50091086 calculul grinzii stalpului si planseului en

Upload: jordan-penteleu

Post on 14-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    1/35

    GIRDER CALCULATION

    The girders take the loads from the plates, the closing and the dividing walls andtransmit them to the columns.

    A construction element is a girder if the following condition is respected:L

    5max(b,h)

    where:

    L girder lenght;b girder cross-section width;h girder cross-section height.

    As the girders are constructions main elements, they are calculated in the elasticstage.

    For the column and girder calculation I considered a rigid node in the structure

    In order to impose the energy disipation structural mechanism, that will fulfill the request:

    for the framed storeyed structures, the plastic deformations must appear first in thesections at the edge of the girders and, after that, in the sections at the base of thecolumns. So there must be respected the following condition (according to P100-2006):

    Rc Rd RbM M where:

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    2/35

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    3/35

    M[daNm]

    12803.24

    164.54

    12776.68

    (3)

    M[daNm]

    9756.99

    1964.44

    7286.45

    (4)

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    4/35

    3.Girders reinforcement

    The girders minimum reinforcement percentage according to STAS 10107/0-90 is:

    p = 0.45 (frame girders that take part at anti-seismic structures in the AE

    calculation zones, for the reinforcement that take the negative moments in the bearings).p = 0.15 frame girders that take part at anti-seismic structures in the AEcalculation zones, for the other tensed reinforcement).

    3.1. Calculation of reinforcement in the bearings:

    As the concrete compressed area is in the girder, the calculation cross-section is

    considered a rectangular double reinforced section.

    Grirder 1:

    According to Stas 10107/0-90, the concrete coverage for monolith reinforcedconcrete is ab = 3 cm.

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    5/35

    = =

    b

    2

    0

    a 0 b

    20 c

    lim

    lim

    h = h-a -d/2 = 50-2.5-1.8/2 = 46.1 cm

    h = h -a -d/2 = 46.1 - 3 -1.8/2 = 42.2 cm

    M 1306540B = 0.1025

    b h R 40 46.1 150

    B = 0.22

    B

    cap 0

    Aa Ra 10.05 3000x= 5.025

    b Rc 40 150

    M =b x Rc (h -0.5 x)=40 5.025 150 (46.1-0.5 5.025)=13141.63 daNm

    10.05100 100 0.5 0.45

    50 40t

    cm

    Atp

    Ab

    3.2.Calculation of the reinforcement in the field:

    Depending on the compressed concrete area we wil have two design cases.

    The establishment of the design case:

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    6/35

    Plates capable moment when x=hp has the formula:

    cap.pl p p c 0 pM = b h R (h -0.5h )

    cap.pl ext p p

    cap.pl ext p

    M >M xM 4347.95daNm x

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    7/35

    = =

    = =

    = =

    =

    b

    2

    0

    2p 0 c

    20

    2ef

    h = h-a -d/2 = 50-2.5-1.8/2 = 46.1 cm

    M 434795B = 0.0341

    b h R 40 46.1 150

    = 1- 1-2B 1 1 2 0.0341 0.0347

    150Aa = 0.0347 40 46.1 3.2

    3000

    reinforcement 3 14 Aa =4.62 cm

    100

    Cp

    a

    Rb h cm

    R

    Atp

    Ab

    = = >

    = =

    = = = ==

    = =

    = = = >

    2 2

    2 2

    2 2

    4.62100 0.23 0.15

    50 402 :

    :

    9.72 5 16 . 10.05

    ' 0.4 0.4 10.05 4.02 3 14 ' 4.62

    13141.63

    :

    0.704 3 14 4.62

    4.62100 0.23 0.1550 40

    tt

    b

    Grider

    Bearing

    Aa cm Aaef cm

    Aa Aa cm Aa ef cm

    Mcap daNm

    Field

    Aa cm Aaef cm

    Ap A

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    8/35

    2 2

    2 2

    2 2

    3:

    :

    9.78 5 16 10.05

    ' 4.02 3 14 ' 4.62

    13141.6310.05

    100 100 0.5 0.4540 50

    :

