie. Nu. Teorema Radon Nikodym nu funcţionează deoarece măsura cardinal pe dreaptă nu este

 –finită. Dacă =card ar trebui ca mulţimea A=f>0- să fie cel mult numărabilă, deci (A)=0 ceea ce

este absurd.7. Totuşi, dacă  este cel mult numărabilă, atunci orice măsură  are densitate faţă de card. Care este

ea?

Indicaţie. Fie p: funcţia p():=({-). Verificaţi că  = pcard.

8. Dacă << şi << spunem că măsurile  ţi  sunt echivalente şi scriem . Să presupunem că 

ambele sunt -finite. Din Teorema Radon –Nikodym, există densităţilef 

d

d

gd

d

. Arătaţi că  şi  

au aceleaşi mulţimi neglijabile şi că fg = 1 (mod ). 

Curs 8. Teorema ergodică. 

 În liceu s-a studiat următoarea problemă: fie I   un interval şi t: I  I o funcţie . Pe

baza ei construim şirul 

(1) x0 = x, xn = t(xn-1) = tn(x) (tn

  înseamnă tt...t de n ori )

S-a demonstrat că dacă t este crescătoare şi continuă, atunci şirul definit prin (1) este

monoton şi deci are o limită. Dacă t este descrescătoare, atunci şirurile termenilor pari şi al celor

impari sunt monotone, deci au limite, nu neapărat egale. Cercetarea acestui tip de problemeduce la teoremele de punct fix (Banach, Brouwer). În multe cazuri şirul (1) nu este convergent. 

Dar ne putem pune şi problema cercetării convergenţei Césaro a şirului (xn)n, adică a

şirului 

(2) tn(x) =

x x ...

n 1

0 1 n

 x

=

x t x ... t x

n 1

n  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 78/139

(Am notat aici tn(x) în loc de tn(x). Aceasta este notaţia ce va fi folosită  în continuare)  

Cu studiul şirurilor de acest tip începe teoria ergodică.

Definiţie. Fie (,k ,) un spaţiu cu măsură mărginită. Fie t:   o funcţie măsurabilă. Dacă 

(3) t-1=  

spunem că t invariază pe .

Propoziţia 1. Formula de transport. Fie(,k ,) un spaţiu cu măsură şi (X,b ) un alt spaţiu

măsurabil. Fie t:  X o funcţie măsurabilă şi f o variabilă aleatoare pe . Atunci

(4)

fd(t-1) =

f(t)d 

Demonstraţie. Se verifică (4) întîi pentru funcţii indicator f =1A (se va remarca faptul că 1A(t) =

1

t A-1

) apoi pentru funcţii simple, apoi pentru funcţii pozitive folosind teorema Beppo-Levi şi

apoi în general.  

Corolar 2. Dacă t invariază pe atunci

(5) fd = f(t)d 

Demonstraţie.  În (4) folosim faptul că t-1=.  

Lema 3 (Lema ergodică maximală). Fie f  L1(,k ,) o variabilă aleatoare integrabilă. Fie t:  

 o funcţie care invariază măsura  şi (6) s0 = f, s1 = f + f(t),..., sn = f + f(t) +f(t

2) + ...+ f(t

n)

Fie de asemenea

(7) A = {    n 0 ca sn() > 0 }

Atunci

(8) f1Ad  0

Demonstraţie. Fie C0 ={s0 >0}, C1 = {s0 0, s1 > 0-,...şi în general,,Cn ={s0  0, s1 0, ...,sn-10, sn >

0}..

Din (6) se poate observa că 

(9) sn = s0 + sn-1(t) = s1 + sn-2(t2) = ...= s j-1 + sn-j(t

 j) 1 j n

Fie atunci An = C0  C1  ... Cn . Este clar că A = n 0

An . De asemenea este imediat că 

(10) { f(tn) > 0 } An 

Să mai observăm că 

(11) t j(Cn) An-j  1 j n

 Într-adevăr, Cn  sn() > 0 dar j-1 < n s j-1() 0. Dar (7) implică faptul că sn() = s j-1() +

sn-j(t j()) deci sn-j(t

 j()) = sn()-s j-1())>0 deci din(10) rezultă că t

 j() An-j.

Fie acum

(12) gn = f 1An +(f 

1An-1 )(t)+(f 1An- 2 )(t

2)+...+(f 

1A0 )(tn) : =

f1 tA

 j

 j 0

n

n j

 

Vom arăta că gn 0. Demonstraţia va fi prin inducţie după n.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 79/139

Dacă n=0, g0 = f 1A0 = f1{f>0}

 =f + 0.

Presupunem afirmaţia adevărată pentru toţi j<n şi o demonstrăm pentru n.

Dacă C0 atunci

(13) gn()=f()+gn-1(t()) = s0()+gn-1(t()) > 0

Dacă C j 1 j n-1, atunci din (11) rezultă că ti

()A j-i  An-i  1i j deci (f 1

An- i

)(ti())=f(t

i()) (f 

1An +(f 1An -1 )(t)+...+(f 

1A n - j )(t j))() =s j() de unde

(14) C j 1 jn-1 gn() = s j() + gn-j-1(t j+1

)

Dacă  Cn, din (10) rezultă că 

(15) Cn  gn() = sn()

 În sfîrşit, dacă  An, atunci

(16) An  gn() = gn-1(t()).

Din definiţia mulţimilor C j rezultă că s j1C  j   0.Folosind acest fapt şi ipoteza de inducţie, din

relaţiile (13)-(16) rezultă scrierea lui gn ca o sumă de funcţii pozitive: 

(17) gn =  j

n

0 s j1C  j +

g t 1 g t1n j j

C n 1 A j 1

n

 j 1 nc

 

de unde rezultă că  într-adevăr

(18) gn 0 n 0

Trecem acum la demonstrarea lui (8). Avem

f1 dA  =

f1 dA

n =1n

 

=(f )(An

n 1

) = limn (f )(An) (deoarece şirul (An)n este crescător şi

măsurile cu semn sunt monoton continue) = limn 

f A f A ... f A

n 1

0 1 n

 

 

(am aplicat Lema Cesaro - Stolz). Deci

(19)f1 dA  

= limn 

f A f A ... f A

n 1

0 1 n

 

 

Pînă acum nu am aplicat nicăieri faptul că t invariază pe . Inegalitatea (18) este valabilă 

 întotdeauna, pentru orice pereche de funcţii f şi t. Acum o vom folosi astfel: fie 0 j n. Atunci

(f )(A j) =f1 dA j

 =

f1 dA j  t 1

(căci t invariază pe ) = f1 tdA j

 (formula de transport)

=...= f1 t dA

n- j

 j  

  (am aplicat formula de transport în mod repetat). Rezultă că   j

n

0 (f )(A j) =

 j

n

0 f1 t dA

n- j

 j   = f1 t d

A

n- j

 j

n

 j

  0 = gnd (din 12). Atunci (19) inplică mai departe

(20)f1 dA  

= limn

gnd 

ceea ce încheie demonstraţia datorită inegalităţii (18).  

Orice funcţie măsurabilă t:    pune în evidenţă o -algebră foarte importantă,

anume -algebra mulţimilor t-invariante.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 80/139

Definiţie. Spunem că Ak este t-invariantă dacă t-1

(A)=A. Notăm cu I (t) familia acestor

mulţimi.

Lema 4. (i). I (t) este o -algebră inclusă  în k .

(ii). f:

 

 

este I (t) măsurabilă 

f t = f 

Demonstraţie. 

(i). Rezultă imediat din egalităţile t-1(A

c) = (t

-1(A))

c şi t-1

(An

n 1

)=

t (A-1

nn 1

)

.

(ii). Avem că f:   este I (t) măsurabilă  f -1

(B) I (t) B b () t-1

(f -1

(B)) = f -1

(B)  

B b () (f t)-1

(B) = f -1

(B) B b () şi este clar că ultima relaţie implică faptul că f t=f 

(luăm B={y}, y).  

Lema 5. Fie f,t şi sn ca mai sus. Fie şirul de funcţii 

(21) f n =

s

n + 1

n

 

şi fie f  =limsup f n, f  = liminf f n. Atunci f  şi f  sunt I (t) măsurabile.

Demonstraţie. Vom folosi următorul rezultat elementar

Lema 6. Fie (an)n, (bn)n şi (cn)n trei şiruri astfel ca an şi cn sunt convergente iar lim an > 0. Atunci

(22) Limsup (anbn + cn) = (lim an)(limsup bn) + lim cn 

(22’) Liminf (anbn + cn) = (lim an)(liminf bn) + lim cn 

Demonstraţia Lemei 6. Lucrul esenţial este caracterizarea limitei superioare ca cel mai marepunct limită, adică 

(23) limsup an  a, există un subşir (nk)k ca a an k k         limsup an = a

Să notăm pentru orice şir (xn)n cu x

n = sup{xn,xn+1,...}. Atunci xn limsup xn. Cum pentru orice

n sup{xn+yn, xn+1 + yn+1, ...} xn + y

n rezultă  că 

(24) limsup(xn+yn) limsup xn + limsup yn 

pentru orice două şiruri cu proprietatea că expresia din dreapta are sens (nu este - ). Dacă 

ştim că şirul (xn)n este convergent la x, atunci putem alege un şir (nk)k cay yn k k      

cu

y:=limsup yn de unde rezultă că x+y este un punct limită pentru (xn+yn)n Din (23) şi (24) rezultă 

atunci în cazul nostru că 

(25) limsup(anbn + cn) = limsup anbn + c cu c = limcn  

Cum a=lim an > 0 rezultă că an > 0 pentru n destul de mare. Atunci pentru n destul de mare avemcă anbn  anb

n  limsup anbn  limsup(anb

n ) = lim anb

n (căci ambele şiruri au acum limită)

=a(limsup bn). Alegînd un subşir al lui bn care converge la limsup bn şi aplicînd principiul (23)rezultă că 

(26) limsup anbn =alimsup bn dacă a>0, a=lim an 

de unde rezultă (22). Analog rezultă şi (22’).  

Pentru demonstrarea Lemei 5, aplicăm acum Lema 4(ii). Avem de demonstrat că f (t) = f 

. Dar

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 81/139

f (t) = (limsup f n)(t) = limsup f n(t) = limsup ( f n+1

n 2

n 1

n 1

) = limsup(f n+1) lim 

n 2

n 1

- lim 

n 1 (am aplicat lema 6 ) = limsup(f n+1) = limsup f n = f  şi analog se arată că f (t) = f .  

Propoziţia 7. Fie f  L1(,k ,) cu o măsură mărginită. Fie t:   o funcţie care invariază 

măsura. Fie sn(f) = f + f t + f t2+ ...+ f tn. Atunci şirul (f n : =

s f 

n 1

n

)n  converge -a.s. la o limită 

L(f) care este o funcţie I (t) - măsurabilă.

Demonstraţie.Fie, ca în Lema 5, f = limsup f n şi f = liminf f n. Vrem să arătăm că f =f  (mod ) sau

că ({f 

> f }) = 0. Fir p,q două numere raţionale ca p>q şi Ap,q = {f 

>p >q > f }. Cum este evident

că reuniunea acestor mulţimi este chiar f  > f } va fi suficient să demonstrăm că 

(27) p,q raţionale, p > q  (Ap,q) = 0

deoarece ele formează o familie numărabilă de mulţimi. Este important de observat că, datorită 

măsurabilităţii funcţiilor f  şi f  Ap,q  I (t) . Fie p > q fixate şi B = Ap,q . Din Lema 4(ii)(28) 1Bt = 1B 

Fie acum

(29) g = (f - p)1B şi h = (q - f)1B 

Vom arăta că 

(30) gd  0 şi hd  0

Să observăm mai întîi că sn(g) = (f-p)1B + ((f-p)1B)t + ((f-p)1B) t2

+ ...+ ((f-p)1B) tn

= sn(f)1B 

- (n+1)p1B (am aplicat (28)!) = (sn(f) - (n+1)p)1B. Fie A = { n0 ca sn(g)()>0} = { 

n0 ca (f n()-p)1B() > 0-. Atunci A = B. Într-adevăr, B limsup f n() > p f n()>p de o

infinitate de ori   n 0 ca f n()-p > 0   A. Apoi B (f n()-p)1B()=0 deci A. Deci

A=B. Aplicînd Lema ergodică maximală găsim că  g1A d  0 de unde prima inegalitate din

(30) (căci g1A=g1B=g).

 În mod analog, sn(h) = ((n+1)q - sn(f))1B. Dacă acum A = { n0 ca sn(h)()>0} se

arată la fel că A = B de unde, aplicînd lema ergodică maximală rezultă şi a doua inegalitate din

(30). Adunînd cele două inegalităţi rezultă (g+h)d  0 (f-p+q-f)1B d  0 adică 

(q-p)(B) 0. Cum q-p<0, acest lucru nu se poate întîmpla decît dacă (B)=0.  

Vom studia acum proprietăţile aplicaţiei L1(,k ,) f  L(f)

Propoziţia 8. Aplicaţia L este liniară şi contractantă, adică ║L(f)║1  ║f ║1 . Mai mult(31) Im(L) = L

1(,i (t),) iar f  L

1(,i (t),) L(f) = f 

Demonstraţie. Fie f,g L1(,k ,) şi a,b. Atunci se verifică imediat că sn(af+bg) = asn(f) +

bsn(g) de unde L(af+bg) = a.s.-lim (sn(af+bg)/(n+1)) = a.s.-lim((asn(f)+bsn(g))/(n+1)) = aL(f) + bL(g)

deci L este lineară. Verificăm acum contractivitatea lui L. Fie f n = sn /(n+1). Atunci avem ║L(f)║1 =

a.s.-limn f nd = a.s.-limn f nd = liminf n f nd (deoarece L(f) coincide

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 82/139

a.s. cu liminf f n ) = supn inf(f n,f n+1,.....) d = supn inf(f n,f n+1,.....) d 

(Beppo-Levi) supn( f nd, f n+1d,.....) = liminf n  f nd = liminf n ║f n║1 . Dar

f nd =( f +f(t)+f(t2

)+...+f(tn

)d)/(n+1) ( j 0

n

f(t

 j

)d)/(n+1) = (  j 0

n

f d(t j)-1)/(n+1) (formula de transport) =( j 0

n

f d)/(n+1) (căci t invariază pe ) = ║f ║1 şi

deci ║L(f)║1  ║f ║1 adică L este o contracţie faţă de norma din L1.

Pentru a demonstra (31) să observăm că putem alege de exemplu L(f) (care nu este unic

seterminată, ci numai unică (mod ) să fie L(f)=liminf f n care din Lema 5 este i (t) - măsurabilă.

Deci L(f) L1(,i (t),). Reciproc, dacă f  L

1(,i (t),), atunci f = f(t) = f(t

2) =...= f(t

n) deci sn(f) = f 

L(f)=f de unde rezultă şi a doua parte din (31).  

Putem acum demonstra mai mult. Convergenţa din Propoziţia 7 nu este numai aproapesigură, ci şi în L1

. Să reţinem din demonstraţia contractivităţii lui L următoarea inegalitate

(32) ║sn(f)║1  (n+1)║f ║1 

Propoziţia 9. Dacă f  L1(,k ,) atunci ║L(f)-f n║1 converge la 0.

Demonstraţie. Fie  > 0 arbitrar şi C >0 astfel ca f 1{f >C} d < . Un asemenea C există 

deoarece integrala din stînga coincide cu (f )({f >C-) care, cînd C   converge la

(f )({f =}) (continuitatea monotonă a măsurii) iar ultima cantitate este egală cu 0 (altfel f 

nu ar fi integrabilă). Fie atunci g = f1{f C} . Funcţia g este mărginită (căci gC) şi ║f-g║1 =

f 1{f >C} d < . Mai mult, din (32) deducem

(33) ║sn(f) - sn(g)║1 =║sn(f-g)║1  (n+1)║f-g║1 Fie gn = sn(g)/(n+1). Atunci ║L(f)-f n║1  ║L(f)-L(g)║1 + ║L(g)-gn║1 +║gn - f n║1  ║f-g║1 

+║L(g)-gn║1 + ║f-g║1 (din contractivitatea lui L şi din (33) 2 + ║L(g)-gn║1 deci

(34) ║L(f)-f n║1  2 + ║L(g)-gn║1 

Dar şirul L(g)-gn este dominat de 2C (într-adevăr, sn(g)g+g(t)...+g(tn)  (n+1)C

gn  C iar gn  L(g). Din teorema lui Lebesgue de convergenţă dominată lim║L(g)-gn║1 = lim

L(g)-gnd =

limL(g)-gnd = 0. Ţinînd seama de acest lucru şi de (34) rezultă că 

(35) limsupn ║L(f)-f n║1  2 + limn║L(g)-gn║1 = 2 

ceea ce încheie demonstraţia, deoarece este arbitrar.  

Ţinînd seama de aceste fapte, putem acum demonstra 

Teorema 10 (Teorema ergodică Birkhoff). Fie f  L1(,k ,) cu o măsură mărginită. Fie t:   

 o funcţie care invariază măsura. Fie sn(f) = f + f t + f t2+ ...+ f tn. Atunci şirul (f n : =

s f 

n 1

n

)n 

converge -a.s. şi în L1la o limită L(f) care satisface următoarele proprietăţi 

(i). L(f) L1(,I (t),)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 83/139

(ii). Dacă f  L1(,I (t),), atunci L(f) = f 

(iii). Dacă B I (t) atunci (f )(B) = (L(f))(B) . În particular L(f)d = fd 

Demonstraţie. Singurul lucru care a rămas nedemonstrat este (iii). De fapt acesta este o

consecinţă a unui rezultat mai general:

Lema 11. Dacă ║f n-f ║1  0, atunci f n1Ad  f1Ad  A k  

Demonstraţie.  f1Ad - f n1Ad= (f - f n)1Ad   f - f n 1Ad  ║f n-f ║1.   

Fie deci B  I (t). Atunci (L(f))(B) =

L(f)1Bd =

limn f n 1Bd = limn 

f n 1Bd (din

Lema 11) . Dar

f t j 1Bd =

f t j

1B t j

d (deoarece B este t - invariantă) =

f1Bd(t j)-1 

(formula de transport) = f1Bd (căci t invariază pe ). De aceea din definiţia lui sn rezultă 

că 

sn 1Bd = (n+1) f1Bd    f n 1Bd = f1Bd  limn  f n 1Bd =  

f1Bd = (f )(B)  

Definiţie. Fie t o transformare care invariază pe . Dacă B I (t)  (B) = 0 sau (B)=(),

atunci t se numeşte transformare ergodică. 

 În cazul transformărilor ergodice teorema lui Birkhoff capătă următoarea formă foarte simplă 

Corolar 12. Dacă t este o transformare ergodică atunci

(36)

s f 

n 1

n

   

fd 

   

atît aproape sigur cît şi în L1. Cu alte cuvinte, în acest caz L(f) = 

fd 

  .

Demonstraţie. L(f) trebuie să fie I (t)-măsurabilă. Toate mulţimile din I (t) sunt neglijabile sau

coneglijabile. Deci pentru fiecare y M(y)={L(f)<y} sunt neglijabile sau coneglijabile. Cum

intersecţia acestor mulţimi cu y întreg este neglijabilă, ele nu pot fi toate neglijabile. Dar

reuniunea lor este coneglijabilă, deci ele nu pot fi toate neglijabile. Mai mult, ele formează o

familie crescătoare de mulţimi. Deci există o constancă c ca y<c M(y) este neglijabilă şi y>c  

M(y) este coneglijabilă. Atunci L(f)=c (mod ) căci ({L(f)c}) = ({L(f)<c}) + ({L(f)>c}) = 0.

Deci L(f) = c (mod ). Din punctul (iii) al teoremei ergodice, fd = L(f)d = cd =c() de unde rezultă (36).

Exerciţii. 

1. Dacă t este ergodică, atunci pentru orice A,B k avem că 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 84/139

(37) limn

   BA Bt A Bt A

n

n

1

1

...

=

 

 

 A B

 

Indicaţie.  În teorema ergodică se ia f=1A . L(f)=(A)/(), f n1B d este fracţia din stînga iar

L(f)1B d este cea din dreapta.  2. Presupunem k =(c ) cu c  stabilă la intersecţii finite.Dacă t invariază măsura şi (37) se

verifică  A,B din c , atunci t este ergodică.

Indicaţie. Fie A c   şi e (A) = {Bk B verifică (37)}. Se arată că e (A) este un U-sistem care

conţine pe c deci e (A)= k . Apoi fie e = {Ak A verifică (37) B k }. Se arată că şi e este un

U-sistem care conţine pe c deci e = k . Altfel spus, (37) este adevărat pentru orice A,B k de

unde, luînd Ai (t) rezultă că Ai (t)  (BA)() = (A)(B). Alegînd B=A rezultă 

(A)()=(A)2  (A)=0 sau (A)=().  

3. Fie =[0,1), k = b (), = (măsura Lebesgue) p un număr natural p2 şi t(x) = px-:=

px-*px+ (partea fracţionară a lui px). Atunci t este ergodică. Arătaţi că (x+t(x)+...+tn(x))/(n+1) 

0.5 a.s.

Indicaţie. Verificaţi (37) pentru a=*0,a), B=*0,b) şi aplicaţi exerciţiul 2. Apoi aplicaţi teorema

ergodică funcţiei f(x)=x.  

Curs 9. Produse de spaţii cu măsură.

Vrem să dăm acum cel mai important caz de aplicare a teoremei ergodice: cazul shiftului pe un

produs infinit de spaţii probabilizate. Avem nevoie însă mai înainte să definim ce înseamnă aceasta.

Fie ( j,k  j, j) jJ o familie de spaţii cu măsură. Fie =  j J

 j produsul cartezian al mulţimilor

( j) jJ    în sensul definit în cursul 2, pr j:    j proiecţiile canonice date prin

(1) pr j() =  j 

şi k = j J k  j produsul -algebrelor k  j, adică 

(2) j J k  j = (pr j  jJ)

Dacă pe (,k ) există o măsură  cu proprietatea că 

(3) ( j J

A j) =  j J

 j(A j) A j  k  j 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 85/139

atunci spunem că  este produsul măsurilor ( j) jJ şi notăm aceasta prin = j J j . Să observăm că dacă J

este infinită, termenul drept al egalităţii (3) s-ar putea să nu aibă sens, deci va trebui precizat ce

 înţelegem printr-un produs infinit.

Pasul 1. J={1,2}. 

Cazul 1.1. 1 şi 2 sunt mărginite. Fie A k 1k 2 . Definim := 12 prin

(4) (A) = ( 1A(1, 2)d2(2))d1(1)

Să arătăm întîi că definiţia are sens. 

Propoziţia 1. (i).Fie A k 1k 2. Fie  j j, jJ:=1,2- fixaţi.Definim(5) A(1,.) = {y2 (1,y)A - şi A(.,2) = {x1 (x,2)A }

ca fiind secţiunea verticală (respectiv orizontală ) a lui A prin 1(respectiv 2). Atunci secţiunile suntmăsurabile: mai precis avem

(6) A(1,.) k 2 şi A(.,2) k 1 

(ii). Fie f : 12   o funcţie k 1k 2- măsurabilă. Fie 11 şi 22 fixaţi. Definim secţiunile lui f prin

(7) f(1,.)(2) = f(.,2)(1) = f(1,2)

Atunci f(1,.):2  este k 2-măsurabilă şi f(.,2):1   este k 1-măsurabilă. Mai mult, dacă f = 1A cu

A k 1k 2 atunci

(8) f(1,.) = 11A ,.   şi f(.,2)= 1

2A .,  

Demonstraţie.(i).Fie e ={ A k 1k 2  A(1,.) k 2  11}. Cum (A(1,.))c = Ac(1,.) şi ( n1

 

An)(1,.) = n1

An(1,.) rezultă că e este o -algebră. Dacă A=A1A2 cu A j k  j, j=1,2 atunci avem A(1,.)