    0.119 3 14 4.62

    4.62100 100 0.23 0.15

    40 50

    Girder

    Bearing

    Aa cm Aaef cm

    Aa cm Aa ef cm

    Mcap daNmAt

    pAb

    Field

    Aa cm Aaef cm

    Atp

    Ab

    Girde

    = =

    = =

    == = = >

    = =

    = = = >

    2 2

    2 2

    2

    2

    2

    4 :

    :

    7.35 4 16 8.04

    ' 3.216 3 14 ' 4.62

    1063450.8

    8.04100 100 0.4 0.45

    40 50

    0.45 20009 5 16

    100 100

    10.05

    :

    1.43 3 14 4.62

    r

    Bearing

    Aa cm Aaef cm

    Aa cm Aa ef cm

    Mcap daNm

    Atp

    Ab

    p AbAt cm

    Aaef cm

    Field

    Aa cm Aaef

    = == =

    =

    = = = <

    = = =

    =

    = = 2

    4.62100 100 0.23 0.15

    40 50

    cm

    Atp

    Ab= = = >

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    9/35

    COLUMN CALCULATION

    Because I chose for a static spacial calculation for the structure, I will choose to

    dimension and reinforce a column (from the first to the top level) having the biggestefforts.

    We consider the buckling lenght equal to the storeys height (h):

    3,00

    6 100,50

    fl

    h= =

    The flexibilitys influence can be neglected for all levels 1= , where:= eccentricity increasing coefficient for the calculation eoc by which the second orderefforts are introduced.

    The column has the following cross-section on the whole height of the building:

    50cm

    50 cm

    x

    y

    Calculation of the longitudinal reinforcement:

    The calculation for the columns longitudinal reinforcement is made according to

    STAS 10107/0-90 and normative P100-92.

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    10/35

    The columns are calculated in straight eccentrical compression.

    The eccentricities evaluation is made as follows:

    oc o ae e e= + , where:eoc calculation eccentricity

    eo initial eccentricity - o MeN

    =

    M exterior moment that acts on the considered cross-sectionN axial force that actson the considered cross-section

    ea additional eccentricity

    501,667

    max 2,0030 30

    2a

    hcm

    e cm

    cm

    = = = =

    Establishment of the eccentricity case:

    - limo

    x

    h = - eccentric compression of big eccentricity (case I)

    - limo

    x

    h = - eccentric compression of big eccentricity (case II)

    where: - relative height of the compressed zone- lim maximum relative height of the compressed zone

    The reinforcement quantities are calculated as follows:

    - case I:

    ( )'

    '

    0

    2 ca a

    a

    NN e h

    b RA A

    R h a

    + = =

    ;

    - case II:( )

    2' lim 0

    '

    0

    ca a

    a

    N e B b h RA A

    R h a

    = =

    Note: For the framed structurs, in practise, it is a must to use symmetrical reinforcementagainst non-symmetrical reinforcement, beceause, at least from the seismic load, wehave alternating loads on the elements. Also, it is eliminated the possibility to reverse thereinforcement on the working site.

    The element is checked at oblique eccentrical compression with the relation:

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    11/35

    0 0

    1yx

    x y

    MM

    M M

    +

    p

    where: Mx,My calculation bending moments on the two directions

    Mx0 cross-sections capable moment on the X direction for a given axial force,when My=0My0 cross-sections capable moment on the Y direction for a given axial force,

    cnd Mx=0

    coefficient depending on the cross-sections reinforcing way and on n:

    0 c

    Nn

    b h R=

    1,3 2,5 =

    According to NP 007/97 Cod de proiectare pentru structuri din beton armatparagraf 6.1.4. point b, the bending moment in the columns external cross-sections,

    corresponding to the (SG) loads special group, is determined with the relation:

    ,M s cap gr s

    S

    gr

    k M M MM

    M

    =

    where: Ms columns bending moment in the (SG) loads special group,considering theseismic load on the perpendicular directions of the columns cross-sections;

    |Mcap,gr| - capable momentss sum in the cross-sections where plastic hingesappear at the considered level;

    MgrS corresponding bending moments algaebric sum, obtained in the (SG)

    loads special group;

    KM coefficient with the values:1,4 for constructions located in the AC seismic zones1,2 for constructions located in the DF seismic zones1,0 for restrained cross-sections and the ones at the columns last level

    Also, it must:

    1,2

    st

    cap

    s gr

    cap

    MKM

    =

    It is observed that the bending moments corresponding to the columns, calculated inthe (SG) loads special group, will be increased KSKM times

    1, 2 1, 2 1, 44S MK K = =

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    12/35

    LONGITUDINAL REINFORCEMENT CALCULATION AT THE BASE-FLOOR LEVEL

    A. On the X direction

    We consider the concrete coverage ab=3.0 cm for the reinforced concrete elementsfrom the first category according to STAS 10107/0-90

    We initially propose reinforcement with the diameter d=20mm

    '

    0

    0.5 3 0.5 2,0 4

    50 4 46

    ba a a d cm

    h h a cm

    = = + = + == = =

    50 cm

    50cm

    hAa'

    Aa

    x

    Aa'Ra

    bxRc

    AaRa

    N

    eoc

    xx

    Y

    Y

    Maximum moment from the (SP) special group:

    max 16399,15

    90077,53coresp

    M daNm

    N daN

    ==

    '

    max max 1.44 16399,15 23614,776M SM K K M daNm= = =

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    13/35

    Steel

    Heavy

    52PC

    concrete

    lim

    lim

    0,55

    0,4B

    = =

    Conform STAS 10107/0-90

    '

    max0

    0 0

    23614,7760,262 26,2

    90077,53

    26,2 2 28, 2c a

    Me m cm

    N

    e e e cm

    = = = =

    = + = + =

    0 90077,53 28,2 2540186,346c cM N e daNcm= = =

    90077,53

    12,0150 150c

    NX cm

    b R= = =

    lim 0

    2 2 3,5 7

    0,55 46 25,3

    x a cm

    x h cm

    > = =< = =

    lim0

    12,010,26 0,55

    46

    x

    h = = = < = (for PC 52 according to STAS 10107/0-90, table 12)

    The element is subjected to eccentic compression of big eccentricity.

    50

    28,2 4 49, 22 2

    oc

    he e a cm= + = + =

    ( )'

    '

    0

    2 ca a

    a

    NN e h

    b RA A

    R h a

    + = =

    ( )' 2

    90077,5390077, 53 49, 2 46

    2 50 1509,44

    3000 46 4a aA A cm

    + = = =

    29,44aA cm= we choose 418 cu Aa,ef= 10.18 cm2

    20

    min

    50 46' 0, 20% 4, 6

    100 100a a

    b hA A p cm

    = = =

    According to STAS 10107/0-90 (pct. 6.4.3.1) that reccomends that for PC52 i PC60steel bars, the minimum diameter must be 12 mm, I choose for each side on X direction4 bars 18 mm resulting an effective area of10.18 cm2.

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    14/35

    B. On Y direction

    50cm

    50 cm

    h

    Aa'

    Aa

    x

    XX

    Y

    Y

    Aa'Ra

    bxRc

    AaRa

    N

    eoc

    We consider the concrete coverage ab=3 cm for the reinforced cocnrete elemets fromthe first category according to STAS 10107/0-90

    Initially we propose reinforcement with the diameter d=20mm

    '

    0

    0.5 3 0.5 2,0 4

    50 4 46

    ba a a d cm

    h h a cm

    = = + = + == = =

    Maximum moment from the special group (SG):

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    15/35

    max 15811,81

    90077,53coresp

    M daNm

    N daN

    ==

    '

    max max 1.44 15811,81 22769,0064M SM K K M daNm= = =

    '

    max0

    0 0

    22769,00640,2527 25,27

    90077,53

    25,27 2 27,27c a

    Me m cm

    N

    e e e cm

    = = = =

    = + = + =

    0 90077,53 27,27 2456414,243c cM N e daNcm= = =

    90077,53

    12,0150 150c

    NX cm

    b R= = =

    lim 0

    2 2 3,5 7

    0,55 46 25,3

    x a cm

    x h cm

    > = =< = =

    lim0

    12,010,26 0,55

    46

    x

    h = = = < = (for PC 52 according to STAS 10107/0-90, table 12)

    The element is subjected to eccentic compression of big eccentricity.