=

A daca A

daca A

2 1 1

1 1

   k 2 1 1 deci A e deci e  este o -algebră care conţine

dreptunghiurile A1A2. Rezultă că e  = k 1k 2 sau altfel spus A k 1k 2  A(1,.)  k 2  11.

Analog se arată că şi secţiunile orizontale sunt măsurabile.

(ii). Egalitatea (8) se verifică imediat. Deci dacă f este un indicator, (ii) este o consecinţă nemijlocită a lui

(i). Dacă f este o funcţie simplă, f =  j

n

1 a j

1A  j , atunci f(1,.) = j

n

1 a j

11A j ,.

, deci f(1,.) este

k 2-măsurabilă. În cazul general, folosim faptul că orice funcţie măsurabilă se poate aproxima cu un şir de

funcţii simple. Cazul secţiunilor orizontale se tratează la fel.  

Din Propoziţia 1 rezultă că (4) are sens şi că 

(9) (A) = 2(A(1,.))d1(1)

Propoziţia 2. Teorema lui Fubini. este o măsură pe k 1k 2 şi (A1A2) = 1(A1)2(A2) A j  k  j, j=1,2.

Deci =12  conform definiţiei (3). Mai mult, dacă f  0 atunci

(10) fd12 = ( f(1, 2)d2(2))d1(1) = ( f(1, 2) d1(1)) d2(2)

cu alte cuvinte ordinea de integrare nu contează. Relaţia (10) se păstrează şi dacă f L1(12) .

Demonstraţie. Fie (An)n un şir de mulţimi disjuncte din k 1k 2 şi A reuniunea lor. Atunci rezultă că 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 86/139

1A(1,.) = 1

11

An

n ,.

    2(A(1,.) = 1A(1,.)d2 =

11

12A

nn

d

,.

(teorema Beppo-Levi) = n

1

2(An(1,.))(A) = 2(A(1,.)d1(1) =

n

1 2(An(1,.))d1(1) = n

1

2(An(1,.))d1(1) (din

nou Beppo-Levi) = n

1 (An) . Deci este o măsură. Dacă 

A= A1A2, atunci A(1,.) =

A daca A

daca A

2 1 1

1 1

deci 2(A(1,.))=2(A2)

11 1A

. Integrînd această funcţiedupă 1 găsim exact că (A)= 1(A1)2(A2).

Arătăm acum că putem schimba ordinea de integrare în integralele iterate. Dacă f=1A cu A= A1A2, atunci

(

f(1, 2) d1(1)) d2(2) = 1(A(.,2)d2(2) =

1(A1) 1

2 2A d2(2) =1(A1)2(A2). Deci

(10) se verifică  în acest caz. Înseamnă că (10) se verifică pentru funcţii simple de unde, cum oricevariabilă aleatoare este limita unui şir crescător de variabile aleatoare pozitive, aplicî nd teorema

Beppo-Levi rezultă că (10) este valabil pentru orice f  0. Dacă f L

1

(12) atunci scriem f = f + - f - deunde rezultă (10). Aici folosim faptul că lucrăm numai cu numere finite.  

Observaţie. În definiţia (4) am stabilit că produsul 12 se calculează integrînd măsura secţiunilorverticale după măsura 1. Obţinem astfel o măsură  cu proprietatea că (A1A2) = 1(A1)2(A2). La fel

de bine puteam defini o altă măsură  integrînd măsura secţiunilor orizontale după 2, adică  punînd

(A) = ( 1A(1, 2)d1(1))d2(2). Obţineam o altă măsură cu aceeaşi proprietate. Cele două 

măsuri coincid pe mulţimea dreptunghiurilor. Dacă ele coincid vom spune că produsul 12 are sens. 

Aşadar am stabilitCorolar 3. Produsul a două măsuri mărginite are sens întotdeauna. 

Cazul 1.2. Măsurile sunt -finite.

Propoziţia 4. Dacă 1 şi 2 sunt -finite, atunci produsul lor are sens. Mai mult, 12 are proprietatea

(10) - verifică teorema lui Fubini.

Demonstraţie. Fie (Bn)n1 k 1 şi (Cn)n1  k 2 două partiţii ale lui cu proprietatea că 1(Bm)< şi

2(Cn)<  m,n1. Fie noile măsuri 1,m şi 2,n definite prin

(11) 1,m(B) = 1(BBm) şi 2,n(C) = 1(CCn) Bk 1 şi Ck 2 

Atunci măsurile 1,m şi 2,n sunt mărginite m,n1 şi 1 = m

1 1,m, 2 = n

1 2,n 

Vrem să arătăm că 

(12) A k 1k 2   2(A(1,.))d1(1) =

1(A(.,2))d2(2)

Dar 2(A(1,.))d1(1) = n

1 2,n(A(1,.))d1(1) = n

1 2,n(A(1,.))d1(1 ) (teorema

Beppo-Levi) = n

1

2,n(A(1,.))d(m

1 1,m )(1) = n

1 m

1

2,n(A(1,.))d1,m (1) (integrala unei

funcţii pozitive faţă de o sumă de măsuri este suma integralelor: se verifică  întîi pentru indicatori, apoipentru funcţii simple, apoi se trece la limită folosind teorema Beppo-Levi). Pe de altă parte

1(A(.,2))d2(2) =

m

1 1,m(A(.,2))d2(2) = m

1

1,m(A(.,2))d2(2) = m

1

1,m(A(.,2))d(

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 87/139

n

1 2,n) (2) = m

1 n

1 1,m(A(.,2))d2,n(2)

Cum măsurile 1,m şi 2,n sunt mărginite, din (10) rezultă că 

(13) 2,n(A(1,.))d1,m (1) =

1,m(A(.,2))d2,n(2) : = Im,n 

Rezultă că 

(14) 2(A(1,.))d1(1) = n

1 m

1 Im,n şi 1(A(.,2))d2(2) = m

1 n

1 Im,n 

Cum într-o serie dublă de numere pozitive putem schimba ordinea de sumare rezultă că 

(15) 2(A(1,.))d1(1) =

1(A(.,2))d2(2) = 12(A) A k 1k 2 

adică relaţia (10) este adevărată pentru f = 1A. Restul se verifică prin procedura obişnuită : funcţii

simple, funcţii pozitive, funcţii integrabile.  

Observaţie.Deci produsul a două măsuri -finite are sens. Nu putem spune la fel dacă vreuna din măsuri

nu este -finită. De exemplu, să luăm 1=2=(0,1), k 1 = k 2 = b ((0,1)), 1 = card (măsura cardinal), 2 =  

(măsura Lebesgue). Atunci 12 nu are sens. Într-adevăr, fie A={ (x,x)x(0,1)}. Atunci 2(A(1,.)) =

2({1}) = ({1}) = 0   2(A(1,.))d1(1) = 0d1 = 0 iar 1(A(.,2)) = 1({2}) = 1  1(A(.,2))d2(2) =

1d2 = 2(2) =1 deci 12(A) este egal cu 0 după un algoritm şi cu 1 după 

celălalt.

Observaţie. Dacă 1 şi 2 sunt chiar probabilităţi, = 12 este o măsură pe spaţiul produs cuproprietatea că pr j

-1 =  j  j=1,2. Spunem că  j sunt repartiţiile marginale ale lui . Pot exista măsuri

diferite pe k 1k 2 cu aceleaşi repartiţii marginale, ceea ce nu este nimic surprinzător.

Pasul 2. J este finită. J=[1,2,...,n} 

Propoziţia 5. Produsul unei familii finite de măsuri -finite are sens. Deci există o unică măsură [J] pe k  

cu proprietatea că 

(16) [J] (A1A2...An) =1(A1)2(A2)...n(An) A j  k  j, 1 jn.

Mai mult, dacă J = J1 J2 cu J1 şi J2 disjuncte atunci

(17) [J](A) =

(

1A(1, 2)d[J1] (1))d[J2](2) =

(

1A(1, 2)d[J2] (2))d[J1](1).

(unde 1[J1]:=  j J1

 j, 2 [J2] :=  j J 2

 j iar A  k )

adică [J] = [J1][J2]

Demonstraţie. Prin inducţie după n. Definim [{1,2,...,n}] = [{1,2,...,n-1}]n . Definită astfel, [J] este o

măsură cu proprietatea (16). Fie apoi măsura = [J1][J2+. Atît *J+ cît şi sunt măsuri -finite care

coincid pe mulţimi de tipul A = A1A2...An deci şi pe algebra generată de ele. Din teorema

Caratheodory ştim că dacă două măsuri -finite coincid pe o algebră, atunci ele coincid şi pe -aşgebra

generată de ea . În cazul nostru această -algebră este chiar k . Deci [J] = [J1][J2] de unde (17)

apare ca un caz particular al teoremei lui Fubini.

Notaţie. Dacă toate spaţiile măsurabile ( j,k  j, j) jJ coincid cu un acelaşi spaţiu cu măsură (,k ,) atunci

spaţiul cu măsură produs se va nota (J,k 

J, J) sau încă (n

,k n, n

) cu n =J. În cazul particular în care

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 88/139

(,k ,) = (,b (),) cu măsura Lebesgue, măsura n se numeşte măsura Lebesgue n-dimensională.

Dacă n=1 măsura Lebesgue (A) este “lungimea” unei mulţimi A. Dacă n=2, 2(A) este “aria” lui A iar dacă 

n=3, 3(A) este “volumul” lui A. Teorema Fubini ne arată că pentru a calcula volumul trebuie să integrăm

lungimile secţiunilor verticale în “corpul” A sau, ceea ce ne va da acelaşi lucru, să integrăm ariile

secţiunilor orizontale. Mai precis 

(18) 3(A) = ( 1A(x,y,z)d(x)) d2

(y,z) = ( 1A(x,y,z)d2(y,z))d(x)

Observaţie. Să presupunem că  j sunt toate probabilităţi. Fie I J. Să numim aplicaţia prJ:  [J] dată 

prin prJ() = I (restricţia lui la I ) proiecţia pe componentele din I. O consecinţă imediată a lui

(17) este

(19)   (prI)-1 = [I]

 Într-adevăr, dacă A   j I k  j atunci prI

-1(A) = A[J\I]  ( prI-1(A)) = [I](A)[J\I]([J\I]) = [I](A).

Pasul 3. J este numărabilă. J = {1,2,....}. Produsul unui şir de spaţii probabilizate. 

Aceasta nu este o extindere imediată a cazului finit. De altfel, în marea majoritate a cazurilor un

şir de mulţimi nu se poate înmulţi deoarece în egalitatea( j J A j) =  j J  j(A j) singurul sens al

termenului drept este limn  1 j n

 j(A j), limită care nu are motiv să existe în general. Totuşi, dacă 

măsurile  j sunt probabilităţi, atunci limita există. Vom arăta că produsul unui şir de probabilităţi aresens şi este o probabilitate pe spaţiul produs. Ideea de bazăa construcţiei este conţinută  în relaţia (19).

Pentru fiecare I J notăm cu ([I], k *I+) spaţiile măsurabile ( j I

 j, j I k  j ). Dacă I este finită 

notăm [I] probabilitatea j I j despre care ştim că există conform pasului anterior. Fie IK.

Definim proiecţiile de la K la I  prI

K

:[K]  [I] prin prI

K

() = I. În cazul foarte important cînd

I=1,2,...,n- proiecţiile prI se vor nota n iar probabilităţile [{1,2,...,n}] le vom nota cu n . În acelaşi caz,

dacă A   şi x  *I+ secţiunea în A prin x se va nota cu A(x): 

(20) A(x) = {   [{n+1,n+2,...,}] (x,) A }

Deci x[{1,2,...,n}] A(x) [{n=1,n+2,...}].

Definiţie. O mulţime de tipul A = A1A2...Ann+1n+2... = n-1

(A1A2...An) se numeşte bloc.

Algebra generată de blocuri se notează cu A . O mulţime de tipul A= prI-1

(B) cu B  k *I+ se numeştecilindru. Evident că orice bloc este şi cilindru. 

Lema 6. (i) Dacă I K atunci prI

K

prK = prI. Dacă A= prI-1

(B) cu B  k [I] atunci

(21) A = prK-1(B[K\I])

(ii). Mulţimea c  a tuturor cilindrilor este o algebră.

(iii). Dacă A este un cilindru şi    are proprietatea că A(n())    n1, atunci   A.

(iv). A   c  şi (A )=(c )= k  

Demonstraţie. (i).Fie . Atunci prK()= K   prI

K

(prK()) = prI

K

(K) = (K)I = I =prI(). Atunci

A = (prI

K

prK)-1(B) = (prK)-1((prI

K

)-1(B)) = prK-1(B[K\I]).

(ii).Fie A = prI-1(B) şi A’ =prK

-1(D) doi cilindri. Fie n destul de mare ca I K  1,2,...,n-. Atunci, aplicînd

primul punct, putem scrie A = n-1(B) şi A’=n

-1(C*) cu B*, C*  k [1,2,..,n]. Rezultă atunci că A  A’ =

n-1

(B*C*) adică AA’ este de asemenea un cilindru. Faptul că Ac

este cilindru este imediat deoarece

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 89/139

(prI-1

(B))c= prI

-1(B

c).

(iii). Fie n suficient de mare ca A să se poată scrie sub forma A=n-1(B) cu B k [1,2,..,n]. Rezultă că A

 n() B (1,2,...,n) B. Fie atunci k > n. Dacă A(k())   rezultă că există (y j) j>k ca

(1,2,...,k,yk+1,yk+2,...) A (1,...,n) B    A. (iv) este evident.  

Definim acum probabilitatea produs = j J j pe algebra c  a cilindrilor astfel

(22) A c , A= prI-1

(B) cu B  k [I]  (A) = [I](B)

Lema 7. Relaţia (22) defineşte o măsură finit aditivă pe c . Ea are proprietatea că 

(23) I finită    (prI)-1

= [I]

Demonstraţie. Trebuie arătat că definiţia (22) nu este contradictorie, adică dacă A se scrie în două feluri

A = prI-1

(B)= prK-1

(C)  [I](B)=[K](C). Fie n destul de mare ca I K {1,2,...,n}. Din (21) A se scrie sub

forma A=n-1

(B*) = n-1

(C*) cu B*= B[{1,2,...,n}\I], C* = B[{1,2,...,n}\K+. Cum funcţia n-1

: p 

([{1,2,...,n}]) p () este injectivă, avem că B = C. Aplicînd atunci (19) cun  în loc de găsim că 

n(B*) = [I](B) iar n(C*) = [K](C) . Cum B*=C* rezultă că [I](B)=[K](C) deci este bine definită.  

Fie acum [n,] = *n,n1,....-+ şi a  n algebra generată de blocurile spaţiului [n,+ Aşa cum

am definit măsura finit aditivă  pe a definim şi măsurile finit aditive n pe a  n . Deci 1= şi 

(24) I {n,n+1,..} finită  n( j I

A j) =  j I

 j(A j) A j  k j 

Lema 8. Dacă A  a  atunci

(25) (A) = n+1(A(1,2,...,n)) dn(1,2,...,n)

pentru orice n 1.

Demonstraţie. Mulţimea A este o reuniune finită de blocuri disjuncte. Cum n+1 este o măsură finit

aditivă pe a  n+1 este suficient de verificat (25) pentru blocuri. Fie deci A=A1A2...Akk+1... . Apar

două cazuri. Dacă n < k atunci

A(1,...,n) =

A A daca A j n

daca j n ca A

n k k j j

 j j

1 1 1

1

... ...

deci n+1(A(1,2,...,n)) =

n+1(An+1)...k(Ak) 1 1 1

1 21 2A A A nn ...

de unde rezultă că  n+1(A(1,2,...,n))

dn(1,2,...,n) = n+1(An+1)...k(Ak) n(A1...An) =  j

1  j(A j) = (A).

Dacă n k atunci n+1(A(1,2,...,n)) = 1 1 1

1 21 2A A A k  k  ...

  şi rezultatul este acelaşi.  

Corolar 9. Dacă A a  n atunci

(26) n(A) = n+1(A(n)) dn(n)

Demonstraţie. Este un caz particular al lui (25) pentru n=1.  

Propoziţia 9. (Kolmogorov). este -aditivă pe a .

Demonstraţie. Vom verifica criteriul lui Kolmogorov din Cursul 3. Fie (An)n un şir descrescător de

mulţimi din a cu proprietatea că  n

1

An = . Trebuie să arătăm că limn (An) = 0. Vom demonstra

aceasta prin absurd. Să remarcăm că şirul ((An))n este descrescător. Dacă limita sa nu ar fi egală cu 0, ar

trebui ca să existe un >0 ca (An)>  n 1. Din (25) avem

(27) (An) = 2(An (1)) d1(1) n1

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 90/139

  Şirul (2(An (1)))n este de asemenea descrescător, deci din teorema Beppo-Levi

limn (An) = limn 2(An (1)) d1(1) > 0 . Atunci există 11 ca limn 2(An (1)) > 0. Aplicînd

acum (26) găsim că limn 2(An (1)) = limn  3(An (1,2)) d2(2) =

limn 3(An (1,2)) d2(2) > 0 deci există un 22 ca limn 3(An (1,2)) > 0. Aplicîndsuccesiv (26) găsim un şir =(k)k1 ca

(28) limn k+1(An (1,2,...,k)) > 0 k 1

deci k+1(An (1,2,...,k)) > 0 k,n 1 de unde

(29) An (1,2,...,k)    k,n 1

Toate mulţimile An sunt cilindri. Din Lema 6(iii) rezultă atunci că   An  n deci    n

1

An. Înseamnă 

că  n

1

An   ceea ce contrazice ipoteza.  

Teorema 10. Există o probabilitate  pe spaţiul măsurabil (,k ) cu proprietatea că ( j J

A j) =  j J

 j(A j) A j  k  j deci în cazul J=1,2,...- probabilitatea produs= j J j există.

Demonstraţie. Din Teorema lui Caratheodory măsura definită pe algebra generată de blocuri din

Propoziţia 9 se extinde în mod unic la o probabilitate pek . Dacă (A j) j este un şi de mulţimi, A j  k  j atunci

( j J

A j) = (

( ... )An

 j j n

n1

1

1

) = limn

( ...)A j j n

n1

1

(deoarece intersecţia este

descrescătoare) = limn

( )A j j n1

(deoarece

( ...)A j j n

n1

1

sunt blocuri) = j J

 j(A j).  

Produs tensorial de densităţi. 

Ne va interesa acum răspunsul la următoarea întrebare: să presupunem că (i)1in sunt măsuri

-finite pe spaţiile măsurabile (i, k i). Fie (i)1in alte măsuri pe aceleaşi spaţii astfel ca i<<i  1in.

Fie =1...n şi = 1...n . Mai este absolut continuă faţă de ? Dacă da, care este

densitatea d/d?

Propoziţia 11. Fie i=di/di. Atunci << şi dacă notăm cu densitatea d/d, atunci

(30) (1,2,...,n) = 1(1)2(2)...n(n) (mod )

Demonstraţie. Vom arăta că  =  de unde va rezulta şi că << datorită unicităţii produsului tensorial.

Fie A k 1 k 2...k n. Atunci, din definiţia produsului măsurilor avem (A) = 1Ad1...n =

... 1A(1,2,...,n)d1(1)d2(2)...dn(n) (din teorema Fubini)

=

...

1A(1,2,...,n)d(11)(1)d(22)(2)...d(nn)(n)

= ... 1A(1,2,...,n)1(1)2(2)...n(n) d1(1)d2(2)...dn(n) (căci întotdeauna fd() =

f d ) = 1Ad1...n = ()(A).  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 91/139

Definiţie. Funcţia definită la (30) se numeşte produsul tensorial al funcţiilori.

Caz particular : toate spaţiile probabilizate coincid.Shiftul. 

Vom nota atunci spaţiul probabilizat produs cu (

,k 

,

). Probabilitatea

 o vom nota şi cu P. 

Definiţie. Funcţia t :    dată de

(31) t(1,2,....) = (2,3,...) (sau prin proiecţii : pr jt = pr j+1  j 1)

se numeşte shift.

Propoziţia 12. Shiftul este (k 

, k 

) măsurabil şi invariază măsura P: Pt-1

=P. Mai mult, shiftul t este o

aplicaţie ergodică.

Demonstraţie. Fie A = A1A2...An.... un bloc. Atunci t-1(A)=A1A2...An... deci

preimaginea oricărui bloc este de asemenea un bloc. Rezultă că t-1

(a )  k , de unde rezultă că avem

t-1(k ) = t-1((a )) = (t-1(a ))  ( k 

) = k . Deci dacă A este un bloc, Pt

-1(A)=()(A1)...(An) =

(A1)...(An) = P(A). Cele două probabilităţi, P şi Pt-1 coincid pe blocuri ; acestea formează un sistem de

generatori stabil la intersecţii finite pentru k 

deci P = Pt-1

. Arătăm acum că t este ergodică. Din

exerciţiul 1 curs 8 rezultă că este suficient de verificat că 

(32) E,F blocuri  

lim

( ) ( ) ... ( )

n

nP F E P F t E P F t E

n

1

1 = P(E)P(F)

ceea ce rezultă imediat din faptul că P(Ft-n

(E)) devine chiar egal cu P(E)P(F) dacă n este destul de

mare.  Corolar 12. Fie f :    o funcţie din L1(P). Atunci

(33)lim

...

n

nf f t f t

n

1 =fdP

 

convergenţa avînd loc atît aproape sigur cît şi în L1(P).

Demonstraţie. Este un caz particular al teoremei ergodice (Corolar 12) din cursul alterior.  

Exerciţii. 

1. Dacă f : 12  nu este 12 integrabilă, se poate ca integralele iterate să nu coincidă. Fie

1=2=[0,) şi 1 = 2 = = măsura Lebesgue. Fie d1, d2 şi d3 semidreptele paralele cu prima bisectoare a

primului cadran care pleacă din punctele (1,0), (0,0) şi (0,1). Definim f = 1A - 1B unde A este fîşia

cuprinsă  între d1 şi d2 iar B este cea cuprinsă  între d2 şi d3. Atunci

(

f(x,y)d(y))d(x) = -.5 iar

(

f(x,y)d(x))d(y) = .5

2. Să se arate că dacă , sunt măsuri -finite pe spaţiile măsurabile (X,b ), (Y, c ) şi f:X, g:Y 

sunt măsurabile şi pozitive, atunci f gd() = ( fd)( gd). Generalizare.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 92/139

 

Curs 10. Spaţii probabilizate. 

Vom aplica acum cunoştinţele acumulate despre un spaţiu cu măsură  în cazul unui spaţiu

probabilizat (,k ,P) . Mai întîi să trecem în revistă ce le individualizează printre spaţiile cu

măsură. Ca o problemă de notaţie: variabilele aleatoare se noteză mai frecvent cu litere

majuscule (X,Y,Z...) decît cu minuscule (f,g,...). Noi vom folosi ambele notaţii.  

Proprietatea 1. Operatorul de integrare f  fdP se notează cu Ef sau, dacă este pericol de

confuzie asupra probabilităţii P, cu Epf. El are proprietatea fundamentală că invariază 

constantele : Ea = aP() = a a. Deci toate constantele sunt în L1(,k ,P). De aceea

(1) a f  b (mod P) a Ef  b

adică Ef este o valoare situată  între essinf (f) şi esssup(f) unde 

(2) essinf(f) = sup{a f  a (mod P)}, esssup(f) = inf{b f  b(mod P)}

Acesta este un motiv pentru care Ef se numeşte media (teoretică) a variabilei aleatoare f .

Notaţia E provine de la “Expectation” (în engleză), “Esperance” (în franceză) sau

“Erwartungswert” (în germană) şi semnifică “valoarea medie aşteptată / prezisă“ pentru f. Altmotiv pentru a gîndi Ef ca o medie este că dacă f este o variabilă aleatoare simplă scrisă  în forma

canonică f =

x j A j

n

 j1

1

(deci A j ={f = x j} ) atunci Ef =  j

n

1 x jP(A j) este într-adevăr o

medie ponderată a valorilor (x j) j deoarece  j

n

1 P(A j) = 1.

Proprietatea 2. Inegalitatea mediilor. Dacă 1p<q atunci ║f ║p  ║f ║q. Rezultă imediat din

inegalitatea lui Hölder : (║f ║p) p

= E(f p)║f p║q/p║1║q/(q-p) = (E(f q

))p/q

 ║f ║p  ║f ║q (în

cazul q<). Dacă q= este o consecinţă imediată a lui (1). O consecinţă a acestei inegalităţi este

că spaţiile vectoriale (Lp(,k ,P))1p formează o familie descrescătoare. Dacă există o infinitate

de mulţimi de probabilitate strict pozitivă disjuncte, atunci aceste spaţii sunt toate diferite iar

intersecţia lor este diferită de L

(,k ,P). Într-adevăr, există atunci un şir de mulţimi (An)n1 

disjuncte ca 0 < P(An)<

1

n ! . Atunci pentru orice 1p<q< variabilele aleatoare f =

1

2

11

A

n

npn

n

P A

 

este în Lp(,k ,P) dar nu în Lq

(,k ,P) iar variabila aleatoare f =n A

nn

11

este în toate spaţiile

Lp(,k ,P) cu p   dar nu în L

(,k ,P).  

Definiţie. Momente. Fie X o variabilă aleatoare şi n un număr natural. Dacă E(Xn) <  

spunem că X are moment de ordin n. Numărul E(Xn) se numeşte momentul de ordin n al lui X;

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 93/139

E(Xn) este momentul absolut de ordin n al lui X; E((X-EX)

n) este momentul centrat de ordin n

iar E(X-EXn) este momentul centrat absolut de ordin n. Inegalitatea mediilor arată că dacă o

variabilă aleatoare are moment de ordin n atunci are momente de orice ordin k n. Există 

cazuri în care cunoaşterea momentelor determină cunoaşterea repartiţiei PX-1(problema

momentelor) dar nu insistăm aici.

Proprietatea 3. Inegalitatea lui Jensen. Fie X L1(,k ,P) o variabilă aleatoare şi I un intervaldeschis cu proprietatea că Im(X) I. Fie f : I   o funcţie convexă. Atunci

(3) f(X) L1(,k ,P) Ef(X) f(EX)

Pentru demonstrarea proprietăţii 3 avem nevoie de unele rezultate privind funcţiileconvexe peste care cititorul familiar cu noţiunea de convexitate poate să treacă.

Definiţie. Fie I   un interval deschis. Funcţia f : I   se numeşte convexă dacă 

(4) 0p1, x,yI f((1-p)x+py) (1-p)f(x) + pf(y)

Lema 1. Fie f : I   convexă. Atunci

(i). Funcţia da: I \ {a}   dată prin relaţia da(x) =

f x f 

x a

( ) (a) este crescătoare. În particular,

da(a-0) da(a+0).

(ii). Funcţia f este continuă, deci măsurabilă Borel.

(iii). Pentru orice m [da(a-0),da(a0)+ funcţia h(x) = f(a) m(x-a) are proprietatea că h f.

(iv). Fie f = { h:I    h este afină şi h f } . Atunci f(x) = sup { h(x)h  f }

Demonstraţie. (i). Fie x1< x2 . Arătăm că da(x1)da(x2). Pot apare trei situaţii.

Cazul 1. a x1 < x2. Fie p=

x a

x a

1

2

. Atunci x1=(1-p)a + px2 deci

da(x1) =

f x f 

x a

( ) (a)1

1

=

f p px f  

p x a

(( )a ) (a)1 2

2

   

1 2

2

p f a pf x f a

p x a =

f x f 

x a

( ) (a)2

2

 

= da(x2).

Cazul 2. x1 < x2  a. Analog, dar acum x2=(1-p)x1 + pa cu p =

x x

a x

2 1

1

.

Cazul 3. x1 < a < x2. Acum a = (1-p)x1 + px2 cu p =

a x

x x

1

2 1 . Inegalitatea da(x1) da(x2) este

echivalentă cu

f a f x

a x

1

1    

f x f a

x a

2

2

   

f a f x

p

1

   

f x f a

p

2

1

ceea ce este

echivalent cu f(a) (1-p)f(x1) + pf(x2) ceea ce este adevărat datorită definiţiei convexităţii. 

(ii). Fie a

I. Cum I este deschis, există x

1, x

I ca x

1< a < x

2. Fie x

(x

1, x

2), x

a. Din (i), ştim că 

da(x1) da(x) da(x2) adică 

f x f a

x a

f x f a

x a

f x f a

x a

1

1

2

2

. Notînd cu A expresia din

stînga şi cu B pe cea din dreapta găsim că x (x1, x2), xa A  

f x f a

x a

  B deci pe

intervalul (x1, x2) funcţia f este chiar lipschitziană deci continuă.

(iii). Fie m ca în enunţ. Inegalitatea h(x) f(x) este echivalentă cu f(x)-f(a) m(x-a). Dacă x a

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 94/139

aceata este echivalentă cu da(x) m ceea ce este adevărat deoarece m da(a0) da(x) . Dacă x <

a inegalitatea este echivalentă cu da(x) m care rezultă din nou din (i): da(x)da(a-0)m.

(iv).Este evident deoarece h de la (iii) are proprietatea că ha=f(a). x (x1, x2)  

Demonstraţia inegalităţii lui Jensen. Folosim ultimul punct al Lemei 1. Avem

Ef(X) = E (sup { h(X)h  f }) sup {E( h(X))h  f }. Dar dacă h este afină, atunci h(x)=ax+b cu

a,b   E(h(X)) = E(aX+b) = aEX + b (datorită liniarităţii operatorului de integrare şi

Proprietăţii 1) = h(EX). Înseamnă că sup {E( h(X))h  f } = sup { h(E(X))h  f } = f(EX) (datorită 

lui (iv) din Lema 1).  

Proprietatea 4. Dispersia. Proprietatea de optim a mediei.

O consecinţă a inegalităţii lui Jensen este că E(X2) (EX)

2pentru orice variabilă 

aleatoare X L2(,k ,P) (nu avem decît să luăm funcţia convexă f(x)=x

2 ). În acest caz cantitatea

(4) (X) = ║X-EX║2 

se numeşte dispersia lui X. Variabilele aleatoare din L1(,k ,P) se numesc variabile aleatoare

care au medie iar cele din L2(,k ,P) sunt variabile aleatoare care au dispersie. Pătratul

dispersiei se numeşte varianţa lui X şi se notează Var(X). Ţinînd seama că operatorul de medie

invariază constantele este imediat de verificat că 

(5) Var(X) = E((X-EX)2) = E(X

2-2XEX +(EX)

2) = E(X

2) - (EX)

O întrebare este următoarea: dacă am înlocui X cu o constantă a (la urma urmei X fiind

variabilă aleatoare nu putem şti ce valoare va lua!), care este “constanta cea mai bună” la care

putem spera? În limbaj natural : care este constanta “optimă” ? Evident că răspunsul depinde

de criteriul de optim ales. Dacă  îl alegem să fie norma din L2 atunci întrebarea are următorul

sens precis:

Să considerăm funcţia f:   dată de f(x) = ║X-x║2. Care este constanta x pentru care f este

minimă?

Propoziţia 2. Funcţia f de mai sus îşi atinge minimul în x=EX şi f min = (X).

Demonstraţie. Funcţia f îşi atinge minimul o dată cu f 2

iar f 2 este o funcţie de gradul 2, f 2(x) =

x2-2xEX + (EX)

2. Deci xmin = EX.  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 95/139

 

Observaţie. Din punct de vedere terminologic, “dispersie” înseamnă “împrăştiere în jurul valorii

medii”. Formula (4) este un candidat pentru a măsura acest lucru deoarece (X)=0 X =

EX (mod P) deci X este aproape sigur constantă. Singurele variabile aleatoare cu dispersie 0 sunt

constantele (mod P). În teoria probabilităţilor suntem interesaţi de a măsura “cît de aleatoare

este o variabilă aleatoare”. Dispersia este un instrument de măsură util (nu şi unicul). 

Propoziţia 3. Inegalitatea lui Cebîşev. Fie X o variabilă aleatoare care are dispersie. Atunci

(6) P(X-EX>a)  

2

2

X

a  

deci dacă a = k(X) avem

(7) P(X-EX>k(X))

12

k   

Demonstraţie. 2(X) = (X-EX)

2dP (X-EX)

2 1X EX a dP a

2P(X-EX>a).  

Deci putem estima probabilitatea ca X să se abată de la media sa cu k dispersii. Inegalitatea lui

Cebîşev, fiind foarte generală, este şi cea mai slabă. Pentru repartiţii speciale folosite înstatistică, ea se poate îmbunătăţi foarte mult. De exemplu, pentru k=3 (7) devine 

P(X-EX>3(X))1/9  11.1%. La multe repartiţii se poate coborî acest prag pînă la 1%. Oricum,

inegalitatea Cebîşev arată că o variabilă aleatoare este cu atît mai “previzibilă” cu cît dispersia saeste mai mică. De aceea calculul dispersiei unei variabile aleatoare ce trebuie studiată este

printre primii paşi care trebuie făcuţi Observaţie. Să revenim la inegalitatea lui Jensen. Şi aici dispersia are o anumită semnificaţie. Să 

presupunem că funcţia convexă f este derivabilă de două ori . Atunci este interesantă şiurmătoarea demonstraţie a inegalităţii lui Jensen care ne arată cît de mare este abaterea întref(EX) şi E(f(X)). 

Propoziţia 4. Presupunem că X are dispersie . Fie I un interval deschis ca Im(f) I. Să 

presupunem că f:I   este derivabilă de două ori şi m  f ”(x) M . Atunci

(8) m 2(X) Ef(X) - f(EX) M2

(X)

Demonstraţie. Fie a=EX. Dezvoltăm în serie pe f în jurul lui a: f(x)=f(a)f’(a)(x-a)f”((x))(x-a)2/2

cu (x) undeva între a şi x. Atunci f(X) = f(a) f’(a)(X-a)f”((X))(X-a)2/2. Integrînd această 

identitate după măsura P găsim Ef(X) = f(a) f’(a)E(X-a) E(f”((X))(X-a)2)/2. Cum a = EX al doilea

termen dispare şi găsim că Ef(X)-f(a) = E(f”((X))(X-a)2)/2. Restul rezultă din: observaţia că 

m(X-a)2  f”((X))(X-a)

2  M(X-a)

2.  

Repartiţia unei variabile aleatoare. Funcţia de repartiţie. 

Fie X o variabilă aleatoare. Probabilitatea X = PX-1

 se numeşte repartiţia lui X. Orice

repartiţie, fiind o măsură Stieltjes, are o funcţie de repartiţie definită  în cursul 4: F(x) =FX(x) =

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 96/139

X((-,x+). Ea se numeşte, prin abuz de limbaj, funcţia de repartiţie a variabilei aleatoare X.

Deci

(9) FX(x) = P({X x})

 În cazul în care X << (măsura Lebesgue) şi X = dX/d, atunci X se numeşte, tot prin abuzde limbaj, densitatea variabilei aleatoare X. Se mai spune şi că X are densitate. Este evident că 

dacă FX este derivabilă pe porţiuni, derivata F’X poate fi luată ca X.

Ca un mijloc de cverificare a calculelor, este utilă următoarea observaţie: dacă  este o

densitate de probabilitate, atunci trebuie ca

(x)dx = 1.

Observaţie.  În problemele de teoria probabilităţilor şi statistică nu ne interesează forma

concretă a variabilei aleatoare X şi nici spaţiul probabilizat (,k ,P) ci numai funcţia sa derepartiţie. Dacă o cunoaştem spunem că X este probabilistic determinată . De obicei acesta

este un caz rar. Cunoaşterea lui FX implică posibilitatea calculelor în care este implicată X, prinformula de transport.

Propoziţia 5. Fie X o variabilă aleatoare, X repartiţia sa şi F funcţia sa de repartiţie. Fie f: 

o funcţie măsurabilă.

(i). E(f(X)) = fdX ;

(ii). Dacă f este continuă şi f(X) este integrabilă, atunci E(f(X)) =

f(x)dF(x)

unde

f(x)dF(x) înseamnă 

lima ,b a

b

f(x)dF(x) (integrala Stieltjes-Riemann improprie) iar

a

b

f(x)dF(x) înseamnă lim (f(0)(F(x1)-F(x0))+ f(1)(F(x2)-F(x1))+... +f(n-1)(F(xn)-F(xn-1))) adică limitasumelor Stieltjes-Riemann (a=x0<x1<....<xn=b este o diviziune a intervalului compact [a,b],

 j[x j,x j+1+ ) cînd norma diviziunii tinde la 0, în sensul studiat în anul I. 

(iii). EX =

xdF(x) şi 2

(X) =

(x-EX)

2dF(x)

(iv). Dacă X << (măsura Lebesgue) şi X = dX/d  atunci Ef(X) =

f X d; dacă, în plus f şi

X sunt continui pe porţiuni, atunci Ef(X) =

f(x)X(x)dx în sensul integralei Riemann

obişnuite. Deci în acest caz se obţine formula mai simplă 

EX =

xX(x)dx şi 2

(X) =

(x-EX)

2 (x)dx.

(v). Dacă X este discretă, X =

p j x

 j 1 j

 

atunci Ef(X) =

p j

 j 1

f(x j). În particular, EX =

p j

 j 1

 j iar

2(X) =

p j

 j 1

(j-EX)

2. De obicei, în loc de notaţia X =

p j x

 j 1 j

 

se preferă notaţia mai intuitivă X

  x x x

  p p p

1 2 3

1 2 3

...

...

 

 

 

 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 97/139

Demonstraţiile se bazează pe formula de transport şi pe egalitatea între integrala Lebesgue şicea Stieltjes-Riemann pentru funcţii mărginite şi continui pe porţiuni. Sunt lăsate ca exerciţii.

O regulă de calcul a momentelor pentru variabile aleatoare cu valori întregi nenegative.

Funcţia generatoare de momente.

Vom presupune aici că X

0 1 2

0 1 2

...

...  p p p

 

 

 

. Funcţia X :[0,1]   dată prin

(10) X (t) = E(tX)

se numeşte funcţia generatoare a lui X. (Convenţie : 00= 1 ! ).

Propoziţia 6. Fie X o variabilă aleatoare cu valori numere naturale şi = X funcţia sa

generatoare. Atunci are următoarele proprietăţi: 

(i). 0 t 1  (t) = n

0 pnt

ndeci (0) = p0 = P(X=0), (1) = 1 .

(ii). este convexă, crescătoare, şi analitică pe [0,1].(iii). EX = ‘(1), E(X2

) = “(1) ‘(1), 2(X) = “(1) ‘(1) - (‘(1))2

 (unde derivatele înseamnă 

derivatele la stînga) 

Demonstraţie. (i): (t) = E( n

0 t

n1{X=n}) = n

0 E(t

n1{X=n}) (Beppo-Levi !) = n

0 t

nP(X=n) =

n

0 pnt

n. Deci (1) = n

0 pn = 1 de unde vedem că t = 1 este în interiorul domeniului de

convergenţă al seriei de puteri . (ii) şi (iii): Din anul I se ştie că o serie de puteri se poate deriva

termen cu termen în domeniul său de convergenţă. Deci ‘(t) =n

1

npn t

n-1

, “(t) =n

2

n(n-1)pntn-2. Înseamnă că ‘(1)= n

0 npn = EX (din Propoziţia 5(v)) etc.  

Variabile aleatoare pozitive. Metodă de calcul a momentelor. 

Prezentăm o aplicaţie spectaculoasă a teoremei lui Fubini, care ne permite să  înlocuim

integrala Stieltjes-Riemann cu integrala Riemann, care este mai uşor de folosit. 

Fie X o variabilă aleatoare pozitivă, F funcţia sa de repartiţie şi f:*0,)   o funcţie

derivabilă cu derivata continuă cu proprietatea că f(X) are medie. Fie de asemenea = PX-1 

repartiţia lui X. 

Propoziţia 7. Cu notaţiile de mai sus avem 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 98/139

(11) Ef(X) = f(0) + 0

f’(f)(1-F(t))dt

unde integrala este integrală Riemann improprie.

Demonstraţie. Din formula Leibniz - Newton f(x)-f(0) = 0

x f’(t)dt = f’1[0,x]d (pentru funcţii

contiunui integrala Riemann coincide cu integrala Lebesgue) = f’1[0,x)d (deoarece măsura

Lebesgue neglijează punctele) . Apoi, din formula de transport Ef(X) = f(x)d(x) . Înlocuind pe

f(x) cu f(0)+ f’1[0,x)d găsim f(x)d(x) = ( f(0)+ f’1[0,x)d)d(x) = f(0) + (f’1[0,x)d)d(x)

= f(0) + f’1Ad cu A ={(t,x)0t<x, x0} (teorema Fubini)

= f(0) + ( f’(t)1[0,x)(t)d(x))d(t) (am inversat ordinea de integrare conform teoremei

Fubini)

= f(0) +

  f’(t)(

1[0,x)(t)d(x))d(t) = f(0) +

  f’(t)(

1(t,)(x)d(x))d(t) (deoarece

1[0,x)(t) = 1 t<x x>t 1(t,)(x) = 1 )

= f(0) +

  f’(t)((t,))d(t) = f(0) +

  f’(t)(1-F(t))d(t)

= f(0) + 0

f’(f)(1-F(t))dt (am înlocuit integrala Lebesgue cu integrala Riemann).  

Corolar 8. Cazuri particulare. Dacă păstrăm notaţiile din propoziţia anterioară, atunci

(12) EX = 0

(1-F(t))dt = 0

P( X>t )dt

(13) EX = 0

(P(X>t) + P(X<-t))dt

(14) E(X2) = 0

2tP(X>t)dt

Demonstraţie. (12) este (11) cu f(t)=t ; (13) este (12) unde am înlocuit variabila aleatoare X cu

X şi am folosit faptul evident că P(X>t) = P(X>t) + P(X<-t). În sfîrşit, (14) este (11) cu f(t)=t2.

Interpretare geometrică. Analizînd formula (12) se vede că  în cazul unei variabile aleatoarepozitive EX este aria cuprinsă  între graficul lui F, axa Oy şi dreapta y=1.

Mediana. Proprietatea de optim a medianei. 

Analizînd Proprietatea 4, ne putem pune întrebarea dacă nu cumva, schimbînd criteriul

de optim nu există alte constante “mai bune” decît media. Într-adevăr, aşa stau lucrurile. Dacă 

vom considera criteriul de optim ca fiind ║.║1  în loc de ║.║2 vom găsi altă caracteristică 

numerică a unei variabile aleatoare : mediana.

Fie X o variabilă aleatoare. Considerăm funcţia h:   dată de

(15) h(t) = ║X-t║1 = E(X-t)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 99/139

Cum h(t)-h(s) = ║X-t║1-║X-s║1  ║(X-t)-(X-s) = t-s, funcţia h este continuă . Ne

interesează minimul lui h şi, mai ales, unde se atinge. 

Propozţia 9. Fie a=sup{t  F(t) < 1/2 - şi b = inft  F(t) > 1/2 }

(i).Pe intervalul (-,a) funcţia h scade iar pe intervalul (b,) creşte. 

(ii).Dacă a=b atunci a este unicul punct de minim al lui h. El are proprietatea că F(a)=1/2.

(iii).Dacă a<b atunci F(t)=1/2 pentru orice a t b .

Demonstraţie. Fie  repartiţia lui X. Atunci

h(t) = x-td(x) = (t-x)1(-,t](x)d(x) + (x-t)1(t,)(x)d(x)

= tF(t) - x1(-,t ](x)d(x) + x1(t,)(x)d(x) - t(1-F(t)) =

= 2tF(t) - t - EX + 2 x1(t,)(x) d(x) (căci EX = x1(-,t](x)d(x) + x1(t,)(x)d(x) )

Fie acum s < t. Atunci h(t)-h(s) = 2tF(t) - 2sF(s) -(t-s) - 2( x1(s,)(x) d(x) - x1(t,)(x) d(x)) =

2F(t)(t-s) + 2s(F(t)-F(s)) - (t-s) - 2 x1(s,t](x) d(x) (am scăzut şi am adunat 2sF(t)) = (2F(t)-1)

(t-s) + 2s(F(t)-F(s)) - 2 x1(s,t](x) d(x) de unde, cum F(t)-F(s) = ((s,t]) = 1(s,t](x) d(x)

rezultă 

(16) s < t h(t) - h(s) = (2F(t)-1) (t-s) +2 (s-x)1(s,t](x) d(x)

Calcule analoge, dar cu artificiul “scade şi adună 2tF(s)” ne duc la

(17) s < t h(t) - h(s) = (2F(s)-1) + 2 (t-x)1(s,t](x) d(x)

Dacă F(s)>1/2 atunci (17) arată că h(t)>h(s). Cu alte cuvinte pe intervalul (s,) h este crescătoare

dacă ştim că F(s)>1/2. Dacă F(t)<1/2, atunci (16) ne arată că h(t)<h(s) adică h este

descrescătoare pe intervalul (-,t] dacă F(t)<1/2.  

Definiţie. Mărimea M(X) =

a daca a b

a bdaca a b

2   se numeşte mediana variabilei aleatoare X.

Mediana este deci cea mai bună constantă cu care putem aproxima pe X în L1(P). Un avantaj al

medianei este că ea există  întotdeauna. Dezavantaje: nu este unică (dacă ab puteam alege

drept M(X) orice număr c*a,b+ şi se lucrează mai greu cu ║.║1 decît cu ║.║2 (operaţiile cu

modul sunt întotdeauna mai complicate decît cele care implică pătrate. Pentru calculator, însă 

acest dezavantaj nu există. Există tendinţa ultimilor ani de a se face statistică şi cu mediana, nunumai cu media.

Curs 11. Independenţa . Legea numerelor mari. 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 100/139

 

Fie (, k , P) un spaţiu probabilizat şi ( m i)iI mai multe familii de submulţimi ale lui k indexate

după o familie arbitrară de indici I.

Definiţie.Familiile de mulţimi ( m i)iI sunt independente dacă pentru orice JI finită şi orice sistem de

mulţimi A j   m  j  j J avem că P(  j J

A j) =  j J

P(A j).

Observaţii imediate. 

1. Dacă ( m i)iI sunt independente şi J I atunci familiile ( m i)iJ sunt de asemenea independente.

2. ( m i)iI sunt independente ( m i)iJ sunt independente J I finită.

3. Dacă ( m i)iI sunt independente şi n i  m i atunci (n i)iI sunt de asemenea independente.

4. Dacă ( m i)iJ conţin toate spaţiul total  şi J este finită, atunci

(1) ( m i)iJ sunt independente P(  j J

A j) =  j J

P(A j) pentru orice A j   m  j .

5. ( m i)iI sunt independente ( m i {})iJ sunt independente

Singura mai puţin evidentă este observaţia 4. Trebuie demonstrat că P(  j K

A j) =  j K

P(A j)

pentru orice K  J şi A j   m  j . Dar noi putem completa familia de mulţimi (A j) jK şi pentru indici care nu

sunt în K punînd jK A j =  şi să folosim faptul că P()=1: P( j K A j) = P(  j J A j) =  j J P(A j) =(

 j K

P(A j))(  j K

P()) = j K

P(A j) . Observaţia 5 se demonstrează la fel.

-Algebre independente.

Propoziţia 1. Fie ( m i)iI  independente şi ( m i) U-sistemele generate de ele. Atunci (( m i))iI sînr de

asemenea independente. În consecinţă dacă  m i =( m i)d, atunci (( m i))iI vor fi -algebre independente.

Demonstraţie. Conform cu Observaţia 2 este suficient să presupunem I finită. Deci I={1,2,...,n}.