    50

    27,27 4 48,272 2

    oc

    he e a cm= + = + =

    ( )'

    '

    0

    2 ca a

    a

    NN e hb R

    A AR h a

    + = =

    ( )' 2

    90077,5390077, 53 48, 27 46

    2 50 1509,75

    3000 46 4a aA A cm

    + = = =

    29,75aA cm= alegem 418 cu Aa,ef= 10.18 cm2

    20min

    50 46' 0, 20% 4, 6100 100

    a ab hA A p cm = = =

    According to STAS 10107/0-90 (pct. 6.4.3.1) that reccomends that for PC52 i PC60steel bars, the minimum diameter must be 12 mm, I choose for each side on X direction4 bars 18 mm resulting an effective area of10.18 cm2.

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    16/35

    Shear force check

    For the shar force check I choose from the software the maximum value for Fy or Fz ithe most unfavourable case (exceptional group) .

    Q = 9819.82daN

    2

    9819,820,357 0,5

    50 50 11t

    Q daN

    daNb h Rcm cm

    cm

    = = <

    According to STAS 10107/0-90, it is not necessary a calculation for the shar forceaction.

    There are considered potentail plastic hinges the zones from the columns edges, for

    each level.

    The lenght of the potential plastic hinge lp is measured from the superio, inferiorespectivelly, edge of the girder and is considered like so:

    30050

    6 6

    50

    60

    sp

    p

    p

    H cml cm

    l h cm

    l cm

    = = =

    =

    the lenght of the plastic hinge = 60 cm.

    Distance bewtween stirrups: ae

    d = minimum diameter for the longitudinal bars

    For the potential plastic hinges

    8 8 18 176 17,60

    5010

    5 5

    10

    e

    e

    e

    a d mm mm cm

    cmha cm

    a cm

    = = =

    = =

    ae = 100mm=1cm

    For current zones

    cma

    cmmmmmda

    e

    e

    20

    00,27270181515

    ===

    ae = 200mm=20cm

    Transversal reinforcement diameter (d)

    d > d4

    10,25 x 18 mm = 4,50 mm;

    6 mm; d = 8mm

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    17/35

    8 mm for group A For the potential plastic hinges (lp=65cm) we choose =8 mm (Ae

    ef = 0,503cm2)having ae=12cm.

    For the current zones we choose = 8 mm (Aeef= 0,503cm2) having ae=20cm

    LONGITUDINAL REINFORCEMENT CALCULATION FOR THE FIRST LEVEL

    A. On the X direction We consider the concrete coverage ab=3 cm for the reinforced cocnrete elemets fromthe first category according to STAS 10107/0-90

    initially we propose reinforcement with the diameter d=20mm

    '

    0

    0.5 3 0.5 2,0 450 4 46

    ba a a d cmh h a cm

    = = + = + == = =

    Maximum moment from the special group (SG):

    max 13003,3

    71051,44coresp

    M daNm

    N daN

    ==

    '

    max max 1.44 13003,3 18724,752M SM K K M daNm= = =

    '

    max0

    0

    18724,7520,26 26

    71051, 44

    26 2 28oc a

    Me m cm

    N

    e e e cm

    = = = =

    = + = + =

    0 71051,44 28 1989440,32c cM N e daNcm= = =

    71051,44

    9,4750 150c

    NX cm

    b R= = =

    lim 0

    2 2 3,5 70,55 46 25,3

    x a cmx h cm

    > = =< = =

    lim

    0

    9,470,21 0,55

    46

    x

    h = = = < = (for PC 52 according to STAS 10107/0-90, table 12).

    The element i subjected to eccentric compression of big eccentricity.