Din Observaţia 5 putem presupune că   m i  1 in. Fie

(2) e 1 ={A1  k   P(A1A2...An) = P(A1)P(A2)...P(An) A j  m  j, j2}

Din ipoteză rezultă că  m 1 e 1. Arătăm că e 1 este un U-sistem. Într-adevăr  e 1  în mod evident. Dacă 

A1  e 1 atunci P(A1c A2...An) = P(A2...An \ A1A2...An) = P( A2...An) - P(A1A2...An) =

P(A2)...P(An) - P(A1)P(A2)...P(An) (căci ( m i)i2 sunt independente) =(1-P(A1)) P(A2)...P(An)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 101/139

= P(A1c)P(A2)...P(An) deci A1

c  e 1 . În sfîrşit, dacă (A1,j) j sunt disjuncte şi A1,j e 1 atunci,notînd cu A1 

reuniunea lor avem P(A1A2...An) = j 1

P(A1,jA2...An) (căci (A1,jA2...An) j este de

asemenea un şir de mulţimi disjuncte) =  j 1

P(A1,j)P(A2)...P(An) = ( j 1

P(A1,j)) P(A2)...P(An)

= P(A1)P(A2)...P(An) deci A1  e 1 . În concluzie e 1  este într-adevăr un U-sistem care conţine pe  m 1 

deci conţine şi ( m 1 )adică, ţinînd seama de observaţia 4 rezultă că 

(3) ( m 1 ),  m 2, m 3, .... m n sunt independente.

Fie acum

(4) e 2 ={A2  k   P(A1A2...An) = P(A1)P(A2)...P(An) A j  m  j, j3, A1 ( m 1 ) }

Ca mai sus se arată că e 2 este un U-sistem . Din (3) rezultă că  m 2  e 2   ( m 2) e 2 deci

(5) ( m 1 ), ( m 2 ), m 3, .... m n sunt independente.

Repetînd acest raţionament din aproape în aproape rezultă că 

(6) ( m 1 ), ( m 2 ),( m 3), ....( m n ) sunt independente

adică exact ce doream. Restul rezultă din Propoziţia 8 Curs 1 : U-sistemul generat de o familie stabilă 

la intersecţii finite coincide cu -algebra generată.  

Probabilitate condiţionată. Argument pentru cuvîntul “independent”. 

Să luăm cazul cel mai simplu. m 1 şi m 2 au o singură mulţime : m 1 ={A}, m 2 ={B}. Atunci, conform

definiţiei m 1 şi m 2 sunt independente P(AB) = P(A)P(B). Ppropoziţia 1 ne arată că atunci şi

U-sistemele generate - deci {,A,Ac,- şi ,A,Ac,} vor fi independente. În mod tradiţional spunem

atunci că “Evenimentele A şi B sunt independente”. Întrebarea este: ce legătură este între acest concept

matematic şi cel din limbajul obişnuit? 

Definiţie. Presupunem că P(A)0. Atunci numărul P(AB)/P(A) se numeşte probabilitatea lui B

condiţionată de A şi se notează PA(B) sau P(BA).

Este evident faptul că probabilitatea condiţionată de A privită ca o funcţie PA: k  [0,1] (deci

dată prin PA(B) = P(AB)/P(A) este o nouă probabilitate pe spaţiul măsurabil (,k ). De ce se numeşte

aşa? 

Este bine să gîndim probabilitatea unui eveniment ca o frecvenţă idealizată, un procentaj, o

proporţie. Aşa o gîndesc oamenii de ştiinţă care o aplică : fizicienii, biologii, chimiştii. De exemplu

“Probabilitatea ca un nou născut să fie băiat” este, mai mult sau mai puţin (discuţia este mai lungă,se va relua la cursul de statistică) raportul dintre numărul băieţilor născuţi pe glob într-un interval de

timp - de exemplu o lună sau un an - şi numărul total de nou născuţi în aceeaşi perioadă (fiindcă veni

vorba, acesta este un număr inexplicabil de stabil : 50.5% - regula lui 0.5%) . Deci dacă, de exemplu, 

=“mulţimea nou născuţilor în ianuarie 1996”,evenimentul B = “mulţimea băieţilor nou născuţi în ianuarie

1996”, atunci P(B)=

B

. Fie acum A =“mulţimea celor nou născuţi în România în ianuarie 1996”. 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 102/139

Atunci AB =“mulţimea băieţilor nou născuţi în România în ianuarie 1996”. Dacăvrem să 

calculăm probabilitatea ca un nou născut român să fie băiat, este firesc să calculăm raportul

A B

A

 

adică 

A B

A

 / 

iar ultimul număr este chiar P(AB)/P(A) . Am ajuns iarăşi la P(BA), număr pe care îl citim “Probabilitatea ca un nou născut să fie băiat ştiind că/ dacă/ condiţionată de faptul că nou

născutul este român ” 

 În acest context, ce ar însemna faptul că A este independent de B? Înseamnă că P(BA) = P(B) .

Deci A este independent de B înseamnă că P(BA) este chiar P(B). Omul de ştiinţă interpretează 

aceasta prin propoziţia “Cunoaşterea sau necunoaşterea lui A nu influenţează asupra lui B”. Pe exemplul

nostru cu nou născuţii, evenimentele A şi B ar fi independente dacărapoartele

nou n scut b iat

nou n scut

  şi

nou n scut b iat î n România

nou n scut î n România

nu diferă.Mai bine zis, nu diferă prea mult. Cu acest “prea mult ”

 începe statistica.

Asociativitatea independenţei 

O proprietate fundamentală a independenţei este următoarea (asociativitatea independenţei): 

Propoziţia 2. Fie (f t)tT o familie de -algebre independente. Fie (Ti)iI o partiţie a mulţimii de indici T.

Fie, în sfîrşit

(7) g i = (t T

i

f t )Atunci -algebrele (g i)iI vor fi din nou independente.

Demonstraţie. Pentru fiecare iI fie m i ={ t J

At  J Ti, J finită, At f t }. Atunci familiile m i sunt

independente. Într-adevăr, dacă K I este finită şi Bk   m k  kK, atunci există mulţimile finite de indici

Jk  Tk şi mulţimile At  f t, tJk astfel ca Bk = t J k 

At. Atunci P( k K

Bk) = P(k K

t J k 

At)

= P(t J k 

k K

At) =t J k 

k K

P(At) (datorită independenţei-algebrelor f t) =k K

  t J k 

P(At) =k K

P(Bk)

(deoarece, datorită independenţei-algebrelor P(Bk) =t J k  P(At)). Deci ( m i )iI sunt independente. Pe de

altă parte m i =( m i )d  în mod evident. Înseamnă că ( m i) = ( m i) = g i. Restul rezultă din Ppropoziţia

1.  

Variabile aleatoare independente.

Definiţie. Fie (Xt)tT o familie de variabile aleatoare. Spunem că variabilele aleatoare (Xt)tT sunt

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 103/139

independente dacă ((Xt))tT sunt -algebre independente.

Propoziţia 3. (i). Dacă la o familie de variabile aleatoare independente adăugăm constante, vom obţine

o nouă familie de variabile aleatoare independente.

(ii). Fie (Xn)n1 un şir de variabile aleatoare. Atunci ele sunt independente dacă şi numai dacă 

(8) P(X1x1,X2x2,...,Xnxn) = P(X1x1)P(X2x2)...P(Xnxn) n1, x1,...,xn 

(iii). (Xn)n1 un şir de variabile aleatoare. Fie (Fn)n1 funcţiile lor de repartiţie. Atunci variabilele aleatoare

sunt independente dacă şi numai dacă 

(9) P(X1x1,X2x2,...,Xnxn) = F1(x1)F2(x2)....F(xn) n1, x1,...,xn 

(iv). Dacă (Xn)n sunt toate variabile aleatoare discrete şi Q n = Im(Xn), atunci ele sunt independente dacă şi

numai dacă 

(10) P(X1=x1,X2=x2,...,Xn=xn) = P(X1=x1)P(X2=x2)...P(Xn=xn) n1, x1Q 1,...,xnQ n 

(v). Fie (Xn)n1 un şir de variabile aleatoare. Să considerăm vectorul aleator X:  dat prin

(11) X() = (X1(),X2(),....)

Atunci variabilele aleatoare sunt independente dacă şi numai dacă 

(12) PX-1 =

n 1PXn-1 

(legătura între independenţă şi probabilitatea produs) 

(vi). (Xn)n1 un şir de variabile aleatoare. Fie (Ik)kK o partiţie a mulţimii numerelor naturale şi pentru

fiecare k fie f k:I k  funcţii măsurabile. Fie, în sfîrşit Yk =f k( X n n I k  ) Atunci variabilele aleatoare

(Yk)kK sunt independente. În particular, dacă f n: s]nt m[surabile, variabilalele aleatoare (f n(Xn))n1 

s]nt de asemenea independente.

Demonstraţie. (i).Fie (Xt)tT o familie de variabile aleatoare şi (cs)sS o familie de constante. Considerăm

mulţimile de indici S şi T disjuncte. Fie I = S T şi Yi = Xi dacă iT, Yi = ci dacă iS. Fie J  I o mulţime

finită de indici. Fie (B j) jJ mulţimi boreliene şi A = Y j  B j  jJ}. Dacă există jJS ca c j  B j, atunci A= 

şi P(Y jB j)=0 deci 0 = P() = P(A) = P(Y j B j  jJ) =  j J

P(Y j  B j). Dacă, dimpotrivă, c j  B j  jJS

atunci P(Y j B j) = 1 jJS şi A = Y j  B j  jJT} = {X j  B j  jJT- de unde, ţinînd cont de

independenţa variabilelor (Xt)tT avem P(A)= P ({X j  B j  jJT}) =   j J T

P(X jB j) =  j J T

P(Y jB j) = j J

P(Y jB j).

(ii). Să presupunem că (Xn)n1 sunt independente. Fie x1,x2,...,xn  şi A j =X j-1

((-,x j]) 1 jn. Cum

-algebrele X j-1(b ()) sunt independente, P(A1A2...An)=P(A1)P(A2)...P(An),. adică exact (8). Reciproc,

să presupunem (8) devărat. Fie j ={(-,x]x- şi m n = Xn-1

(j ), n1. Cum m n  n 1, (8) nu

 înseamnă altceva decît faptul că ( m n)n1 sunt independente. Din Propoziţia 1 rezultă că şi (( m n))n1 sunt

de asemenea independente. Dar ( m n)d = Xn-1

((j )d) = Xn-1

(j ) = m n  ( m n) = ( m n) = (Xn) de unde

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 104/139

concluzia. În ce priveşte (iii), nu este decît o reformulare utilăa lui (ii).

(iv). Dac (Xn)n sunt independente, atunci este evident că (10) este adevărată : luăm mulţimile Ai =

{Xi=xi}. Reciproc, să presupunem că (10) este adevărată. Fie c i={B b ()BQ i este finită}. Evident că 

(c i)d = c i deci (c i)=(c i) = b () (orice mulţime boreliană B este o reuniune cel mult numărabilă de

mulţimi din c i : B =

B \ Q xi

x Qi

) . Deci este suficient de arătat că familiile (Xi-1(c i))i 1 sunt

independente ceea ce este imediat: dacă mulţimile BiQ i sunt finite, atunci

P(X1B1, X2B2,...,XnBn) = P( x B Q1 1 1

x B Q2 2 2

... x B Qn n n

{X1=x1, X2=x2,...,Xn=xn} )

= x B Q1 1 1

x B Q2 2 2

...x B Qn n n

P(X1=x1, X2=x2,...,Xn=xn)

= x B Q1 1 1

x B Q2 2 2

... x B Qn n n

P(X1=x1)P( X2=x2)...P(Xn=xn) (din (10) )

=( x B Q1 1 1

P(X1=x1))(x B Q2 2 2

P( X2=x2))...( x B Qn n n

P( Xn=xn) ) = P(X1B1)P(X2B2)...P(XnBn) şi, cum

acest lucru este valabil pentru orice n rezultă că (Xn)n sunt independente.(v). Fie B blocul B = B1B2...Bn...... unde B1, B2, ...,Bn sunt mulţimi boreliene oarecare. Atunci

PX-1(B) = P(XB) =P(X1B1,X2B2,...,XnBn). Dacă (Xn)n sunt independente această cantitate este egală cu

P(X1B1)P(X2B2)...P(XnBn). Pe de altă parte, din chiar definiţia probabilităţii produs avem că 

n 1

PXn-1

(B1B2...Bn...) = PX1-1

(B1) PX2-1

(B2)... PXn-1

(Bn) PXn+1-1

()... = P(X1B1)P(X2B2)...P(XnBn)

deci probabilităţile PX-1  şi

n 1 PXn-1 coincid pe blocuri, ceea ce este suficient căci blocurile generează 

borelianul produs şi sunt stabile la intersecţii finite. Aceleaşi calcule arată că şi reciproc, (12) implică 

independenţa variabilelor aleatoare (Xn)n.

(vi). Este o aplicaţie imediată a principiului asociativităţii independenţei  

Corolar 4. Variabilele aleatoare (X1, X2, ..., Xn) sunt independente dacă şi numai dacă 

(13) P(X1x1,X2x2,...,Xnxn) = F1(x1)F2(x2)....F(xn) x1, x2, ...,xn  unde F j sunt funcţiile de repartiţie ale lui X j. Mai mult, condiţia (13) este echivalentă cu

(14) PX-1= (PX1

-1) (PX2

-1) ... (PXn

-1)

unde X:  d este vectorul X=(X1, X2, ..., Xn). În cazul particular în care variabilele aleatoare Xi admit o

densitate i (adică PXi-1

=i cu măsura Lebesgue) atunci

(15) (Xi)1in sunt independente PX-1 = (12...n)n 

unde neste măsura Lebesgue n-dimensională şi 1...n este produsul tensorial al densităţilor i :

(16) (12...n)(x1,x2,...xn) = 1(x1)2(x2)...n(xn)

Demonstraţie. Demonstrăm relaţia (15). Fie  j = PX j-1. Din propoziţia anterioară PX-1

= 1...n iar

din Propoziţia 11 curs 9 1...n = (1)...(n) = (1...n)n.  

Se poate pune întrebarea : dîndu-se un şir de repartiţii pe dreaptă, (n)n1 există  oare un spaţiu

măsurabil (,k ) şi un şir de variabile aleatoare independente (Xn)n1 pe astfel ca PXn-1=n  n1?Răspunsul este afirmativ.

Propoziţia 5. Fie = spaţiul şirurilor de numere reale şi k = b ()

borelianul produs. Fie P=

n 1n. Fie

Xn = prn proiecţiile canonice. Atunci variabilele aleatoare (Xn)n sunt independente şi PXn-1

= n .

Demonstraţie. Fie n un număr natural şi (B j)1 jn mulţimi boreliene. Atunci este uşor de văzut că 

mulţimea A = X1()B1,...,Xn()Bn}coincide cu B1B2...Bn.... de unde, din definiţia

probabilităţii produs P(A) =

n 1n(A) = 1(B1)...n(Bn). Pe de altă parte PX j-1

=(

n 1n)pr j-1

=  j(B) (din cursul

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 105/139

9) deci P(X1B1,...,XnBn) = P(X1B1)...P(XnBn) adică variabilele aleatoare (Xn)n sunt independente.  

Variabile aleatoare independente şi identic repartizate. Legea numerelor mari.

Definiţie. Fie (Xn)n un şir de variabile aleatoare independente. Variabilele aleatoare (Xn)n se numesc

identic repartizate dacă PXn-1

= nu depinde de n. Notăm aceasta mai scurt prin “Xn sunt i.i.d.” (de la

independent and identically distributed).

Propoziţia 6. Pentru orice repartiţie de pe dreaptă, , există un spaţiu probabilizat (,k ,P) pe care să se

poată construi un şir de variabile aleatoare i.i.d., (Xn)n astfel ca PX-1

=   n 1. Fie f:    o funcţie

măsurabilă cu proprietatea că f(X1,X2,...) este integrabilă. În acest caz E(f(Xn,Xn+1,....)) nu depinde de n

. Mai precis

(17) E(f(Xn,Xn+1,....)) = f d 

unde

este produsul probabilităţilor  j =   j 1.Demonstraţie. Faptul că un asemenea spaţiu probabilizat există este o consecinţă a Propoziţiei 5: de fapt

putem alege (,k ,P) = (,b ()

, ). Fie t:

 shiftul introdus în cursul 9. Deci f(t(x)) = f(x2,x3,...)

de unde f(tn-1(x)) = f(xn,xn+1,...) n1. Deducem că E(f(Xn,Xn+1,....)) = E(f(tn-1(X))) unde X este vectorul

aleator (X1,X2,...). Aplicînd formula de transport găsim apoi :

E(f(tn-1(X))) =

f(tn-1(X))dP =

f tn-1 dPX

-1 =

f tn-1 d =

f d(tn-1)-1 =

f d (căci

shiftul invariază pe , după cum s-a demonstrat în cursul 9) 

Teorema 7. Fie (Xn)n un şir de variabile aleatoare i.i.d. cu PXn-1 = . Fie f:   o funcţie

măsurabilă cu proprietatea că f(X1,X2,...) este integrabilă. Atunci

(18)

f X X f X X f X X

n

n n1 2 2 3 1, ,... , ,... ... , ,...

    f d Convergenţa are loc atît aproape sigur cît şi în L1(,k ,P)

Demonstraţie. Fie X:  vectorul aleator X=(X1,X2,...). Fie sn termenul din stînga relaţiei (18). Atunci

(19) sn =

f X f t X f t X

n

n( ) ( ( )) ... ( ( )) 1

= f n(X)

unde

(20) f n(x) =

f x f t x f t x

n

n( ) ( ( )) ... ( ( )) 1

, f n:   

Fie a= f d. Fie E = {   sn() nu converge la a- şi B = xf n(x) nu converge la a} .

Atunci este clar că X

-1

(B) = E (căci X

-1

(B) X() B f n(X())nu converge la a sn()nu convergela a) deci P(E)=P(X-1(B)) = (B) . Dar shiftul t este o transformare ergodică (curs 9) deci (B) = 0 datorită 

teoremei ergodice Birkhoff (Curs 8). Înseamnă că sn converge a.s. la f d. Convergenţa în L1reazultă 

din aceleaşi motive : ║sn - f d║1 = ║sn -a║1 = E(sn-a) = E(f n(X)-a) = f n-a d (formula de

transport) = ║f n - a ║1  0 din teorema ergodică.  

Corolar 8. Legea tare a numerelor mari. Fie (Xn)n un şir de variabile aleatoare i.i.d. şi

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 106/139

(21) sn =

X X ... X

n

1 2 n

 

Dacă X1 este integrabilă, atunci Xn  EX1 atît a.s. cît şi în L1(,k ,P).

Demonstraţie. Este un caz particular al Propoziţiei 8 cînd f(x1,x2,....) = x1.  

Corolar 9. Fie (An)n un şir de variabile aleatoare independente avînd toate aceeaşi probabilitate. Fie f n()

={1 jnA j}/n . Atunci f n  P(A1) a.s. şi în L1(,k ,P).

Demonstraţie. Fie Xn indicatorul lui An. Atunci (Xn)n sunt i.i.d. şi aplicăm Corolarul 8.  

Corolar 10. Teorema lui Glivenko. Fie (Xn)n variabile aleatoare i.i.d. şi F funcţia lor de repartiţie,

F(x)=P(X1 x) . Fie x şi 

(22) Fn()(x)={1 jnX j() x}/ n

Atunci Fn(.)(x) F(x) a.s. x. Mai mult, P({  x ca Fn()(x) nu converge la F(x)}) = 0.

Demonstraţie. Fie x fixat şi Yn = 1(-,x](Xn). Din Propoziţia 3(vi) variabilele aleatoare Yn vor fi de

asemenea independente. Ele sunt şi identic repartizate deoarece P(Yn=1) = P(Xnx) = F(x) n1. Mai

mult, Y1+Y2+...+Yn = {1 jnX jn}=nF(.)(x) . Aplicînd legea numerelor mari variabilelor i.i.d. (Yn)n 

rezult[ că Fn(.)(x) EY1 = P(Y1=1) = F(x). Pentru fiecare xQ (mulţimea numerelor naturale) sau sau xpunct de discontinuitate al lui F (adică F(x)F(x-0) ) fie Ex={Fn()(x) nu converge la F(x)}. Din cele de

mai sus, toate mulţimile Ex sunt neglijabile. Fie E reuniunea lor. Cum mulţimea punctelor dediscontinuitate a lui F este cel mult numărabilă şi Q este o mulţime numărabilă rezultăcă  P(E)=0 . În

concluzie mulţimea E are proprietatea că  E Fn()(x) F(x) xQ sau x ca F(x)F(x-0). Vom

arăta mai mult, şi anume că  E Fn()(x) F(x) x ceea ce va încheia demonstraţia. Fie deci

x oarecare. Dacă x este raţional sau punct de iscontinuitate al lui F nu avem ce demonstra.

Presupunem deci că x este un punct de continuitate al lui F. Fie atunci >0 arbitrar şi p,q numere

raţionale cu proprietatea că p<x<q şi F(q)-F(p)<. Cum atît F cît şi Fn() sunt crescătoare avem

(23) Fn()(p) Fn()(x) Fn()(q) n 1 şi F(p) F(x) F(q)

Scăzînd aceste inegalităţi găsim că 

(24) F(x)-Fn()(x)  max(Fn()(q)-F(p), F(q)-Fn()(p))

de unde trecînd la limită, rezultă că 

limsupnF(x)-Fn()(x)  limsupn( max(Fn()(q)-F(p), F(q)-Fn()(p))) = F(q)-F(p) <  ceea ce încheie demonstraţia, fiind arbitrar.  

Observaţie. Legea numerelor mari este rezultatul central al teoriei probabilităţilor şi al statisticii. În cazulcel mai simplu (Corolarul 9) ea face legătura între noţiunea de frecvenţă şi cea de probabilitate. Să 

presupunem că vrem să estimăm probabilitatea unui eveniment (de exemplu aruncăm un zar măsluit şivrem să vedem probabilitatea ca să apară un “6”). Pentru aceasta aruncăm zarul respectiv de multe ori.

Ceea ce trebuie să acceptăm este că aruncările sunt independente între ele şi probabilitatea apariţieifeţei în cauză nu se modifică de la aruncare la aruncare. Numărăm de cîte ori a apărut faţa “6 ” după n

aruncări şi împărţim rezultatul la n, numărul total al aruncărilor. Obţinem astfel variabila aleatoare f n 

din Corolarul 9, numită “frecvenţa apariţiei evenimentului”. Corolarul 9 ne spune că f n va converge la

“adevărata probabilitate” de apariţie a lui “6”. Discuţia este mult mai complicată, căci nu ni se spune de

cîte ori trebuie să aruncăm zarul pînă să aproximăm “adevărata probabilitate” la un prag de toleranţă, .Cu aceste probleme se ocupă statistica matematică.

 În ceea ce priveşte Teorema lui Glivenko, numită şi “Teorema fundamentală a statisticii”, se

poate demonstra mai mult: Fn() (numită şi funcţia de repartiţie empirică după n observaţii) converge

la F uniform a.s., dar nu insistăm. Ea este fundamentală din punct de vedere epistemologic şi este un pas înainte faţă de Corolarul 9 deoarece ni se spune că putem estima prin observaţii şi repartiţia uneivariabile aleatoare. Pe exemplul anterior, din observaţiile noastre putem estima probabilitatea deapariţie a fiecărei feţe a zarului, nu numai a lui “6” fără să facem pentru aceasta 6 experimente.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 107/139

 

Legea slabă a numerelor mari. Coeficientul de corelaţie a două variabile aleatoare. 

Dezavantajul legii tari a numerelor mari este că se cere ca variabilele aleatoare (Xn)n să fie

independente. Se pune întrebarea dacă nu poate fi înlăturat. Răspunsul este că se poate evita

independenţa, dar nu vom mai obţine convergenţă a.s., ci convergenţă  în probabilitate, care este mai

slabă.

Definiţie. Fie X,Y două variabile aleatoare care au dispersie. Numărul

(25) (X,Y) =

E X EX Y EY

X Y

  

se numeşte coeficientul de corelaţie între X şi Y. Iatăprincipalele lui proprietăţi. 

Propoziţia 11.(i).(X,Y) este cosinusul unghiului dintre vectorii X-EX şi Y-EY în spaţiul Hilbert L2(P). Deci

 întotdeauna -1  (X,Y) 1.