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    18/35

    50

    28 4 492 2

    oc

    he e a cm= + = + =

    ( )

    '

    '

    0

    2 ca a

    a

    NN e h

    b RA A

    R h a

    + = =

    ( )' 2

    71051,4471051, 44 49 46

    2 50 1504,36

    3000 46 4a aA A cm

    + = = =

    20

    min

    50 46' 0, 20% 4, 6

    100 100a a

    b hA A p cm

    = = = the reinforcing is made with the minimium

    reinforcement percentage.

    According to STAS 10107/0-90 (pct. 6.4.3.1) that reccomends that for PC52 i PC60steel bars, the minimum diameter must be 12 mm, I choose for each side on X direction4 bars 18 mm resulting an effective area of10.18 cm2.

    B. On the Y direction

    For the Y disrection the reinforcing is made also from theminimum reinforcingpercentageloke on the X direction. For this it results 4 bars 18 mm resulting aneffective area of10,18 cm2.

    For the columns on II,III, i IV levels rezult it results the same reinforcing areas as withthe number of bars on the to directions:4 bare 18 mm.

    CALCULATION OF THE PLATE

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    19/35

    The plates are horizontal constructing elements that divide vertically the buildingsvolume and close it at the superior end. Regarding their role in the resistance structure,the plates have the role to take the gravitational loads and to transmit them to otherstructural elements (girders, walls, columns ), as well as to ensure the work of other

    vertical elements (columns, diaphragms) at the horizontal loads action.The plates, being secondary construction elements, are calculated in the plasticstage.

    Generally, the plates are dimensioned for vertical loads and checked forhorizontal loads.

    Vertical loads in plates:

    plate's dead load (plate, grout, floor, plaster); dividing walls weight utile (peolpe, furniture);

    temporary ( snow only for the roof plate ).

    Conditions for resting and unloading: It is reffered to the plates resting and co-working with the other construction elements on which it rests: girders, bearing walls.

    The plates elements rest is considered like so:

    simply rested, when the rotation on the rests are possible and themoments that the rest can take are neglectable.

    constrained, when the rotations in the rest are very small, the constriningmoment can be fully taken and transmitted and the rests rigidity isconsidereable.

    partially constrained, when there are fulfilled conditions intermediar to thesimple rest and constrain.

    The efforts to which the floor plates are subjected to are determined statically inthe elastic domain, using one or more loading schemes.

    The reinforcing of the reinforced concrete plates can be done:

    On one direction, when : 2L

    l ;

    On two directions, when : 0.5 2Ll

    .

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    20/35

    1. Establishment of loads

    a) Current floor cold floor

    b) Dividing wall

    1 2 1

    Nr.crt Name of material d

    ( )m

    ( )3/daN mkG

    ( 2/daN m )

    1 Ceiling plaster M50T

    0.01 1900 19

    2 R.C. plate 0.15 2500 375

    3 Leveling concreteM100

    0.02 2100 42

    4 Ceramic + adhesive 0.015 2100 46.2

    Total dead loads 491.2

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    21/35

    Nr.crt Name of material d

    ( )m

    3

    /daN m

    nq

    2/daN m

    1-3 Interior plaster M100 0.015 2100 31.5

    2 Brick masonry 0.25 1450 362.5

    TOTAL 425.5

    The utile load is: qu = 200 daN/m2.

    2. Calculation of moments in field and bearings

    2.1. Calculation of moments in field

    For a simple calculation of the maximum moments in the field, the real system willbe equivalent with two systems thatsdeformation modes are known: system A+systemB.