(ii) Mai mult, (X,Y) {-1,1} Y = aX+b cu a,b 

(iii). Dacă (X,Y)=0, spunem că X şi Y sunt necorelate. Deci X şi Y sunt necorelate E(XY) = EXEY.

Orice două variabile aleatoare independente sunt necorelate.

Demonstraţie. L2(P) este spaţiu Hilbert cu produsul scalar <X,Y> = E(XY). În orice spaţiu Hilbert

funcţionează inegalitatea lui Schwartz <x,y>║x║║y║ care în cazul nostru devine E(XY)║X║2║Y║2.

Cosinusul unghiului între x şi y este prin definiţie cos = <x,y> /(║x║║y║)

 Înlocuind x xu X-EX şi y cu Y-EY găsim primul punct . Al doilea este de asemenea o consecinţăa unui

rezultat mai general: cînd avem egalitate în inegalitatea lui Schwartz? Cum funcţia de gradul 2 dată 

prin f(t)=║tx-y║2 = <tx-y,tx-y> = t2║x║2 -2t<x,y> + ║y║2 este nenegativă şi discriminantul ei este dat de

= <x,y>2

- ║x║2║y║2rezultă că =0 t ca ║tx-y║=0 x şi y sunt vectori coliniari. În cazul nostru,

(X,Y)=1 <X-EX,Y-EY>2

= ║X-EX║2║Y-EY║2  Y-EY = t(X-EX) Y = aX+b cu a=t, b=EY-tEX.

Este interesant punctul (iii): independenţa implică necorelare. Dacă X şi Y sunt independente,atunci E(XY)=EXEY (o consecinţă imediată a faptului că P(X,Y)-1 = PX

-1PY-1 şi a exerciţiului 2, Curs 9)

deci dacă a=EX şi b=EY atunci E((X -EX)(Y-EY))= E(XY-aX-bY +ab) = E(XY)-ab-ab+ab=E(XY)-EXEY=0.  

Observaţie. Se pot da uşor exemple de variabile aleatoare necorelate dar nu independente. De exemplu

dacă Z=(X,Y) are repartiţia 2 cu (x,y)=1C(x,y) unde C este o mulţime convexă din plan care admite ca

axe de simetrie dreptele x=0, y=0 şi are aria egală cu 1, atunci EX= x1C(x,y)d2(x,y) = (

x1C(x,y)d(x))d(y) = 0d(y)= 0 =EY iar EXY= y( x 1C(x,y)d(x))d(y) = 0d(y)=0.

(am folosit echivalenţa - pentru funcţii continui şi mărginite - între integrala Lebesgue şi cea Riemann,simetria lui C şi imparitatea funcţiei f(x)=x ). 

Lema 12. Fie (Xn)n un şir de variabile aleatoare. Presupunem că ║Xn-X║2  0 (adică Xn converge la X în L

2

). Atunci Xn converge la X în probabilitate. 

Demonstraţie. Fie >0. Atunci (║Xn-X║2 )2 = E((X-Xn)2) E((X-Xn)2  1X X n  

)  2P(X-Xn>) de unde

P(X-Xn>) (║Xn-X║2 / )2 0 cînd n.  

Propoziţia 13. Legea slabă a numerelor mari sau Teorema lui Bernoulli. Fie (Xn)n un şir de variabilealeatoare identic repartizate, necorelate două cîte două şi avînd dispersie. 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 108/139

Fie sn =

X X ... X

n

1 2 n

.

Atunci sn  EX1  în L2(P) deci cu atît mai mult în probabilitate. 

Demonstraţie. Fie a=EX1. Atunci sn-a =

Y Y ... Y

n

1 2 n

cu Y j = X j -a . Vom arăta că ║sn-a║2  0. Avem

n2║sn-a║2

2= E(( j

n

1 Y j)

2) =  j

n

1 E(Y j2) + i j i j, :

E(YiY j) = n2

(X1) + 0 (căci Xi şi X j sunt necorelate)

de unde ║sn-a║2 =

  X

n

1

  0.  

Observaţie. Faptul că variabilele aleatoare Xn sunt necorelate două cîte două este o condiţie mai slabă 

decît “independente două cîte două” care la rîndul ei este mul mai slabă decît “(Xn)n independente”. Într-adevăr, pentru orice număr natural n se pot da exemple de n+1 variabile aleatoare care nu sunt

independente, dar fiecare n din ele sunt independente.

Curs 12. Reguli de calcul cu repartiţiile. Convoluţia. 

Vom da acum unele reguli de calcul prin care, cunoscînd repartiţia unui vector aleator X putem

calcula repartiţia unei variabile aleatoare f(X).

Mai precis, fie (,k ,P) un spaţiu probabilizat şi X:  d un vector aleator . Fie f:d: o

funcţie măsurabilă. Presupunem că se cunoaşte repartiţia lui X, PX-1 := X. Se cere să se calculeze

repartiţia variabilei aleatoare f(X). Cum Pf(X)-1(B) =P( X-1(f -1(B))) = X(f -1(B)) pentru orice mulţime

boreliană de pe dreaptă, B rezultă relaţia 

(1) f(X) = X  f -1

unde f(X) = Pf(X)-1. Problema este să se calculeze această repartiţie. 

 În general este greu de spus ceva concret despre aceasta. Ne vom situa într-o ipoteză mai

restrictivă  şi anume vom presupune că X << d, adică X este absolut continuă faţă de măsura

Lebesgue d-dimensională. Din teorema Radon - Nikodym, în acest caz X admite o densitate faţă de

d

,notată X. Deci vom accepta ipoteza suplimentară 

(2) X = Xd

Chiar şi aşa este greu de spus ceva concret în legătură cu problema noastră. Dacă  însă vom

accepta şi ipoteza 

(3) X este integrabilă Riemann pe d 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 109/139

atunci vom putea folosi noiunile din anul I privind schimbarea de variabilă  în integrala Riemann.

 Într-adevăr, este uşor de văzut că pentru funcţii pozitive integrabile Riemann, integrala Riemann coincide

cu cea Lebesgue (în definitiv dacă o funcţie pozitivă este integrabilă Riemann ea este limita (mod d) a

unui şir de variabile aleatoare simple de forma

f  = f  DD

D1

unde  este o partiţie a lui d (diviziune) realizată cu mulţimi speciale de tipul(a1,b1](a2,b2]...(ad,bd+ şi D  D ). Aşadar, dacă acceptăm ipotezele (2) şi (3), atunci 

(4) X(A) = A X(x1,x2,...,xd)dx1dx2.....dxd 

dacă A este o mulţime suficient de regulată.

Propoziţia 1. Să presupunem că funcţia f:d   este derivabilă şi are proprietatea că funcţia u:d 

 ddată prin

(5) u1(x1,...,xd) = f(x1,...,xd), u2(x1,...,xd)= x2,...,ud(x1,...,xd) = xd 

este bijectivă. Fie = (1,...,d) inversa ei. Atunci f(X) este de asemenea absolut continuă faţă de  şidensitatea ei este dată de

(6) f(X) =

X d d

d

d

u x x x x

f x x

x

dx dxd

1 2 2

1

1

21

, ..., , ,...,

,...,...

 

Demonstraţie. Fie g:   o funcţie pozitivă integrabilă Riemann. Atunci E(g(f(X)) = g(f(X))dP =

g(f)dPX-1 (formula de transport) =

g(f)dX =

g(f)Xdd (deoarece din ipoteză  X = Xd) =

d

g(f(x1,...,xd))X(x1,...,xd)dx1...dxd =

d

g(u1)X((u1,...,ud))

D x x

D u u

d

d

( , ...,

,...,

1

1

du1...dud (formula de schimbare de

variabilă la integrala Riemann :

D x x

D u u

d

d

( , ...,

,...,

1

1 este modulul iacobianului transformării de coordonate

xu) =

g u u u

D u u

D x x

du duX d

d

d

dd

1 1

1

1

1

,...,

,...,

,...,

.. .

=

g u u x x x x

f x x

x

du dx dxX d d

d

dd

1 1 1 2 2

1

1

1 2

, ..., , , ...,

,...,.. .

 

(căci j 2 u j=x j , D x x

D u u

d

d

( , ...,

,...,

1

1 =

1

1

1

D u u

D x x

d

d

,...,

,...,, u1=f(x1,...,xd) deci

D u u

D x x

d

d

1

1

,...,

,...,=

f x x

x

d1

1

,...,

)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 110/139

=

g u

u x x x x

f x x

x

dx dx duX d d

d

dd

1 2 2

1

1

21

, ..., , ,...,

,...,...

 

 

 

 

. Să notăm cu  funcţia

(u)=

X d d

d

d

u x x x x

f x x

x

dx dxd

1 2 2

1

1

21

, ..., , ,...,

,...,...

. Atunci rezultă că 

(7) E(g(f(X)) =

g(u)(u)du = gd.

Dacă luăm g=1(-,a] (7) devine

(8) P(f(X) a) =

1(-,a] d 

adică f(X)((-,a]) = ()((-,a]) de unde, cum intervalele de această formă formează un sistem de

generatori închis la intersecţii finite pentru b() rezultă că f(X) = .  Exemple de aplicare. 

1.Dacă f(x) = x1+x2+...+xd, atunci

f x x

x

d1

1

,...,

=1, x1=u-x2-...-xd deci (6) ne dă o formulă pentru

repartiţia sumei a d variabile aleatoare: 

(9)X X Xd1 2 ... (u) =

X d d du x x x x dx dxd

2 2 21

... , ,..., ... 

2.  În propoziţia 1 se poate face o mică generalizare. Anume, nu este nevoie ca funcţia u să fie chiar

bijectivă. Este suficient ca să existe E,F  d mulţimi cu frontiera Jordan neglijabilă ca

d(E

c) = d

(Fc)=0 şi u:E F să fie bijectivă şi afirmaţia se păstrează. De exemplu dacă f(x) = x1...xd,

atunci funcţia u1= x1...xd, u2=x2, ...,ud=xd este o bijecţie de (*)d

la (*)d,

f x x

x

d1

1

,...,

= x2...xd şi, cumcomplementara lui (*)d este neglijabilă  şi (6) ne dă repartiţia produsului a d variabile aleatoare 

(10)X X Xd1 2... (u) =

X

d

d

d

d

u

x xx x

x xdx dx

d

2

2

2

21

...,, ,...,

...,.. .

 

 

 

 

 

3. Dacă d=2 şi f(x,y)=x/y găsim repartiţia raportului X1/X2 (presupunem că X20)

(11)X X1 2 /  (u) =

x ux x dxX2 2 2 2 ,  

 În cazul în care ştim că variabilele X1,...,Xd sunt idependente, lucrurile se simplifică . Atunci

cunoaşterea repartiţiilor PX j-1

antrenează cunoaşterea repartiţiei vectorului X : X =

1

1

 j djP X

. Deci,

dacă PX j-1

= j, atunci PX-1

=Xdcu X = 12...d (cursul anterior). În acest caz formulele

(9),(10),(11) devin

(12)X X Xd1 2 ... (u) =

1 2 2 2 21

u x x x x dx dxd d d dd

... ... ... 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 111/139

(13)X X Xd1 2... (u) =

1

2

2 2

2

21

u

x xx x

x xdx dx

d

d d

d

dd

...,.. .

...,.. .

 

 

 

 

 

(14) X X1 2 /  (u) =

x ux x dx2 1 2 2 2 2  

Cel mai elementar este cazul d=1. Aici se poate lucra şi direct, calculînd funcţia de repartiţie a

variabilei f(X) (să o notăm Ff(X) : Ff(X) (x) = P(f(X) x). Dacă ea este continuă şi derivabilă, atunci am arătat

(cursul ? ) că derivata sa este chiar densitatea

(15) f(X) = (Ff(X))’ Obţinem astfel relaţii utile cum ar fi 

(16) aX+b (u) =

X

u b

a

a

 

 

 

 

(17) X(u) =(X(u)+(-u))1(0,)(u)

(18)

X

u u u

uu2

21

0

, ( ) 

(19) {X}(u) =

Xk 

k u u( ) ( )[ , ) 

 

 

1 0 1

 

(20) sinX(u) =

X Xk 

k u k u

uu

( arcsin ) ( arcsin )

( )( , )

2 2

11

2 1 1

 

Exemplu de aplicare. Fie U,V două variabile aleatoare independente uniform repartizate (adică U = V =

1(0,1) ). Se cere să se găsească repartiţia variabilei aleatoare 

(21) Z = 2 2ln sinU V  

Soluţie. Fie X= 2lnU   şi Y=sin(2V). Variabilele aleatoare X şi Y vor fi independente.

Calculăm funcţia de repartiţie. Fie x0. Atunci FX(x) =P(X x) = P(-2lnU x2)= P(lnU -x

2/2) = P(U  

e

x

2

2 ) = 1- FU(e

x

2

2 ) deci x>0  X(x) = (FX)’(x) = xe

x

2

2 U(e

x

2

2 ) =xe

x

2

2 (căci 0e

x

2

2 1) de unde

(22) X(x) = xe

x

2

2 1(0,)(x)

Ţinînd seama că 2V(x) =

1 (x)(0,2

)

2 (din (16)) din (20) rezultă că 

(23) Y(x) =

1

11

2 1 1 uu

( , )

( ) 

Vom aplica acum relaţia (12). Deci XY(u) =

X Y

u

xx

xdx

 

 

 

=

Y X

u

xx

xdx

 

 

 

(datorită 

comutativităţii înmulţirii). Vom prefera a doua relaţie. Cum 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 112/139

  Y

u

x

 

 

 

=

x

x u

u

x 2 2 111

( , ) ( )=

x

x ux

u 2 2

1

( , )( )

=

x

x ux

u u 2 2

1

, ( , )

( )rezultă 

că 

Y

u

x

 

 

 X(x) =

x xe

x u x

x

u

2

2

2 2 1 ,=

x e

x u x

x

u

2 2

2 2

2

1

,de unde

(24) XY(u) =

xe

x udx

x

u

2

2

2 2  

Efectuînd o integrare prin părţi (căci XY(u) =

x u edx

x

u

2 2 2

2

) găsim că 

(25) XY(u) =

x x u edx

x

u

2 2 2

2

 

Facem acum schimbarea de variabilă x2-u2 = 2t dt=xdx. Atunci (25) devine

(26) Z(u) = XY(u) =

2

2 2

2

0

tedt

u t

=e

u

2

2

2

0

te dtt

= ce

u

2

2  

Rămîne să găsim constanta c. Cum ştim că Z este densitate de probabilitate rezultă că 

(27) c=

12

2e du

u

 

Rămîne să calculăm integrala I = e du

u

2

2. Ridicînd-o la pătrat şi aplicînd teorema lui Fubini rezultă că 

(28) I2 =

e dxdy

x y

2 2

2

2

 

Pentru a o putea calcula - căci nu are o primitivă elementară - trecem la coordonate polare: x=rcost,

y=rsint, t[0,2), r[0,). Atunci se ştie că dxdy=rdrdt deci

(29) I2

=

( )drre dt

r

2

2

0

2

0

= 2 

de unde rezultă forma finală a densităţii lui Z: 

(30) Z(u) =

e

u

2

2

2  

Această repartiţie este foarte importantă. Ea se numeşte repartiţia normală standard. Metoda

aleasă de a ajunge la ea are avantajul că se poate simula foarte uşor pe calculator. Într-adevăr, la fiecare

apelare a funcţiei rnd (în BASIC) sau random (în PASCAL) se produce o variabilăaleatoare uniform

repartizată, independentă de celelalte.(De fapt se simulează o variabilă aleatoare uniform repartizată,

căci ea se produce conform unui algoritm generator de numere aleatoare, dar aceasta este o altă 

discuţie). Atunci secvenţa (în BASIC) 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 113/139

u=rnd : v=rnd : x=sin(8*atn(1)*u):y=sqr(-2*ln(v)):z=x*y

simulează o variabilă aleatoare z repartizată normal standard. Repartiţia normală standard se notează 

N(0,1) (alţi autori o noteză 0,1) . Deci N(0,1)=Z  cu măsura Lebesgue.

Convoluţia. 

Cazul particular al problemei (1) în care d=2, X1, X2 sunt independente şi f(x,y)=x+y este foarte

important şi se pretează la o abordare mai generală decît cea în care presupunem că X1 şi X2 sunt absolut

continue. Dacă 1, 2 sunt repartiţiile lui X1, X2, F1 şi F2  funcţiile lor de repartiţie, atunci funcţia de

repartiţia a sumei lor S = X1+ X2 este

FS(u) = P(X1+X2  u ) =1( , ] u (x+y)d(12)(x,y) (din formula de transport) =

(

1( , ] u

(x+y)d(1(x))d2(y) (Fubini) =

(1( , ] u y (x)d(1(x))d2(y)

= 1((-,u-y])d2(y) = F1(u-y)d2(y) şi, schimbînd ordinea de integrare, vedem că acceaşi valoare

o are şi integrala F2(u-x)d1(x). Repartiţia lui S se numeşte convoluţia lui 1 cu 2 şi se notează 

12. Deci din cele de mai sus rezultă relaţia 

(31) 12(B) = 1(B-y)d2(y) =

2(B-x)d1(x) B  borelian

Observaţie. Convoluţia definită  în (31) are sens pentru orice două măsuri mărginite de pe dreaptă, nu

neapărat probabilităţi. De asemenea, este uşor de văzut că (1+2)=1 + 2, deci convoluţiaeste distributivă faţă de adunarea măsurilor. De aceea se mai numeşte şi produs de convoluţie. 

Propoziţia 2. (i). Fie m 1 mulţimea repartiţiilor pe dreapta reală. Atunci ( m 1,) este un monoid

comutativ cu elementul neutru 0.

(ii). Dacă 1 şi 2 sunt absolut continue faţă de , cu densităţile 1 şi 2 atunci 12 este de asemenea

absolut continuă şi densitatea sa este 

(32) 12(u) =

1(u-t)2(t)dt =

2(u-t)1(t)dt

Densitatea 12 se numeşte produsul de convoluţie al densităţilor 1 şi 2.

(iii). Dacă 1 şi 2 sunt discrete, atunci 12 este de asemenea discretă.

(iv). Dacă 1 şi 2 sunt sunt repartiţii pe mulţimea numerelor naturale cu funcţiile generatoare i= n

0

i({n})xn, i=1,2 atunci funcţia generatoare a repartiţiei12 este

(33) 1 2 1 2

 

(v). Dacă (Xi)1in sunt variabile aleatoare independente cu valori numere naturale, şi funcţiile lor

generatoare sunt i atunci funcţia generatoare a sumei lor S este produsul funcţiilori :(34) S = 12...n .

Demonstraţie.(i).Fie , ,  trei repartiţii pe dreaptă şi X,Y,Z trei variabile aleatoare independente astfelca =PX-1

, =PY-1, =PZ-1

. Atunci  este repartiţia lui XY. Cum XY este independentă de Z, rezultă 

că () este repartiţia sumei XYZ. Pe de altă parte variabilele aleatoare X şi YZ sunt iarăşi

independente şi au repartiţiile  şi deci () este repartiţia aceleiaşi variabile aleatoare.

Aşadar produsul de convoluţie este asociativ. Elementul neutru este0 deoarece aceasta este repartiţiavariabilei aleatoare X=0 (mod P).

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 114/139

(iii). Este uşor de văzut că ab = a+b deci, datorită distributivităţii faţă de adunare a convoluţiei avem

că 

p q p qi ai

m

 j b j

n

i j a b j

n

i

m

i j i j

 

 

 

 

 

 

 

1 1 11 .

(iv). Fie X şi Y două variabile aleatoare independente cu valori numere naturale cu proprietatea că 

1=PX-1 şi 2=PY-1

. Fie  j funcţiile generatoare ale repartiţiilor  j, j=1,2. Atunci 1(x)=E(xX) şi 2(x)=E(x

Y)

0x1. Pentru fiecare x variabilele aleatoare xX şi xY sunt iarăşi independente, deci 1(x)2(x) =

E(xX)E(x

Y)=E(x

Xx

Y)=E(x

X+Y)=X+Y(x) =

1 2 ( )x.

(v). Aceeaşi demonstraţie: media unui produs de variabile aleatoare independente este produsul

mediilor.  

Exemplu de aplicare. Repartiţia binomială. Fie X j, 1 jn  variabile i.i.d. cu repartiţia comună =p1+q0.

Deci P(X j=1)=p, P(X j=0)=q, cu q=1- p. Se cere să se găsească repartiţia sumei lor, S. Funcţia generatoarea variabilelor X j este q+px, deci din punctul (v) al propoziţiei anterioare 

(35) S(x)=(q+px)n

=

C p q xn

 j

 j

n  j n j j

0  

deci, identificînd termenii asemenea din S rezultă că P(S=j)= C p qn

 j j n j

. Aceasta este repartiţiabinomială de parametri n şi p. Simbolizăm faptul că o variabilă aleatoare X este binomial repartizată prin

X ~ B(n,p). Interpretarea este următoarea: dacă repetăm de n ori un experiment cu în care rezultatulpoate să fie doar 0(pierdere) sau 1(succes), şi anume P(succes)=p, iar rezultatele experimentului sunt

independente, atunci probabilitatea ca să avem exact succese este C p qn

  j j n j. De exemplu,

probabilitatea ca aruncînd o monedă de n ori să obţinem j steme este

Cn

 j

n2 iar probabilitatea de a obţine

de j ori “6” în n aruncări cu zarul este

5

6

n j

n

 j

n

C

.

Derivînd funcţia generatoare (35) găsim imediat media şi dispersia unei variabile aleatoare binomiale: 

(36) X ~ B(n,p) EX=np, 2(X)=npqRepartiţia hipergeometrică. O urnă conţine a bile albe şi n bile negre, în total t=an bile. Se extrag k bile

(deci kt). Notăm cu X numărul de bile albe. X este o variabilă aleatoare care poate lua valorile 0,1,...,k.

Spaţiul de selecţie este ={{1,...,t} =k }. Acceptăm că toate submulţimile  au aceeaşi

probabilitate de apariţie, deci ne plasăm în cadrul clasic. Atunci P(}) =

1

C t

. Înseamnă că p j:= P(X=j)=

C C

C

a

 j

n

k j

t

, căci cele j bile albe pot fi alese în Ca

 j

feluri iar cele k- j bile negre în Cn

k jfeluri. Vrem să calculăm

media şi dispersia lui X. Fie p=a/t proporţia bilelor albe şi q=1-p = n/t cea a bilelor negre. Fie a,t,k(x) =

 j

0 p jx j  funcţia generatoare Atunci ‘a,t,k(x) =

C C

C  jxa

 j

n

k j

t

k   j

 j

1

1 =

1

11

1

C

a

  j a j C xt

k  j

n

k j j!

! ! =

1

C t

k aC Ca

 j

 j

n

k j

1

1

1 x j-1

=kp

C C x

C

a

 j

 j

n

k j j

t

10

11

1

1

de unde rezultă relaţia de recurenţă 

(37) ‘a,t,k(x) = kpa-1,t-1,k-1(x)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 115/139

Pentru a găsi dispersia folosim formula 2(X) = ”(1)‘(1)-(‘(1)2 (unde = a,t,k) şi relaţia de recurenţă 

(37). Rezultă 2(X) = k(k-1)p

a

t

1

1 + kp - k2p2 = kp((k-1)

a

t

1

1 + 1 - k

a

t ) = kpq

t k 

t

1 de unde

(38) EX = ‘a,t,k(1) =kp, 2(X) = kpq

t k 

t

1  

Repartiţia Poisson. Se mai numeşte ”legea evenimentelor rare” şi se obţine din repartiţia binomială 

pentru care np. Se notează cu . Prin definiţie o variabilă aleatoare X este repartizată Poisson cu

parametrul dacă 

(39) P(X=k)=

   

k e

!

 

Funcţia sa generatoare este (x)= e(x-1)

de unde I se calculează imediat media şi dispersia 

(40) X ~   EX = 2(X) = lRepartiţia geometrică. Este repartiţia timpului de aşteptare pînă la producerea unui eveniment care are

probabilitatea p de a se produce. Adică 

(41) P(T=k) = pqk-1

cu k1, q=1-p

Funcţia generatoare este (x)=px

qx1 din derivarea căreia se obţine imediat 

(42) ET =

1

p , 2(X) =

q

p 2

 

Teorema limită centrală. Apariţia firească a repartiţiei normale. 

Dacă vom avea curiozitatea să convolutăm o repartiţie absolut continuă cu ea însăşi de mai multe ori şi

vom face graficul densităţilor care se obţin, vom observa cum aceste densităţi capătă o formă de

lopot, semănînd cu graficul funcţiei care dă densitatea repartiţiei normale x  e

x

2

2 . Demonstrarea

acestui fapt depăşeşte cadrul cursului de faţă. Vom da de aceea f ără demonstraţie următorul rezultat,

care este a doua teoremă fundamentală a teoriei probabilităţilor - după legea numerelor mari.

Teorema limită centrală. Fie (Xn)n un şir de variabile aleatoare i.i.d. avînd media m şi dispersia. Fie Sn 

variabilele aleatoare

(43) Sn =

X X X nm

n

n1 2 ...

  

Fie Fn funcţia de repartiţie a variabile aleatoare Sn şi  funcţia de r 

epartiţie a normalei standard N(0,1). 

Atunci Fn(x)   (x) x   

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 116/139

Interpretarea statistică este : indiferent de repartiţia a unei variabile aleatoare X, mediile de

selecţie tind să fie normal repartizate.

Exerciţii 

1. n+1 variabile aleatoare independente cîte n dar nu independente.Fie (G,b ,) un spaţiu probabilizat

cu structură de grup. Presupunem că grupul (G,+) are proprietatea că funcţia de translaţie ta(x)=x+apăstrează măsura pentru orice aG, adică ta

-1=  aG. Fie atunci =G

n, k = b 

n,P=n. Pe acest spaţiu

probabilizat considerăm variabilele aleatoare X j = pr j dacă 1 jn şi X=X1+...+Xn. Aceste n+1 variabile

aleatoare sunt identic repartizate, repartiţia lor fiind , oricare n din ele sunt independente dar dacă G

are cel puţin două elemente, ele nu sunt independente.

Indicaţie. Cum (A+a)=(A) aG, A b , rezultă că (A)= (A-x)d(x) )= (A)d(x) =(A). Din

aproape în aproape rezultă că PX-1= n

= , deci cele n+1 variabile aleatoare sunt identic repartizate.

Arătăm că (X1,...,Xn-1,X) sunt independente. Fie f :    măsurabilă mărginită. Atunci, din formula de

transport şi Fubini Ef(X1,...,Xn-1,X)= f(x1,...,xn-1,x1+x2+...+xn)d(x1)...d(xn). Pentru x1,...,xn-1 fixaţi fie

g(x)= f(x1,...,xn-1,x). Cum invariază pe ta avem gd = gdta-1 = g(ta)d adică g(x)d(x) =

g(x+a)d(x) aG. Pentru a=x1+...+xn-1 rezultă că g(x1+...+xn-1+xn)d(xn) = g(xn)d(xn) deci

Ef(X1,...,Xn-1,X)= f(x1,...,xn-1, xn)d(x1)...d(xn) = f dn . Înlocuind f cu indicatorul mulţimii

B1B2...Bn, B j b  rezultă 

P(X1B1,...,Xn-1Bn-1,XBn)=P(X1B1)..P(Xn-1Bn-1) P(XBn) adică X1,...,Xn-1,X sunt independente. Cele

n+1 variabile aleatoare nu sunt independente deoarece (X)  (X1,...,Xn). Din asociativitatea

independenţei, ar trebui ca aceste două -algebre să fie independente. Ar rezulta că (X) este

independentă de ea însăşi,deci A(X) P(A)=P(AA) = P(A)P(A) P(A){0,1} adică X ar fi constantă 

(mod ). Dar X este suma proiecţiilor. Dacă ar fi constantă ar trebui ca =a pentru un anume aG. Însă o

măsură Dirac nu are cum să invarieze translaţia căci a({a})=1, a({a+b})=0 b0.  

2. Fie Z=(X,Y) un punct aleator uniform repartizat, adică X,Y sunt independente şi uniform repartizate.Arătaţi că :

X+Y(x)=x1(0,1)(x)+(2-x)1(1,2)(x),

X-Y(x)=(1-x)1(-1,1)(x),

X-Y(x)= min(X,Y)(x)=(2-2x)1(0,1)(x)

max(X,Y)(x)=2x1(0,1)(x) =  

X (x)

XY(x)=-ln(x)1(0,1)(x)

X / Y(x)=1(0,1)(x)/2 +

1 x

2x

1,

2

 

  

 

X2arctg

Y  x

 x x  x x x

2

1

22 1 1

0 1 2

1 2

,

,  Calculaţi apoi mediile şi medianele acestor variabile aleatoare.

Indicaţie. Mediile sunt : 1,0,1/3,2/3,1/4, nu are medie,

2 1 2

3

ln

.

O paralelă  între integrala Lebesgue şi integrala Riemann  

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 117/139

 

Se pune problema firească : ce legătură este între integrala Lebesgue, construită mai

sus şi diversele tipuri de integrale învăţate anterior: integrala Riemann din liceu, integralele

pe domenii sau drumuri studiate la analiză sau integrala din cadrul analizei complexe ?  În

esenţă diferenţa este: la toate aceste integrale aproximarea funcţiei f care se integrează se face

 în domeniul de definiţie al lui f , pe cîtă vreme la integrala Lebesgue ea se face în codomeniu.

Ne propunem să clarificăm aceasta în cazul cel mai simplu, al integralei Riemann studiată  în

liceu.

Fie f:[a,b]   o funcţie oarecare. Orice submulţime finită care se poate scrie sub

forma D = {a=x0<x1<...<xn=b- se numeşte diviziune a intervalului [a,b]. Norma diviziunii D (

notată cu ║D║ )este cea mai mare dintre lungimile intervalelor [xi-1, xi] . Un sistem de puncte

intermediare este orice vector   E(D) unde am notat cu E(D) produsul E(D) = [x0,x1]  

[x1,x2] ... [xn-1,xn]. Prin suma Riemann ataşată diviziunii D şi sistemului de puncte intermediare se înţelege suma 

(c+1) S(f,;D) := f x xi i i

i

n

( ) 1

1  

Definiţie. Funcţia f se numeşte integrabilă Riemann pe intervalul [a,b] dacă există un număr I

  ( notat cu I =f x dx

a

b

( )) cu proprietatea că 

*c+2) >0  =() ca D diviziune a lui [a,b],  E(D)  I-S(f,;D)< 

Observaţie. Să comparăm aceasta cu integrala J=fd

unde (A)=(A *a,b+) este restricţiamăsurii Lebesgue la intervalul [a,b]. Ca J să aibă sens trebuie numai ca f să fie o funcţie boreliană 

şi una din integralele f +d,

f -d să fie finite. Ca J să fie un număr real, trebuie ca ambele

integrale să fie finite. Cele două integrale au sens întotdeauna, cu condiţia să putem lămuri în cecondiţii o funcţie este măsurabilă Borel. Dimpotrivă,(*c+2) pare să fie mai complicat: nu este

clar de ce un asemenea I ar exista, şi mai ales, în ce condiţii există, f ăcînd abstracţie de cazulbanal în care f este continuă. Integrala Lebesgue nu are nevoie de nici o condiţie decontinuitate.

Problemă. Care sunt criteriile de a recunoaşte dacă f este integrabilă Riemann? Un prim pas învederea găsirii unor criterii de integrabilitate Riemann ar fi s implificarea definiţiei prin

eliminarea punctelor intermediare. Acesta este criteriul lui Darboux.Definiţie. Dacă , sunt numere reale cu proprietatea a      b să notăm

M(f; ,) = sup { f(x)x - şi m(f; ,) = inf { f(x)x }. Atunci sumele

*c+3) S(f,D) = i

n

1 M(f;xi-1,xi)(xi-xi-1) şi s(f,D) = i

n

1 m(f;xi-1,xi)(xi-xi-1)

se vor numi respectiv suma Darboux superioară (inferioară) ataşate diviziunii D şi funcţiei f. Esteuşor de văzut că 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 118/139

*c+4) S(f,D) = sup { S(f,;D)  E(D) }, s(f,D) = inf { S(f,;D)  E(D) }

şi că, dacă D1 şi D2 sunt două diviziuni ale intervaluui [a,b] atunci

*c+5 D1  D2  S(f,D1) S(f,D2) s(f,D2) s(f,D1)

Propoziţia *1. (Criteriul lui Darboux). Funcţia f este integrabilă Riemann pe [a,b] dacă şinumai dacă 

*c+6 >0  =() ca ║D║<  S(f,D)-s(f,D) <  Demonstraţie. Să presupunem că f este integrabilă Riemann. Atunci, din *c+2 rezultă că >0  

=() ca D diviziune a lui [a,b],  E(D) I - < S(f,;D) < I + . Trecînd la supremum şi

infimum după E(D) şi aplicînd c4 rezultă că 

*c+7 I-  s(f,D) S(f,D) I+ deci S(f,D) - s(f,D) 2 

ceea ce implică evident *c+6.

Reciproc, să presupunem că *c+6 este adevărată. Trebuie să arătăm că f este integrabilă 

Riemann, adică să construim I   care să verifice c2. Fie în acest scop (Dn)n un şir de diviziuni

ale lui [a,b] cu proprietatea că D1  D2  ... şi ║Dn║  0. Din *c+5 rezultă că 

*c+8 S(f,D1)S(f,D2)....S(f,Dn) s(f,Dn) ....s(f,D1)

Şirul (S(f,Dn))n este descrescător, deci are o limită I1. La fel, (s(f,Dn))n, fiind crescător, are o limită I2. Din *c8 rezultă că 

*c+9 S(f,Dn) I1  I2  s(f,Dn) n1

Fie n cu proprietatea că ║Dn║<. Din c6 şi c9 rezultă atunci că 

I1-I2  S(f,Dn)-s(f,Dn)   şi, cum este arbitrar, rezultă că I1=I2. Notăm această valoare cu I.

Pretindem că I =f x dx

a

b

( ).

Mai întîi să observăm că limita I nu depinde de şirul particular de diviziuni (Dn)n ales. Într-adevăr,

să presupunem că (D’n)n este un alt şir crescător de diviziuni cu proprietatea că ║D’n║  0. Fie I’

limita şirului (S(f,D’n))n . Fie D*n=DnD’n şi I limita şirului (S(f,Dn))n . Atunci s(f,Dn)s(f,D’n)  

s(f,D*n) I* S(f,D*n) S(f,Dn)S(f,D’n) deci s(f,Dn) I* S(f,Dn) şi s(f,D’n) I*  S(f,D’n). Cums(f,Dn) I S(f,Dn) şi la fel s(f,D’n)  I’  S(f,D’n) rezultă că I-I*  S(f,Dn)-s(f,Dn) şi I’-I*  

S(f,D’n)-s(f,D’n) pentru orice n. Dacă n este destul de mare. ║Dn║< şi ║D’n║< deci, din *c+6)

rezultă că I-I* , I’-I* . Cum este arbitrar rezultă că I = I’ = I. Mai mult, rezultă că 

*c+10 s(f,D) I S(f,D) D diviziune a lui [a,b]

(nu avem decît să  înlocuim şirul (Dn)n cu (DnD)n ). Fie acum o diviziune D cu ║D║< şi  E(D)

un sistem de puncte intermediare. Atunci s(f,D) S(f,;D) S(f,D) deci, din *c+10 rezultă că I

- S(f,;D)  S(f,D) - s(f,D)   de unde I =f x dx

a

b

( ).  

Importanţa criteriului lui Darboux este relevată de următorul corolar

Propoziţia 2. Să presupunem că f este integrabilă Riemann pe [a,b]. Atunci f este mărginită şiexistă două funcţii măsurabile Borel f 1 şi f 2 cu proprietatea că 

*c+11 f 1  f  f 2 şi f 1d =

f x dxa

b

( )=

f 2d 

 În consecinţă f 1 = f 2 (mod )

Demonstraţie. Fie (Dn)n un şir crescător de diviziuni ale intervalului [a,b] cu proprietatea că 

║Dn║  0. Fie Dn = {a=xn,0 < xn,1 < ...<xn,k(n) = b- şi A(n,j)=(xn,j-1, xn,j], 1 j k(n). Fie de

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 119/139

asemenea Mn,j = M(f;xn,j-1,xn,j), mn,j = m(f;xn,j-1,xn,j). Să considerăm funcţiile simple gn =  j

k n

1

( )

Mn,j1A(n,j) şi hn= j

k n

1

( )

mn,j1A(n,j). Atunci este evident că 

*c+12 x(a,b] hn (x) f(x) gn(x),*c+13 şirul (hn)n este crescător şi (gn)n este descrescător

(deoarece orice interval A(n,j) este o reuniune finită de intervale A(n+1,i) ). Mai mult, cum

(An,j) = xn,j - xn,j-1 avem că hnd = j

k n

1

( )

mn,j(A(n,j)), gnd = j

k n

1

( )

Mn,j(A(n,j)) deci

*c+14

hnd = s(f,Dn) şi gnd = S(f,Dn)

Relaţiile *c+12 - c14 sunt valabile întotdeauna, fără nici o ipoteză suplimentară asupra

funcţiei f. Dacă  însă ştim că f este integrabilă Riemann, atunci sumele s(f,Dn) şi S(f,Dn) trebuie să 

fie finite începînd de la un rang n0 deoarece, conform propoziţiei de mai sus, limita lor comună 

estef x dx

a

b

( ) , care este un număr real. Este evident că dacă f este nemărginită superior,

atunci S(f,D)= pentru orice diviziune D iar dacă f este nemărginită inferior, atunci s(f,D)=-.

 Înseamnă că funcţia f trebuie să fie mărginită.

Mai mult, fie f 1 = lim hn şi f 2 = lim gn. Limitele există datorită relaţiei c13. Din c12, f 1 

f  f 2 . Din teorema Beppo-Levi avem că f 1d = lim hnd = lim hnd = lim s(f,Dn) =

f x dxa

b

( )  şi analog f 1d = lim S(f,Dn) =

f x dxa

b

( ). Pentru a demonstra că f 1=f 2(mod ) nu

avem decît să remarcăm că f 2-f 1 0 şi (f 2 - f 1)d = 0.  

Corolar 3. Dacă f este integrabilă Riemann pe [a,b], atunci f este mărginită, măsurabilă Lebesgue

şi integrala sa Riemann coincide cu integrala Lebesgue. Demonstraţie. Nu avem decît să observăm că f coincide cu f 1 -aproape sigur, iar f 1 este

măsurabilă Borel.  

Rezultă că orice funcţie integrabilă Riemann este integrabilă Lebesgue, adică integrala

Lebesgue este o generalizare a celei Riemann. Se poate pune întrebarea dacă nu este valabilă şireciproca: nu cumva şi orice funcţie integrabilă Lebesgue se poate integra şi în sensul Riemann?Răspunsul este negativ.

Propoziţia 4. (Teorema lui Lebesgue de caracterizare a integrabilităţii Riemann). Fie f:[a,b] 

o funcţie oarecare. Atunci

*c+15 f este integrabilă Riemann f este mărginită şi continuă aproape peste tot

(„continuă a.p.t.” înseamnă că mulţimea punctelor de discontinuitate ale lui f este neglijabilă 

Lebesgue).

Demonstraţie. „”. Fie (Dn)n un şir crecător de diviziuni de normă tinzînd la 0. Că f este

mărginită, s-a văzut. Fie E mulţimea punctelor de discontinuitate ale lui f şi D reuniuneamulţimilor Dn. D este o mulţime numărabilă, deci neglijabilă Lebesgue. Fie de asemenea f 1 şi f 2 

funcţiile construite în Propoziţia 2. Observaţia decisivă este

*c+16 E \ D {f 1f 2} E D

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 120/139

 Într-adevăr, fie xE \ D. Cum x nu este un punct al niciunei diviziuni Dn, el se află  într-unul din

intervalele deschise (xn,j-1, xn,j) . Fie j(n,x) acel unic 1 jk(n) cu această proprietate. Pe de altă 

parte, x este un punct de discontinuitate pentru f, deci există un şir (xi)i care converge la x şi

limsup f(xi) > liminf f(xi). Pentru fiecare n fixat avem: f 2(x) = Mn,j(n,x) limsup f(xi) (căci pentru i

destul de mare xi (xn,j-1, xn,j) ) > liminf f(xi) mn,j(n,x) = f 1(x) f 1(x)f 2(x), de unde prima

incluziune din *c+16. În continuare, să presupunem că x[a,b] are proprietatea că f 1(x)f 2(x). Dacă x D nu este

nimic de demonstrat. Să presupunem că xD. Dacă prin absurd xE, atunci x ar fi un punct de

continuitate pentru f. Deci pentru orice >0 există  ca

x-x’<  f(x)-f(x’)<. Fie n suficient de mare ca ║Dn║< . Atunci f 2(x)-f 1(x) = Mn,j(n,x) - mn,j(n,x)

= sup{f(y)-f(z) y,z[xn,j(n,x)-1, xn,j(n,x)] }

sup{f(y)-f(x)+f(x)-f(z) y,z[xn,j(n,x)-1, xn,j(n,x)] } 2 

(căci x-y<║Dn║< şi la fel x-z<) . Cum este arbitrar rezultă că f 1(x) = f 2(x), fals. Deci *c+16

este verificată.

Dacă f este integrabilă Riemann, atunci am văzut că f 1=f 2 ( a.p.t.) Deci {f 1f 2} este neglijabilă.

Din *c+16 rezultă că (E) = (E \ D) + (ED) = (E\D)  ({f 1f 2}) = 0 .„”. Este imediat din c16. Dacă f este continuă -a.p.t., atunci ({f 1f 2})  (ED) = (E) = 0

f 1 = f 2 (mod ) f este integrabilă Riemann datorită Propoziţiei 2. Exerciţii 1. Funcţia Dacă A este o mulţime numărabilă densă  în , atunci f =1A nu este integrabilă 

Riemann pe nici un interval [a,b] dar este integrabilă Lebesgue pe orice interval.

Indicaţie. f este discontinuă  în orice punct şi f=0(mod ).

*2. Dacă este vorba de integrala Riemann improprie, atunci este posibil ca f să fie integrabilă 

Riemann f ără a fi integrabilă Lebesgue. Arătaţi că funcţia f:   dată prin f(x)=

sin( )x

x daca xdaca x

0

1 0 este integrabilă Riemann pe dar nu Lebesgue.

Indicaţie. Din definiţie, f este integrabilă Riemann pe dacă limitalim ( )

,a b a

b

f x dx

există 

Arătaţi că  în cazul nostru limita există, dar f nu are integrală Lebesgue deoarece f +d =

f -d = .

Exerciţii 

1.Izomorfisme de spaţii măsurabile. Două spaţii măsurabile (1,k 1) şi (2, k 2) se numesc izomorfe dacă 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 121/139

există f:1 2 bijectivă şi bimăsurabilă (scriem atunci . (1,k 1) (2, k 2) Arătaţi că 

(i). Dacă 1 şi 2 sunt numărabile şi -algebrele coincid cu mulţimea părţilor, atunci

(1,k 1) (2, k 2);

(ii). (, b ()) nu este izomorf cu (, k ) unde k = ({x}x}) ;

(iii). (, b ()) ((0,1), b (0,1)) .

(iv). Fie I   numărabilă . Atunci (, b ()) ( \ I, b ( \ I)) ;

(v). ((0,1), b (0,1)) ( [0,1], b ([0,1]) )

2. Scrierea numerelor în baza p. Izomorfismul dintre spaţiul măsurabil ( [0,1), b(*0,1)) ) şi un produs de

spaţii finite.Fie E = {0,1,...,p-1} cu p2 număr natural, f = p (E), =

 j

 j

p

p

0

1

. Fie apoi = E

, k = f 

 şi P =

.

(i). Arătaţi că k   conţine toate mulţimile cu un punct. 

(ii). Dacă I   este cel mult numărabilă, atunci (,k ) (,k   \ I ).

(iii). Fie I0 = {     nN ca n =n+1 = n+2 = ....= p-1 }

(iv). Aplicaţia f : \ I0  [0,1) dată prin f() =

k k  p

1 este un izomorfism.

(v). Fie 0 = \ I0 şi Xn : 0  E proiecţiile canonice, Xn() = n .Atunci Xn sunt variabile aleatoare i.i.d. şi

PXn-1 = . În plus, f =

X

p

k k 

1 .

(vi). Fie g:[0,1)  0, g = (Cn)n unde aplicaţiile Cn : [0,1) E se construiesc astfel :

C1(x) = [px] ; R1(x) = px - C1(x) = {px};

C2(x) = [pR1(x)] ; R2(x) = pR1(x) - C2(x) ={pR1(x)};

...............................................................

Cn(x) = [pRn-1(x)] ; Rn(x) = pRn-1(x) - Cn(x) = {pRn-1(x)}

............................

(algoritmul de generare a cifrelor p-adice ale numărului x). Verificaţi că definiţia este bună (în sensul că 

nu poate apare un număr de tipul x=0,C1...Cn-1,aaaaa.... cu a = p-1; aceasta nu este o dezvoltare

p-adică legitimă). Verificaţi apoi că g = f -1 unde f este funcţia de la (iv). 

(vii). Pe spaţiul probabilizat ( *0,1),b 

([0,1)),  [0,1) ) variabilele aleatoare Cn sunt independente şi identicrepartizate. Repartiţia lor comună este . ( Cifrele sunt independente faţă de măsura Lebesgue în oricebază de numeraţie ! )

(viii). Verificaţi că Pf -1 =  [0,1) .

(ix).Două spaţii cu măsură ( j,k  j, j) j=1,2 se numesc izomorfe dacă există  j(0)

   j măsurabile astfel ca

 j( j \  j(0)) = 0 şi o funcţie bijectivă bimăsurabilă f: 1

(0)  2

(0)cu proprietatea că 1f 

-1= 2.

Deduceţi atunci că spaţiile probabilizate ( *0,1+, b ([0,1]), [0,1] ) şi (E, p (E),

 ) sunt izomorfe.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 122/139

3.Un exerciţiu auxiliar. Fie p2 număr natural şi y[0,p-1]. Construim următoarele două şiruri: 

c1=0, s1=0; ...;cn+1 =

0

1

dacas

ny

p dacas

ny

n

n

, sn+1 = sn + cn+1 . Arătaţi că 

(i). Dacă a = max(y,p-1-y) şi xn =

s

n

n

, atunci xn+1 - y  max(

a

n

n

nx yn

1 1

,).

(ii). Deduceţi că k n-1  xn+1 - y  max(

a

n

n k 

nx yn k 

1 1,

).

(iii). Demonstraţi pe această bază că 

s

n

n

  y dacă n  .

4. O funcţie surjectivă constantă a.s.

Reluăm notaţiile de la exerciţiul 2.Fie Sn = C1+...+Cn . Considerăm funcţiile

g,h: [0,1) [0,p-1] date prin g(x) =

lim sup

n

nS x

n , f(x) =

liminf 

n

nS x

n .(i). Funcţiile g şi h sunt surjective şi periodice: orice număr diadic este perioadă.

(ii).Mulţimile de nivel g=y-, h=y- sunt toate nenumărabile.

(iii).Pentru orice interval I=(a,b) [0,1) g(I)=h(I)=[0,p-1].

(iv). Dacă x,x' au proprietatea că mulţimea nN Cn(x)Cn(x') } este finită, atunci g(x)=g(xţ) şi h(x)=h(xţ). 

(v). Totuşi funcţiile g şi h coincid a.s. : g = h =

p 1

2 (mod ).

5. Dacă două spaţii cu măsură sunt izomorfe, atunci cele două măsuri au aceeaşi masă totală.

6 Compacte de tip Cantor. Cu notaţiile din exerciţiul precedent, fie E j = E \ j- şi C j = E j.

(i). C j este nenumărabilă şi P(C j) = 0.(ii). Fie Kp = f(Cp-1). Atunci Kp  [0,1] este un compact nenumărabil neglijabil Lebesgue (compact de tip

Cantor).