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    22/35

    . / 2

    . / 2

    ;

    .

    sist a p cp u

    sist b u

    q q q q

    q q

    = + +

    = p cp+ u/2q = q +q q =825.94 daN/m

    2.1.1. Determination of 1q and 2q loads for each plate in sistem a:

    P1 P2 P3 P4 P5 P6 P7 P8 P9

    P10

    P11

    P12

    P13

    6 5 3,6 3,6 4,8 3,6 3,6 5 6

    3

    5,5

    3,5

    3

    direction 1

    direction

    2

    F1

    F2 qp=545.94daN/m

    qcp=150daN/m

    qp=200daN/m

    1 1syst.a. 1syst.b

    2 2syst.a. 2syst.b

    q = q +q

    q = q +q

    q

    a) Plate 1=Plate 9 type 4

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    23/35

    q1

    q2

    3,5

    5

    P1 type4

    41

    42

    1 41

    2 42

    0.79355001.43 2

    0.2065350

    0.7935 825.94 655.38 /

    0.2065 825.94 169.81 /

    q q daN m

    q q daN m

    == = < == = == = =

    b) Plate 2 = Plate 8 type 5

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    24/35

    q2

    q1

    3,5

    6

    P2 type5

    51

    52

    1 51

    2 52

    0.20583500.58 2

    0.7942600

    0.2058 825.94 169.98 /

    0.7942 825.94 655.96 /

    q q daN m

    q q daN m

    == = < == = == = =

    c) Plate 3=4=6=7=11 type 6

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    25/35

    q2

    q1

    P3 type6

    3,6

    3,5

    61

    62

    1 51

    2 52

    0.53500.97 2

    0.5360

    0.5 825.94 412.97 /

    0.5 825.94 412.97 /

    q q daN m

    q q daN m

    == = < == = == = =

    d) Plate 5 type 5

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    26/35

    q2

    q1

    P5 type5

    4,8

    3,5

    51

    51

    1 51

    2 52

    0.32443500.73 2

    0.6756480

    0.3244 825.94 267.93 /

    0.6756 825.94 558.01 /

    q q daN m

    q q daN m

    == = < == = == = =

    e) Plate 10 type 4

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    27/35

    P10 type4 q2

    q13,6

    3

    41

    42

    1 41

    2 42

    0.29063000.83 2

    0.7094360

    0.2906 825.94 240.02 /

    0.7094 825.94 585.92 /

    q q daN m

    q q daN m

    == = < == = == = =

    f) Plate 12 type 6

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    28/35

    q2

    q1

    3,6

    2

    P12 type6

    61

    62

    1 61

    2 62

    0.05882000.53 2

    0.9412360

    0.0588 825.94 48.57 /

    0.9412 825.94 777.37 /

    q q daN m

    q q daN m

    == = < == = == = =

    g) Plate 13 type 4

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    29/35

    P13 type4q2

    q1

    3,6

    3

    61

    62

    1 61

    2 62

    0.0588200 0.53 20.9412360

    0.0588 825.94 48.57 /

    0.9412 825.94 777.37 /

    q q daN m

    q q daN m

    == = < == = == = =

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    30/35

    Statical schemes for system a

    Strip 1:

    Strip 2:

    2.1.2. Determination of 1q

    and 2q

    loads for each plate in system b:

    1.3 130 daN/m2

    uqq = = .

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    31/35

    a) Plate 1= Plate 9

    1

    2

    103.2 /

    26.8 /

    q daN m

    q daN m

    ==

    b) Plate 2= Plate 8

    1

    2

    26.8 /

    103.2 /

    q daN m

    q daN m

    ==

    c) Plate 3= Plate 4= Plate 6= Plate 7= Plate 11

    1

    2

    65 /

    65 /

    q daN m

    q daN m

    ==

    d) Plate 5

    1

    2

    42.2 /

    87.8 /

    q daN m

    q daN m

    ==

    e) Plate 10

    1

    2

    q = 37.8 daN/m

    q = 92.2daN/m

    f) Plate 12

    1

    2

    7.6 /

    122.4 /

    q daN m

    q daN m

    =

    =

    g) Plate 131

    2

    q =87.7 daN/m

    q =42.3 daN/m

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    32/35

    Statical scheme for system b:

    Strip 1:

    Stryp 2:

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    33/35

    Centralization of maximum moments:

    6 5 3,6 3,6 4,8 3,6 3,6 5 6

    directia 1

    directia

    2

    F1

    F2

    qp=545.94daN/m

    qcp=150daN/m

    qp=200daN/m

    1681.3+70.4

    1751.7

    106.7+1648.41755.1

    354.77+92

    446.7

    211 +

    308.4519.4

    778.5+332.41110.9

    1486 +1621.83107.8

    273.4+1913.82187.2

    565.8+26

    591.8

    560.8+1079.6

    1640.4

    560.8+1079.61640.4

    354.77+92

    446.7

    211 +308.4519.4

    106.7+1648.41755.1

    1486 +1621.83107.8

    273.4+

    1913.82187.2

    565.8+26

    591.8

    427.5+

    161.7

    589.2

    427.5+

    161.7

    589.2

    308.2+

    298.2

    606.4

    427.5+

    161.7

    589.2

    346.8+

    291.7

    635.5

    653.6+

    459.8

    1113.4

    124.6+

    470.9

    559.5

    356.1+

    234.9

    591

    -207.0+

    67.7

    139.3

    1681.3+70.4

    1751.7

    From the calculation there resulted the following maximum moments in field andbearings:

    field

    max

    bearing

    max

    Strip 1 - M = 1755.1 daN m

    M = 3107.8 daN m

    bearing

    max

    field

    max

    Strip 2 - M =1113.4 daN m

    M = 595.5 daN m

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    34/35

    Plate reinforcement

    A. Bearing

    a) direction 1:

    =

    = = =

    = = =

    = =

    = = == =

    =

    max,1

    0

    20

    20

    ef 2reazem 1a

    3107.8

    0.8- - 15 -1.5 - 13.1

    2 2

    3107800.12073;

    100 13.1 150

    1- 1- 2 0.12905;

    150

    0.12905 100 13.1 8.45 ;3000

    8 12 / 9.05 ;

    p b

    c

    ca

    a

    M daN m

    dh h a cm

    MB

    b h R

    B

    R

    A b h cmR

    A m cm

    p = =

    9.05100 0.6%.

    100 15

    aef

    bs

    A

    A

    b) direction 2:

    =

    = = =

    = = =

    = =

    = = =

    = =

    max, 2

    0

    20

    20

    ef 2reazem dir 2a

    1113.4

    0.8- - 15 -1.5 - 13.1

    2 2

    1113400.04325;

    100 13.1 150

    1- 1- 2 0.04423;

    1500.04423 100 13.1 2.89 ;

    3000

    6 8 / 3.02

    p b

    c

    ca

    a

    M daN m

    dh h a cm

    MB

    b h R

    B

    RA b h cm

    R

    A m cm

    = = =

    ;

    3.02100 0.2%.

    100 15

    aef

    bs

    Ap

    A

    B. Field

  • 7/29/2019 50091086 Calculul Grinzii Stalpului Si Planseului En

    35/35

    a) direction 1

    =

    = = =

    = = =

    = =

    = = =

    = =

    =

    max,1

    0

    20

    20

    ef 21a

    1755.1

    0.8- - 15 -1.5 - 13.1

    2 2175510

    0.11;100 13.1 150

    1- 1- 2 0.070679;

    1500.070679 100 13.1 4.63 ;

    3000

    6 10 / 4.71 ;

    p b

    c

    ca

    a

    camp dir

    M daN m

    dh h a cm

    MB

    b h R

    B

    RA b h cm

    R

    A m cm

    Ap = =

    4.71100 0.314%

    100 15

    aef

    bsA

    b) direction 2:

    =

    = = =

    = = =

    = =

    = = =

    = =

    =

    max, 2

    0

    20

    20

    ef 22a

    595.5

    0.8- - 15 -1.5 - 13.1

    2 2

    595500.02313;

    100 13.1 150

    1- 1- 2 0.02341;

    1500.02341 100 13.1 1.53 ;3000

    6 8 / 3.02 ;

    p b

    c

    c

    a

    a

    camp dir

    aef

    M daN m

    dh h a cm

    MB

    b h R

    B

    RA b h cmR

    A m cm

    Ap = =

    3.02100 0.2%.

    100 15bsA

    CONCLUSION:

    : 6 10 /inf

    : 8 12 /

    field mre orcement

    bearing m