(iii). Dacă j p-1, f(C j) nu este compactă - nu este închisă.

7. Compactul Cantor clasic. Fie f:{0,2}  [0,1] dată prin f =

prn

nn 31

. Atunci

(i). Funcţia f este injectivă.

(ii). K := Im(f) este un compact nenumărabil neglijabil Lebesgue.

(iii). Notînd aA =ax xA- şi aA = axxA}, avem egalitatea 3K = K (2+K).

(iv). Fie e1,...,en  {0,2}, E(e1,...,en) = { pr1 =e1,..., prn = en - şi a =

e j

 j

 j

n

31

. Atunci

f -1

([a,a+3-n

]) = E(e1,...,en) . Mai mult, că en = 2, atunci f -1

((a-3-n

,a)) = , adică K se poate obţine prinprocedeul de ştergere a treimii din mijloc: se împarte segmentul I = *0,1+ în trei segmente egale;intervalul deschis din mijloc se şterge; se repetă procedeul cu cele două segmente rămase etc.

8. Funcţia lui Cantor. Fie E ={0,2},f =p (E), =

0 1

2

, = E, k =f ,P = , f =

prn

nn 31

. Fie de

asemenea = Pf -1

 repartiţia lui f şi F(x) =((-,x+) funcţia sa de repartiţie. 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 123/139

(i). Fie K compactul lui Cantor din exerciţiul precedent. Atunci(K) = 0 dar (Kc) = 0, deci măsurile  şi  

sunt singulare ( se notează   ) .

(ii). Funcţia F este continuă iar intervale de tipul (a - 3-n

, a) unde numărul a se scrie în baza 3 cu ultimacifră egală cu 2, (a = 0,e1e2...en-12 ) F este constantă .

(iii). Dacă x K atunci F este derivabilă  în x şi F'(x) = 0; deci F este derivabilă  -a.s. dar integrala

Lebesgue a lui F' pe intervalul (-,x] nu coincide cu F(x).

(iv).Dacă x K, x =

e j

 j j 31

cu e j  E, atunci F(x) =

e j

 j j 2 1

1

 

9. O familie de probabilităţi singulare una faţă de cealaltă. 

Fie E ={0,1},f =p (E),p = q0 + p1 cu p,q > 0, p+q=1. Fie = E, k =f ,Pp = p

, f =

prn

nn 21

, p = Ppf 

-1 şi

Fp funcţia de repartiţie a lui p .

(i). Funcţiile (prn)n sunt variabile aleatoare i.i.d.. Calculaţi-le media şi dispersia. Calculaţi media şi dispersialui f.

(ii). Im(f) = [0,1] iar dacă x [0,1], atunci f 

-1

({x}) are două puncte dacă x este raţional diadic (adică sepoate scrie în baza 2 cu un număr finit de cifre) şi un singur punct în caz contrar. Decip ({x}) = 0  

x[0,1] F este continuă.

(iii). Aplicaţi legea numerelor mari pentru a deduce că probabilităţile Pp sunt singulare una faţă de

cealaltă.

(iv) Calculaţi Fp(

i

8 ) cu 0i7.

(v). Arătaţi că F este strict crescătoare.

10. O familie de repartiţii continue pe dreaptă singulare între ele şi faţă de măsura Lebesgue. Cu

notaţiile din exerciţiul precedent, fie I ={      kN ca k+j = 1 j0 }. Fie * = \ I, k *= k  * .

Arătaţi că (i). Funcţia f :*  *0,1) este o bijecţie imăsurabilă.

(ii). f -1

(x) = (Cn(x))n unde Cn(x) s]nt cifrele diadice ale lui x.

(iii). Faţă de probabilitatea p funcţiile (Cn)n sunt variabile aleatoare i.i.d şi pCn-1 = p.

(iv). Fie Sn = C1 + C2 + ...+ Cn . Atunci Sn este repartizată binomial : pSn-1

= B(n,p).

(v). Fie g(x) =

lim sup

n

nS x

n . Atunci g este surjectivă pe *0,1+ şi coincide cu p ( p a.s.).

(vi). Dacă p= .5, atunci p = [0,1).

(vii). Dacă p r, atunci p  r .

(viii). Funcţiile de repartiţie Fp sunt continue şi pe mulţimea numerelor diadice se pot calcula prin

recurenţă astfel : Fp(0)=0, Fp(1)=1, Fp(2 1

2i n

) = pFp(in2 1

) + qFp(i n12 1

). Deci dacă x este diadic, Fp(x) va fi

un polinom în p cu coeficienţi depinzînd de x. 

11. n+1 variabile aleatoare neindependente dar oricare n din ele sunt independente.

(i). Fie U1,...,Un variabile uniforme independente, S suma lor şi Un+1 ={S}. Atunci variabilele (U j)1 jn+1 au

această proprietate.

(ii). Acelaşi lucru se poate spune despre următoarele variabile aleatoare: se aruncă o monedă de n ori.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 124/139

Fie X j rezultatul aruncării nr. j şi Xn+1 definit prin Xn+1 = 1 dacă numărul de steme apărut este impar, Xn+1 =

0 dacă numărul de steme este par.

(iii). Variabilele C1,...,Cn de la exerciţiul 2 şi Cn+1 = C1+...+Cn (mod p) au aceeaşi proprietate,

12. Proprietăţi ale independenţei. Cînd X este independentă de f(X)? 

Fie (

,k ,P) un spaţiu probabilizat şi X,Y variabile aleatoare. 

(i). Dacă X este constantă a.s. atunci X este independentă de Y.

(ii). Dacă X este independentă de f(X) cu f măsurabilă, atunci f(X) este constantă a.s.

(iii). Dacă f   o (P) atunci este independentă de orice altă sub -algebră a lui k .

(iv). Dacă f   g sunt două -algebre şi f  este independentă de g  atunci este f  este trivial.

(v). Dacă X este independentă de X2 atunci X nu poate lua decît valorile -1,0,1.

(vi). Dacă f:n   este măsurabilă şi (X1,....,Xn, f(X1,...,Xn)) sunt independente, atunci f(X1,X2,...,Xn) este

constantă a.s.

13. Polinoamele lui Bernstein - consecinţă a legii numerelor mari. Fie f:[0,1]   continuă. Arătaţi că 

polinoamele f n(x) = f 

nC x x

n

k k  n k 

n

 

 

1

0 converg uniform la f.

14.Lema Borel - Cantelli. Partea evidentă. Fie (,k ,P) un spaţiu probabilizat şi (An)n un şir de mulţimi din

k .Presupunem că 

P An

n

( )

1 < . Atunci P(limsup An) =0.

15. Lema Borel - Cantelli.Cazul evenimentelor independente. Dacă (An)n sunt independente şiP An

n

( )

1

= atunci P(limsup An) =1.

16. Varianţa în cazul discret.Fie X o variabilă aleatoare cu repartiţia X~

x x x

p p p

n

n

1 2

1 2

...

...

 

 

 . Arătaţi că 

Var(X) =

p p x x  j k j k  

 j k j k  

, :

2

 

17. O inegalitate care generalizează uneori inegalitatea lui Jensen. Fie f:[a,b]   derivabilă de două 

ori. Presupunem că există c1 < c2 ca x[a,b] c1  f”(x) c2 . Fie (p j)1 jn o combinaţie convexă . Atunci

c1 

p p x x  j k j k  

 j k j k  

, :

2

  2

p f x f p x  j j j j

 j

n

 j

n

 

 

 

 

 

 

 

 

11

  c2 

p p x x  j k j k  

 j k j k  

, :

2

 

18. Un caz particular. Fie p,q 0, pq =1. Atunci, în ipotezele de la exerciţiul precedent este valabilă 

inegalitatea c1pq(x-y)2  2(pf(x)+qf(y) - f(px+qy)) c2pq(x-y)

2.

19. Cazuri şi mai particulare. Fie 0 < a < b . Atunci

(i). 4(a+b)3

- 3b(a-b)2  (a+b)

3  4(a+b)

3- 3a(a-b)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 125/139

(ii) a

b

aa b ab b

b

aln ln

 

 

 

 

 

 

2 2

4 8 

20. Problemă f ără sens.Care este probabilitatea ca, extrăgînd un număr la întîmplare, acesta să fie par ?

21. Probabilitatea naivă pe N. Fie In = {1,2,...,n} .

(i). Definim P(A) =limn

nA I

n

. Arătaţi că definiţia nu are sens. Într-adevăr, dacă luăm mulţimea A =

{n N [log2(n)+ este par - şi an = AIn, atunci liminf an =

1

3 , limsup an =

2

3 . Deci limita în cauză poate

să nu existe.

(ii). Dacă definim P(A) =limsup

n

nA I

n

, definiţia are sens dar P este numai subaditivă, nu şi aditivă.

(iii). Dacă definim probabilitatea ca la (i), dar renunţăm la pretenţia ca orice mulţime să aibă o

probabilitate, atunci fie c = {A N limn

nA In există }. Atunci :

- toate mulţimile finite F aparţin la c   şi P(F) = 0. 

- Dacă A c  atunci şi Ac  c .

- Dacă A,B c  şi sunt disjuncte, atunci AB c .

- Este posibil ca A,B c dar AB c .

22. Urma unei -algebre. Fie (,k ) un spăţiu măsurabil şi A .

(i).Fie m 1 = {B k  BA- şi m 2 = {ABB k }. Coincide m 1 cu m 2?

(ii). Fie A   . Definim k (A) = {B k  B Ac sau A B }. Arătaţi că k (A) este o -algebră şi o variabilă 

aleatoare f este k (A) -măsurabilă 

Aeste constantă.

23. Spaţiile Lp(,k,   ) cu mulţime finită. Fie  = 1,2,...n- şi =

pi i

i

n

1 , pi>0. Arătaţi că 

(i).

fd =

pi

i

n

1 f(i); f = g(mod ) f=g ; seminormele Np sunt chiar norme .

(ii). ║f ║pp = (

pi

i

n

1 f(i))p dacă p< şi ║f ║ = max {f(i)  1in -. Toate spaţiile Lp coincid între ele şi

sunt spaţii Banach homeomorfe cu n echipat cu distanţa euclidiană. Convergenţa în măsură,

aproape sigură şi în Lp este aceeaşi . 

(iii). Să presupunem acum că ponderile pi pot fi şi nule. Fie J() := Supp() = {j    p j > 0 }. Atunci f =

g(mod ) f(i)=g(i) iJ; dacă J  , atunci spaţiile L p nu mai sunt spaţii normate, nefiind separate, iar

spaţiile Lp coincid toate cu spaţiul euclidianJ(). În sfîrşit, ║.║ depinde de măsura numai prin

intermediul mulţimii Supp(), în sensul că dacă  şi sunt două măsuri cu acelaşi suport, normele ║.║ 

calculate cu  şi coincid.

24. Spaţiul vectorial al măsurilor cu semn în cazul finit. Păstrăm notaţiile din exerciţiul precedent . Fie

X mulţimea măsurilor cu semn pe (,p ()), X+ măsurile pozitive şi Pn mulţimea probabilităţilor. Dacă 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 126/139

X, fie J+() = {j p j > 0}, unde =

pi i

i

n

1 . Verificaţi că:

(i). + =  j J

p j j ; - =   j J J

 \  (-p j ) j, = i

n

1 p j j, ║║ = i

n

1 p j. Deci aplicaţia T:Xn

dată prin

T() =(p1,...,pn), (unde pe nconsiderăm norma 1, ║x║:= i

n

1 x j) este o izometrie.

(ii).Dacă  şi sunt măsuri din X atunci <<  Supp() Supp(),   Supp()=Supp(),   

Supp()Supp() =  şi toate măsurile din X sunt absolut continui faţăde măsura cardinal card. Cine

este densitatea

d

dcard

?

(iii). Dacă  = i

n

1 p j j, = i

n

1 q j j şi << arătaţi că  = f  cu f(j) =

q

pdaca j Supp

arbitrar altfel

 j

 j

deci

densitatea garantată de Teorema Radon Nikodym nu este în general unică.(iv). În cazul particular n=3 reprezentaţi mulţimile T(X+), T(P3), T( j), T(card), T({<<}) cu =p1+q2 .

25. Spaţiile l p. Acestea sunt spaţiile Lp

(N,p(N), ) cu măsura cardinal, = card. Arătaţi că 

(i). Dacă f  0, atunci fd = n

1 f(n). Dacă f nu este neapărat pozitivă, fie I+(f)={n1f(n)>0- şi I-(f) = {

n1f(n)<0 }. Atunci f are integrală   n I f 

f(n) < sau n I f 

f(n) > - iar f este integrabilă  

seria n

1 f(n) este absolut convergentă.

(ii). Dacă p < q atunci l  p  l  q

   l  . Mai mult, f  l  p  ║f ║ = limp║f ║p. 

(iii).  Toate spaţiile l  p sunt diferite unul de altul iarp1 l  p

   c0   c   l   unde c0 reprezintă 

spaţiul şirurilor convergente la 0 iar c reprezintă spaţiul şirurilor convergente. 

(iv). Fie f n un şir de funcţii definite pe - deci de şiruri. Atunci

f n  f (în măsură) f n  f (în l  .) f n f (uniform) f n  f ( a.s.).

(v). Şirul f n := 1{n} converge la 0  aproape sigur dar nu convergeîn măsură.

(vi). Toate măsurile cu proprietatea că ({n})<  n sunt -finite şi admit densitatea faţă de . Care

este aceasta?

26. Spaţiile L p(N,p(N), ) cu o măsură -finită oarecare. Fie = n

1 pnn cu p j 0 şi fie Supp() =

{n1 pn > 0 }. Arătaţi că 

(i). fd = n

1 pnf(n) . Funcţia f este integrabilă  seria este absolut convergentă.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 127/139

(ii). ║f ║p =p f nn

p

n

p

( )

 

 

 

1

1

dacă p<, ║f ║ = sup { f(n)  n Supp() }.

(iii). Dacă Supp() este finit atunci toate spaţiile ( L  p(N,p(N), ))p1 coincid .

(iv). Dacă f   p1

L  p(N,p(N), ) atunci ║f ║ = limp║f ║p (deci limita din dreapta există).

(v). Dacă  este mărginită atunci sunt valabile incluziunile p < q   L  q( ) L  

p( ) .

(vi). Să presupunem că Supp() = N şi că pn  0 cînd n  . Fie k1 < k2<k3<...... astfel cap

nk n

1

! .

Fie An ={kn-şi fie 1 p < q < . Fie f p =

1

2

11

A

n

pn

n

np

. Atunci f p L  

p( ) \ L  

q( ) deci toate spaţiile acestea

sunt diferite. În aceleaşi ipoteze funcţia f =n A

nn

11

  L  

( ) dar f 1p< L  p( ).

(vii). Întotdeauna mulţimile L p() pot fi gîndite ca submulţimi ale lui. Verificaţi că dacă  este o

probabilitate Supp() = N, atunci acestea formează o familie descrescătoare de mulţimi din b () şi că 

intersecţia lor conţine pe L  (). Coincide intersecţia cu L 

 () ?

(viii). Dacă (N) = se poate ca între aceste spaţii să nu fie nici o incluziune. Dacă, de exemplu, ({n})

=

1

n   atunci funcţia f = n

nn

1 2

1

este în L 

1() \ L 2() iar funcţia g definită prin g =

1 2

2

n

n n nlog

este

 în  L 2() \ L 

1().

(ix). Totuşi, întotdeauna familia de mulţimi din dată prin Ap = L p() L 

 () este crescătoare : p < q

Ap  Aq .

27. Spaţiile L p(,k , ) cu măsura cardinal, nenumărabilă. Atunci

(i). nu mai este -finită.

(ii). Pentru fiecare variabilă aleatoare f fie Supp(f) = {x  f(x) 0 }.Arătaţi că Supp(f)k  şi că dacă f 

este integrabilă, atunci Supp(f) este o mulţime cel mult numărabilă.

(ii). Dacă f admite -integrală, atunci cel puţin una din mulţimile f >0- sau f<0- este cel multnumărabilă.

(iii). f = g (mod )  f=g. Deduceţi că  L p(,k , ) deja sunt spaţii Banach (nu mai trebuie factorizate).

Incluziunile dintre ele sunt la fel ca în cazul numărabil : cel mai mare este L   

.

(iv). Orice măsură  pe (,k ) este absolut continuă faţă de dar teorema Radon-Nikodym nu mai

funcţionează. Demonstraţi că măsura Lebesgue pe (,b ()) nu este de forma f  cu f 0, deşi este

-finită. De ce?

28. O măsură absolut contiună faţă de o probabilitate care nu admite densitate . 

Fie = [0,1], k = b ([0,1]), = măsura Lebesgue pe . Fie : k   [0,] măsura dată prin (A) =

0 0daca A

altfel

( )

. arătaţi că  << dar nu este de forma = f  cu f 0 măsurabilă.

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 128/139

29. Spaţiile Lp

(,b (), ) cu măsura Lebesgue. 

(i). Fie X = { f :     f măsurabilă şi (Supp(f)) < . Atunci X este un spaţiu vectorial şi 1 p q   

X   L q

(,b (), ) X    L p

(,b (), ).

(ii). Dimpotrivă, în aceleaşi ipoteze L   

()   L p

( )    L   

()    L q

( ).

(iii). Funcţia f(x) =

1

2 1 1 1 0x x , \{ } ( )

  este în L 1

( ) \  L 2

( ) iar g(x)=min(1,

1

x ) este în  L 2

( ) \  L  

1( ). Deci în general nu este nici o incluziune între spaţiile L 

p().

(iv). Funcţia f(x) = e x 2

este în toate spaţiile L p(). Calculaţi ║f ║p .

(v). Dacă f   1p L p() atunci ║f ║ = limp ║f ║p .

(vi). Dacă notăm cu f = {g :    g măsurabilă Lebesgue, f = g (mod ) } care este cardinalitatea lui

f?

(vii). Arătaţi că funcţia f:  , fa(x) =

sin x

x 1(0,)(x) este integrabilă Riemann pe [0,) dar nu este

integrabilă Lebesgue.

(viii). Daţi exemple de şiruri de funcţii măsurabile (f n)n care să conveargă  în măsură, dar nu -a.s. şi nici în

 L p(); care să conveargă -a.s. dar nu în măsură; să conveargă  în L 

1 () dar nu în  L 2 (); în general, să 

conveargă  în L p().dar nu în L 

q().

30.Contraexemplu la Teoremei lui Fubini. O bijecţie de la N la N2. Fie f: N  N  N dată prin f(i,j) =

2i(2j+1). Pe (N,p (N)) considerăm măsura =

 j

 j j

1 . Atunci

(i). Funcţia f este bijectivă şi i1i2, j1 j2  f(i1, j1) f(i2, j2).

(ii). Aplicaţia m: p (N) [0,] dată prin m(A) = (f(A)) este o măsură de tip produs : există măsurile m 1,

m 2 pe N ca m = m 1 m 2 . Să notăm ri,j = m({i,j}) = piq j. aplicînd Teorema lui Fubini pentru funcţii

pozitive deduceţi că dacă pi, q j sunt nenegative, atunci

p q p qi ji j

ii

 j j,

 

 

  

 

 

 

0 0 0 .

(iii). Fie funcţia g = f i i f i i

i i i iii

( , ) ( , )( , ) ( , )

1 1 11

0

. Verificaţi atunci că integralele iterate există :

g m n( , )dm 1 (m)dm 2(n) =

p g m n qm nnm

( ( , ) )

00 = 1 dar

g m n( , )dm 1 (m)dm 2(n) =

q g m n pn mmn

( ( , ) )

00 = 0. De ce nu coincid ?

31. Produsul de măsuri discrete este de asemenea măsură discretă. Fie (i,k i), i=1,2 două spaţii

măsurabile . Fie A={xii I}  1  şi B=y j j J}  2 două mulţimi cel mult numărabile. Fie (pi)iI şi

(q j) jJ numere pozitive. Considerăm măsurile =p i x

i Ii

(pe1) şi =

q  j y j J

 j

(pe 2) . Verificaţi

că atunci =

p qi j x yi j i j

,

,

0 . În particular (x,y)=xy .

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 129/139

 

32. Exemple în care integralele iterate nu coincid sau coincid deşi funcţia nu este integrabilă 

(i). (N,p (N)) considerăm măsura cardinal . Fie A = {(i,i)i N }, B = {(i.i+1)i N -şi fie f=1A-1B. Atunci

f x y d x d y( , ) ( ) ( ) = 1 dar

f x y d y d x( , ) ( ) ( ) = 0.

(ii). În acelaşi context de mai sus fie

f(x,y) =

1

1 1 1

0

daca x y

daca y x x impar sau y x x par

altfel

, ,

. Arătaţi că  în acest caz, deşi f nu este -

integrabilă, integralele itereate există şi coincid. 

(iii). Fie = [-1,1]2, k = b ([-1,1]2 ), şi f(x,y) =

xy

x ydaca x y

altfel

2 2 20 0

0

,

. Atunci f este

măsurabilă, nu este integrabilă faţă de 2 dar integralele iterate coincid.

33. O măsură pu semn de tip produs. Fie q (-1,1) şi m măsura pe N2 definită prin m({(i,j)}) = qi+j. Este

m o măsură produs ? Cine este m +, m -, m , ║ m ║?

34. O măsură cu semn absolut continuă depinzînd de parametri.

Fie = {(x,y)2x2 + y2  1}. Fie f:2  , f(x,y) = ax+by+c, a,b,c  şi = (f1)2.

(i). Este o măsură cu semn? care este norma sa? Cum trebuie să fie numerele a,b,c, pentru ca să fie o

măsură veritabilă?

(ii). Dar o probabilitate? Dar o măsură de tip produs?

(iii). Fie pe variabilele aleatoare X = pr1, Y = pr2. Să presupunem că a,b,c sunt aleşi astfel ca să fie

probabilitate. Arătaţi că X şi Y nu sunt niciodată independente.

(iv). Dacă a=b=0 şi este probabilitate arătaţi că X şi Y sunt necorelate.

34.Generalizare pentru p1 .

(i). Fie Ip =

10

11

x dxpp

. Dezvoltaţi pe (1 - xp)1/p  în serie, aplicaţi teorema de Lebesgue de convergenţă 

dominată şi arătaţi că Ip =

1

1

1 2 1 1 1

12

p

p

p p n p

n p npnn

... ( )

! .

Estimaţi apoi restul şi deduceţi că  I

p p

p

p p pp

 

 

 

  1

1

1

1

2 2 1

1

32( ) 

(ii). Fie Sp ={(x,y)2xp +yp  1} discul unitate din 2  faţă de norma ║.║p şi s(p) aria sa. Arătaţi

că p<q Sp  Sq deci funcţia s:*1,)   este crescătoare. Verificaţi că s(1) = 2, s(2) = , s() = 4 şi că 

s(p) = 4Ip de unde deduceţi estimări pentru s(3) şi s(4).

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 130/139

(iii). Pe = 2, k = b (2) măsurile Pp : =

1Sp

s p( )   2 sunt probabilităţi. Variabilele aleatoare de laexerciţiul precedent (adică X= pr1,Y= pr2) sunt necorelate dar, cu excepţia cazului p= ele nu sunt

independente.

35. Generalizarea lan. Volumul sferei euclidiene n-dimensionale şi volumul simplexului

n-dimensional. Acum = n, k = b (n

), X j = pr j . S(n,p) = {x║x║p1} = {xn  

x j

p

 j

n

1

1 },

s(n.p) = n(S(n,p)) iar probabilităţile Pp =

1S n p

s n p

( , )

( , ) . n .

(i). Dacă p  , variabilele aleatoare (X j)1 jn sunt necorelate două cîte două dar nu sunt independente.

(ii). Arătaţi prin inducţie după n că s(n,1) =

2 n

n ! , s(n,) = 2n.

(iii). Fie Sr(n,p) = {x║x║p r} sfera de centru 0 şi rază r şi sr(n,p) volumul său. Arătaţi atunci că 

sr(n,p) = rns(n,p) iar secţiunea în Sr(n,p) prin hiperplanul xn = x (cu x<r ) este S n p

r xp p p1 1( , )

.

Deduceţi de aici că numerele sr(n,p) verifică ralaţiile de recurenţă 

sr(n,p) =rsr(n-1,p)( )1

1

1

1

x dx

p

n

p

. În particular, volumul sferei unitate este dat de realţia de recurenţă 

s(n,p) = 2s(n-1,p) 1

1

0

1

x dxp

n

p

. Deduceţi de aici volumul sferei euclidiene (cazul p=2) care este dat de

relaţia de recurenţă s(n,2)=s(n-1,2)

sinn xdx0

, s(2,2) = . Rezultă s(n,2) =

m

m mm

daca n m

mdaca n m

!

.. .

2

2

1 3 5 2 12 1

1

.

36. Inegalităţile lui Bonferoni. (i). Fie n şi k două numere naturale. arătaţi, prin inducţie după k identitatea

C C C C Cn n n

n

k  k 

n

k 0 1 2

11 1 ... ( ) . Pentru n k, Cn

1 = 0 deci membrul drept coincide cu 0.

(ii). Deduceţi că  C C Cn n

n

k 1 2 11 ... ( )    1 ( k impar) şi C C Cn n

n

k 1 2 11 ... ( )   1 pentru k

par. Dacă nk inegalităţile devin egalităţi. (iii). Fie A1,...,An submulţimi ale unui spaţiu oarecare. Fie A reuniunea lor şi pentru k n, fie f k =

11 2

AJ n J k  

j

 j J

, , ..., , . Arătaţi folosind (ii) că 1A  f 1-f 2+...+(-1)

k-1f k  (k impar ) şi, dacă k este par este

valabilă inegalitatea inversă : 1A  f 1-f 2+...+(-1)k-1f k . De exemplu, indicatorul lui A verifică cleştele f 1 - f 2  

1A  min(f 1, f 1-f 2+f 3).

(iv). Să presupunem acum că (,k,) este un spaţiu cu măsură şi că A1,...,An au toate măsura finită. Fie Sk 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 131/139

=

A  j j JJ n J k  

 

 

 

 

1 2, , ..., , . Atunci sunt valabile următoarele inegalităţi (inegalităţile lui Bonferonni) :(A)

S1-S2+...+(-1)k-1

Sk (k impar ) iar pentru k par este valabilă inegalitatea contrară : (A)  

S1-S2+...+(-1)k-1

Sk . De exemplu (A) S1 - S2+S3 şi (A) S1-S2.

(v). Dacă, de exemplu, (,k,

P) este un spaţiu probabilizat şi A1,...,An sunt independente două cîte două şiP(Ak)=p 1kn, inegalitatea Bonferroni ne poate da o margine inferioară pentru P(A): np - n(n-1)p2/2  

P(A)  np. Pentru n=3 obţinem P(A) 3p -1.5p2 iar pentru n=4 rezultă 4p - 6p2  P(A) 4p. Dacă p este

mic, ele sunt destul de satisf ăcătoare: dacă p=.1 şi n=4 obţinem, î n ipotezele de mai sus că .34 P(A) .4

; dacă cele patru evenimente ar fi toate independente, s-ar obţine valoarea exactă P(A) = 1 - .94  .355 .

37. Funcţia de repartiţie a unei măsuri mărginite în plan. 

Fie = 2, k = b (2) şi o măsură mărginită. Definim F(x,y) = ((-,x](-,y]), F1 := F1,(x) =

((-,x]),F2 := F2,(y) = ((-,y]) . Arătaţi că 

(i). F1 şi F2

 sunt funcţii de repartiţie pentru măsurile 1 = (pr1)-1

 şi 2 = (pr2)-1

.

(ii). Dacă  şi ‘ sunt două măsuri mărginite, atunci F+‘ = F + F‘ .

(iii). Dacă  = (a,b), atunci F(x,y) = 1(-,x](a)1(-,y](b).

(iv). Dacă  = 12 cu 1,2 măsuri mărginite pe dreaptă, atunci F =F F 1 2

.

(v). Reciproc, dacă F1 şi F2 sunt funcţii crescătoare, continui la dreapta şi mărginite, astfel încît

F1(-)=F2(-)=0 şi F = F1F2, atunci este o măsură de tip produs.

(vi).Fie o măsură mărginită şi F funcţia sa de repartiţie. Atunci F are următoarele proprietăţi: (a). F(-,y) = F(x,-) = 0

(b). xx’, yy’ F(x,y)  F(x’,y’) (monotonie)

(c).F(x+0,y) = F(x,y+0) = F(x+0,y+0) = F(x,y) (continuitate la dreapta).

(d).F(x+h,y) - F(x,y) =((x,x+h]), F(x,y+k) - F(x,y) = (((y,y+k]).

(e).F(x-0,y) = ((-,x)(-,y]), F(x,y-0) = ((-,x](-,y)) .

(f). F(x-0,y-0) = ((-,x)(-,y)).

(g). Dacă F1 şi F2 sunt funcţiile de la (i), atunci F1(x) = F(x,), F2(y) = F(,y) .

(h). ((x,x+h](y,y+k])=F(x+h,y+k)-F(x+h,y)-F(x,y+k)+F(x,y).

(i). F(x,y) - F(x-0,y) = ({x}(-,y]), F(x,y)-F(x,y-0) = ((-,x]{y}).

(j). F(x,y)-F(x-0,y-0) = ((-,x]{y} {x}(-,y]).

(k). F(x,y)-F(x-0,y)-F(x,y-0)+F(x-0,y-0) = ({(x,y)}).

(vii). Reciproc, dacă F: 2  [0,) este o funcţie mărginită care satisface proprietăţile a,b,c,e,f (limite) şi

 în membrul drept al egalităţii (h) cantitatea este pozitivă (mai precis, dacă definim F(x,y;h,k) :=

F(x+h,y+k)-F(x+h,y)-F(x,y+k)+F(x,y), atunci F(x,y;h,k) 0 pentru x,y , h,k 0 ) atunci există o

măsură mărginită   în plan ca funcţia sa de repartiţie F să coincidă cu F.

(viii). Dacă F1 şi F2 sunt două funcţii de repartiţie pe dreaptă, este adevărat că funcţia F definită prin F(x,y)

= F1(x) + F2(y) este funcţie de repartiţie pentru o măsură planară?

(ix). Este funcţia F(x,y) = min(xy, x1, y1)1(0,)(x)1(0,)(y) funcţie de repartiţie pentru vreo măsură 

planară ?

(x). Densitatea unei măsuri faţă de 2. Fie o măsură mărginită planară. Fresupunem că funcţia F este

derivabilă de două ori. Atunci <<2 şi, mai precis,  = F”x,y2.

38. Exemple şi contraexemple de funcţii de repartiţie planare. 

(i).Găsiţi funcţia de repartiţie a măsurii (A) = (pr1( DA)) cu măsura Lebesgue unidimensională şi D ={(x,x) 0 x 1 }. Dar a măsurii (A) = (pr1( EA)) cu E fiind segmentul care uneşte punctele (1,0) şi (0,1)

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 132/139

? Arătaţi că aceste măsuri, deşi continue (adică neglijează punctele) nu sunt absolut continue faţă de 2 

(fiind concentrate pe mulţimi neglijabile), ba mai mult, deci sunt singulare faţă de ea. Înseamnă că 

funcţia lor de repartiţie, deşi continue, nu sunt derivabile.(ii). Fie funcţiile F1 (x,y) = min(x,y)1[0,)(x) 1[0,)(y) şi F2(x,y) = max(x,y) 1[0,)(x) 1[0,)(y). Pot ele fi funcţii derepartiţie pentru măsuri planare?. Dar suma lor este funcţie de repartiţie? 

39. Repartiţia unui vector aleator .Densitatea unui vector aleator. Fie (,k ,P) un spaţiu probabilizat şiZ=(X,Y) un punct aleator. Spunem că Z are densitate dacă PZ

-1 este absolut continuă faţă de 2 .

(i). Arătaţi că dacă X este o variabilă aleatoare uniform repartizată, atunci punctul aleator Z=(X,X) nu are

densitate, deşi ambele sale coordonate au densitate. Deci nu este suficient ca ambele coordonate ale

unui punct să aibă densitate faţă de ca el să aibă densitate.

(ii). Fie X un vector aleator n-dimensional cu densitatea X. Fie A o matrice nn şi bn. Atunci AX+b

are de asemenea densitate şi AX+b (x) =

X A x b

A

1

det( ) .

(iii) Dacă X este vector aleator de componente (Xi)1in atunci media sa este vectorul dat prin EX =

(EX j)

1 jn. Arătaţi că, dacă A este o matrice cu m linii şi n coloane iar b

m atunci E(AX+b) = AEX + b.

40..Repartiţii simetrice n-dimensionale. Fie X un vector aleator n-dimensional . Fie = X repartiţia sa.Pentru fiecare permutare   Sn fie f : n  n funcţia definită prin permutarea componentelor: f (x) =

( x(!), x(2), ..., x(n) ) . Spunem că  este simetrică dacă f -1= . Dacă g : n

   este o funcţie

măsurabilă, spunem că g este simetrică dacă gf  = g. Dacă C  b (n) spunem că C este simetrică dacă 

1C este o funcţie simetrică. În sfîrşit, un vector aleator X este simetric dacă repatiţia sa X este simetrică.

(i). Dacă  = ncu  o repartiţie pe dreaptă, atunci este simetrică. Deci dacă (X j)1 jn sunt variabile

aleatoare i.i.d., atunci X este un vector aleator simetric.

(ii). Să presupunem că  = n . Atunci este simetrică   este simetrică.

(iii). Dacă X este un vector aleator simetric atunci componentele sale (X j)1 jn sunt identic repartizate.

Rezultă că EX = (a,a,...,a) cu a=EX1 .(iv). Mai mult, dacă X este un vector simetric şi J 1,2,...,n- este o mulţime cu k elemente, vectorul X(J)

de componente (X j) jJ este de asemenea simetric şi PX(J)-1 = PX({1,2,...,k})-1. Deduceţi de aici că E(XiXk) =

E(X1X2) 1i,jn  deci matricea coeficienţilor de corelaţie R=(rij)1i,j1 are forma R=

1

1

1

r r

r r

r r

...

...

... ... ... ...

...

 

 

 

 

cu r = (X1, X2) .

41. Repartiţia uniformă  în cazul unei mulţimi finite. Să presupunem că X este o variabilă aleatoare

simplă. Fie C = Im(X). Spunem că X este repartizată uniform dacă P(X=x)=

1

C  xC. Arătaţi că dacă X şi

Y sunt variabile aleatoare simple independente uniform repartizate, atunci vectorul (X,Y) este de

asemenea uniform repartizat. Mai rămîne afirmaţia adevărată dacă X şi Y nu sunt independente?Verificaţi că dacă C=0,1,2- punctul aleator Z cu repaertiţia Z~

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 133/139

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )0 0 0 1 0 2 1 0 11 1 2 2 0 2 1 2 2

0 0 0 2 0p p p p p

 

 

 

cu p=

1

6 are ambele componente

uniform repartizate şi necorelate deşi el nu este uniform repartizat. 

42. Repartiţia uniformă pe un compact. Fie C  n o mulţime compactă neneglijabilă Lebesgue .

Probabilitatea U(C) = (a1C)ncu 1/a = n(C) se numeşte repartiţia uniformă pe C. Dacă vectorul aleator

X:  C are repartiţia U(C) atunci X se numeşte uniform repartizat pe C. Deci dacăX ~ U(C) atunci

P(X B) =

n

n

BC

B( ) . Dacă C = [0,1]n atunci X se numeşte pur şi simplu uniform repartizat. Arătaţi că 

(i).Dacă X ~U(B),Y ~ U(C) şi X este independent de Y atunci (X,Y)~U(BC) unde B m şi Cn

sunt

compacte neneglijabile Lebesgue.

(ii). Dacă X ~ U(C), media sa EX se numeşte baricentrul lui C. Arătaţi că dacă C are un centru de simetrie

(adică un punct aC cu proprietatea că xC 2a-x C) atunci EX=a.

(iii). Folosind formula de transport arătaţi că dacă X ~ U(C) şi g:n   este măsurabilă mărginită atunci

Eg(X) =

11

n C

n

Cf d

( )

 

(iv). Calculaţi EX dacă X este uniform repartizat într-un cerc, sferă, triunghi.

(v). Să presupunem că X ~U(C) cu C  ncompact neneglijabil Lebesgue. Fie T: n

  no transformare

afină nesingulară, adică T(x) = Ax + b cu A matrice nesingulară, bn. Atunci T(X) ~U(T(C))

(vi). Dacă X ~U(C) cu C un compact simetric atunci X este vector simetric. Deci baricentrul lui C, EX

=(a,a,...,a) cu a=EX1.

43. Repartiţia uniformă  într-un simplex. Fie x(0),x(1),...,x(n)  n. Acoperirea convexă a acestor vectori

C = co(x(0),x(1),...,x(n)-) se numeşte simplexul de vîrfuri (x(j))0 jn cu condiţia ca interiorul acestei

mulţimi să fie nevid (altfel se numeşte simplex degenerat) . Dacă x(0)=0 şi x(j)=e j unde (e j)1 jn este bazacanonică din n, atunci C se numeşte simplexul canonic şi se noteazăcu Pn.

(i). Simplexul C este imaginea simplexului canonic Pn prin aplicaţia afină T:n  n dată de relaţia T(x) =Axb unde b=x(0) iar A este matricea avînd coloanele(x(1) -x(0),x(2) - x(0),...,x(n) - x(0)) (vectorii x(j) îi gîndim ca vectori coloană).

(ii). Dacă X ~U(Pn) atunci X este simetric şi densitatea lui X esteX =n Pn

!1iar dacă X~U(C) cu C =

co({x(0),x(1),...,x(n)}) atunci x = n!1C /det(A)unde matricea A este A = (x(1)-x (0),x(2) -

x(0),...,x(n) - x(0)), (x(j))0 jn fiind vîrfurile simplexului.

(iii). Dacă X ~U(Pn) atunci EX =

1

1

1

1

1

1n n n   

 , , ..., n iar coeficienţii de corelaţie (Xi,X j)1i jn 

coincid cu (X1,X2) = 1

n . Verificaţi apoi că E(X1X2) =

11 2n n

   În general, dacă C =

co({x(0),x(1),...,x(n)}) atunci EX =

1

10 1

nx x x n

( ( ) ( ) ... ( ))

  este centrul de greutate obişnuit al celorn+1 vectori.

44. Statistici de ordine. Fie X un vector n-dimensional cu densitatea X faţă de n. Ordonăm

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 134/139

componentele lui X în ordine crescătoare X(1)  X(2)  ... X(n) . Variabila aleatoare X(j) se numeşte statistica

de ordine nr. j a lui X. Fie Y vectorul (X(1), X(2), ..., X(n)).

(i).Y are de asemenea densitate Y dată de formala Y(x) =

X

S

Df x xn

1 ( )

unde, dacă  este o

permutare din Sn, f (x) = (x(j))1 jn .

(ii). Dacă X este simetrică, atunci Y=n!X1D . În particular dacă (X j)1 jn sunt variabile aleatoare i.i.d.,atunci Y(x) = n!(x1)(x2)...(xn)1D(x), unde am presupus că PX j

-1= . Dacă X este şi uniform repartizat

pe [0,1]n, atunci Y este uniform repartizat în simplexul Q n := co(0,en,en+en-1,en+en-1+en-2,....,e1+e2+...+en).

Cum acesta este congruent cu Pn rezultă că Y =n Qn

!1.

(iii). Media.Deduceţi din (ii) că dacă X ~U([0,1]n)

 , atunci EY =

1

1

2

1 1n n

n

n   

 , , ...,

.

(iv). Repartiţia statisticii de ordine nr. j în cazul uniform. Dacă X este uniform repartizat în *0,1+n atunci

X(j) ~  j cu  j(x) = nC x xn

 j j n j

1

1 1 11(0,1)(x). Deduceţi apoi de aici că EX(j) =

 j

n 1 , E(X(j)2) =

 j jn n

11 2

, 2(X(j)) =

  j n jn n

11 2

2

 

(v). Ecarturile -Diferenţele statisticilor de ordine. Fie X ~U([0,1]n), Y statistica sa de ordine şi Z vectorulZ =(Y1, Y2-Y1,...,Yn - Yn-1 ). Arătaţi că Z ~U(Pn) deci diferenţele au toate aceeaşi medie EZ j = (n+1)

-1.

Reciproc, dacă Z ~U(Pn) atunci vectorul Y*=(Z1,Z1+Z2,...,Z1+...+Zn) are aceeaşi repartiţie cu Y.(vi). Corelaţia între două statistici de ordine. Deduceţi din (v) că dacă X este uniform repartizat în *0,1+n

 

atunci E(X(i)X(j)) =

i j

n n

1

1 2  şi că (X(i), X(j)) =

i n j

  j n i

1

1. Deci (X(1), X(n)) =

1

n  

45. Repartiţia uniformă pe cercul trigonometric. Fie S o variabilă uniform repartizate pe [0,2].Atunci spunem că Z=(cosS,sinS) este uniform repartizat pe cerc.

(i). Dacă Z=(X,Y) este uniform repartizat pe cerc, atunci X,Y sunt necorelate dar nu independente.

Repartiţia Z fiind concentrată pe cerc este singulară faţă de 2.

(ii). Dacă Z1 şi Z2 sunt uniform repartizate pe cerc, atunci Z 1+Z2 are o densitate  faţă de 2 şi anume

(x,y)=

2

42 2 r r cu r = r(x,y) =x y2 2

 

(iii). Ce face următorul program BASIC?

cls: screen 9: window(-3,-3)-(3,3): pi = 4*atn(1)

1 s = 2*pi*rnd : t = 2*pi*rnd : x = cos(s) +cos(t) : y=sin(s)+sin(t)

pset(x,y),14

goto 1

46. Un punct aleator ]n interiorul unui cerc care nu este uniform repartizat.

Fie R ~U(0,1) şi T ~U(0,2). Fie X = RcosT, Y=RsinT . Atunci P(X,Y)-1

= 2cu (x,y)=

1

2 2

C x y

x y

( , )

deci

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 135/139

(X,Y) nu este uniform repartizat în descul C=(x,y)2x2+y21}. Variabilele X ;i Y s]nt necorelate dar nu

independente.

Bibliografie

Cei care doresc aprofundarea cunoştinţelor din acest curs mai pot consulta lucrările

1. Patrick Billinsley, Probability and Measure, Editura John Wiley & Sons, New York 1995

2. George Ciucu, Constantin Tudor, Probabilităţi şi procese stochastice, Editura Academiei,

Bucureşti 1978 

3. George Ciucu, Constantin Tudor, Teoria probabilităţilor şi aplicaţii. 

4. Ion Cuculescu, Curs de teoria probabilităţilor, Tipografia Universităţii, Bucureşti 1976. 

5. William Feller, An Introduction to Pprobability Theory and its Applications, vol I, Editura

John Wiley & Sons, New York 1957.

6. Michel Loeve, Probability Theory, Van Nastrand 1963

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 136/139

Cuprins

Curs 1. Familii de submulţimi ale unui spaţiu ....................................... 1

 Algebr ă ,  -algebr ă , U-sistem , mulţimi boreliene 

Curs 2.Măsurabilitate ....................................... 5

Preimagine, spaţiu măsurabil, funcţie măsurabil ă , -algebr ă generat ă de

 funcţii, spaţiu măsurabil produs, urma unui spaţiu măsurabil pe o mulţime,

variabil ă aleatoare, vector aleator  

Curs 3.Măsura. Prelungirea lui Caratheodory ....................................... 15

Măsur ă , măsur ă pe o algebr ă , criteriul de  -aditivitate Kolmogorov,

măsura exterioar ă, mulţimi   -măsurabile, prelungirea măsurii la

mulţimile  -măsurabile, unicitatea prelungirii în cazul măsurilor  -finite. 

Curs 4.Regularitate faţă de familii semicompacte. Măsura Lebesgue ...... 24

Regularitatea faţă de o familie semicompact ă implică  -aditivitatea,

măsura Stieltjes generat ă de ofuncţie crescătoare continuă la dreapta,

continuitatea monotonă a măsurii, funcţia de repartiţie a unei măsuri Stieltjes.

Curs 5.Măsura Lebesgue. Completarea unei -algebre faţă de o măsură .. 30

Măsura Lebesgue, completarea unei  -algebre faţă de o măsur ă ,

regularitatea măsurilor Stieltjes pe spaţii metrice  -compacte,

transportul măsurilor, mulţimi nemăsurabile Lebesgue, repartiţii  

 pe dreapt ă , pseudoinversa. 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 137/139

 

Curs 6.Integrala ....................................... 39

Integrarea funcţiilor simple, integrarea funcţiilor pozitive,

Teorema Beppo-Levi, integrarea funcţiilor măsurabile oarecare,

spaţiul L1 , propriet ăţile fundamentale ale operatorului de integrare,

comparaţie între integrala Lebesgue şi integrala Riemann,

criteriul lui Lebesgue de integrabilitate Riemann 

Curs 7.Teorema Radon - Nikodym ....................................... 52

Egalitatea aproape sigur ă, convergenţa aproape sigură , teorema

de convergenţă dominat ă , măsuri cu semn, descompunerea

Hahn - Jordan, spaţiul normat al măsurilor mărginite cu semn,

absolut continuitate, teorema Radon - Nikodym, spaţiile L p ,

inegalitatea lui Hölder, inegalitatea Minkowski, completitudinea

spaţiilor L p , inegalitatea normelor. 

Curs 8.Teorema ergodică  ....................................... 63

Lema ergodică maximal ă, funcţii care invariază măsura,

teorema ergodică , transformare ergodică , criterii de ergodicitate. 

Curs 9.Produs de spaţii cu măsură ....................................... 70

Produsul a două măsuri, produs finit de măsuri   -finite, teorema Fubini,

măsura Lebesgue n-dimensional ă, produsul unui şir de probabilităţi, 

teorema Kolmogorov, produs tensorial de densit ăţi, puterea unei măsuri,

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 138/139

  shiftul ca aplicaţie ergodică.

Curs 10.Spaţii probabilizate ....................................... 78

Media unei variabile aleatoare, momente, dispersia, inegalitatea mediilor,

inegalitatea Jensen, proprietatea de optim a mediei, inegalitatea Cebîşev,

repartiţia unei variabile aleatoare, funcţia de repartiţie, variabile aleatoare

discrete, funcţia generatoare de momente, variabile aleatoare pozitive,

interpretarea geometrică a mediei, mediana, proprietatea de optim a medianei. 

Curs 11.Independenţa. Legea numerelor mari ....................................... 86

Familii independente de mulţimi, evenimente independente,  -algebre

independente,asociativitatea independenţei, probabilitate condiţionată ,

variabile aleatoare independente, criterii de independenţă a variabilelor 

aleatoare, legătura independenţă -probabilitate produs, variabile i.i.d.,

legea tare a numerelor mari - caz particular al teoremei ergodice,

legea slabă a numerelor mari, convergenţă  în probabilitate,

coeficient de corelaţie, variabile necorelate, convergenţa în L2.

Curs 12.Reguli de calcul cu repartiţiile. Convoluţia ................................. 95

Repartiţia sumei, produsului, raportului a două variabile aleatoare,

simularea repartiţiei normale prin două uniforme independente,

 propriet ăţile repartiţiei normale, convoluţia, comportarea funcţiei 

generatoare faţă de convoluţie, repartiţia binomială B(n,p),

repartiţia hipergeometrică, repartiţia Poisson, repartiţia geometrică ,

teorema limit ă central ă. 

5/13/2018 Curs Zbaganu - slidepdf.com

http://slidepdf.com/reader/full/curs-zbaganu-55a4d8f79a097 139/139

 

Exerciţii ....................................... 105