transportul produselor petroliere prin conducte indrumar de proiectare

317
8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare http://slidepdf.com/reader/full/transportul-produselor-petroliere-prin-conducte-indrumar-de-proiectare 1/317 1 INTRODUCERE Transportul produselor petroliere prin conducte reprezintă cel mai sigur și eficient mijloc de livare din industria petrolieră. În toată lumea acest mijloc de transport s- a dezvoltat odată cu dezvoltarea câmpurilor petroliere și mai ales cu necesitatea transportării de țiței de la locul de extracție (sau portul de descărcare) până la rafinărie și a produselor petroliere din rafinării spre centre de depozitare și desfacere. Datorită cerinței crescute de carburanți a lumii contemporane, industr ia transportatoare de petrol și produse petroliere a ajuns să fie studiată și analizată atât de către cercetătorii din învățământ cât și de inginerii și tehnicienii care lucrează în această industrie. Aplicații din această industrie au fost utilizate și în sistemul circulator al omului, în transportul și depozitarea apei potabile, în sistemele de irigații, etc. Există și în pr ezent noi proiecte de dezvoltare a conductelor de transport gaze naturale, gaze lichefiate, țiței și produse petroliere atât în România cât și în țări unde vor lucra și absolvenții Facultății de Științe Aplicate și Inginerie. Tocmai de aceea în aria curicullară a specializării Prelucrarea Petrolului și Petrochimie s- a introdus și un curs dedicat activității de transport, depozitare și l ivrare de țiței, gaze și produse petroliere. Cartea de față încearcă să introducă pe student în tehnica de elaborare a unui proiect dedicat transportului prin conducte a acestor produse. În primul capitol se face o prezentare a proprietăților fizico -chimice a lichidelor transportate prin conducte. Un capitol este dedicat modului de proiectare a sistemelor de conducte magistrale. De asemeni sunt prezentate și elementele necesare proiectării stațiilor și depozitelor de țiței și produse petroliere. Într -un ca pitol sunt prezente și elemente de protecție catodică și securitatea sistemului de transport. Dr.Ing. Timur Chiș Constanța, 2014

Upload: chistimur

Post on 05-Jul-2018

248 views

Category:

Documents


3 download

TRANSCRIPT

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    1/317

    1

    INTRODUCERE

    Transportul produselor petroliere prin conducte reprezintă cel mai sigur și

    eficient mijloc de livare din industria petrolieră. În toată lumea acest mijloc detransport s- a dezvoltat odată cu dezvoltarea câmpurilor petroliere și mai ales cunecesitatea transportării de țiței de la locul de extracție (sau portul de descărcare) până la rafinărie și a produselor petroliere din rafinării spre centre de depozitare șidesfacere. Datorită cerinței crescute de carburanți a lumii contemporane, industr iatransportatoare de petrol și produse petroliere a ajuns să fie studiată și analizată atâtde către cercetătorii din învățământ cât și de inginerii și tehnicienii care lucrează în

    această industrie. Aplicații din această industrie au fost utilizate și în sistemulcirculator al omului, în transportul și depozitarea apei potabile, în sistemele deirigații, etc. Există și în pr ezent noi proiecte de dezvoltare a conductelor de transportgaze naturale, gaze lichefiate, țiței și produse petroliere atât în România cât și în țăriunde vor lucra și absolvenții Facultății de Științe Aplicate și Inginerie.

    Tocmai de aceea în aria curicullară a specializării Prelucrarea Petrolului șiPetrochimie s- a introdus și un curs dedicat activității de transport, depozitare și

    livrare de țiței, gaze și produse petroliere. Cartea de față încearcă să introducă pe student în tehnica de elaborare a unui

    proiect dedicat transportului prin conducte a acestor produse.

    În primul capitol se face o prezentare a proprietăților fizico-chimice alichidelor transportate prin conducte. Un capitol este dedicat modului de proiectare

    a sistemelor de conducte magistrale. De asemeni sunt prezentate și elementelenecesare proiectării stațiilor și depozitelor de țiței și produse petroliere. Într -unca pitol sunt prezente și elemente de protecție catodică și securitatea sistemului detransport.

    Dr.Ing. Timur Chiș Constanța, 2014

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    2/317

    2

    Capi tolul 1.Generalități

    1.1. Noțiuni introductive

    Lichidele din industria petrolieră (hidrocarburile și apa) sunt medii continue,vâscoase şi deformabile, transportul acestora de la producători la utilizatoriefectuându-se de obicei prin sisteme (rețele) de conducte.

    Necesitatea studierii acestor sistem e de transport țiței, apă și produse petroliere pleacă de la problemele ce apar atât în exploatare cât și în partea de proiectare a acestor rețele de conducte.

    Principalele probleme ce pot apare în timpul transportului lichidelor princonducte sunt:

    a. Realizarea unui cost minim al procesului respectiv, b. Reducerea pierderilor de produse petroliere atât în timpul depozitării cât și în

    timpul transportului,c. Realizarea unui sistem de transport adaptat condițiilor climatice (temperatură

    mediu ambiant, stabilitate sol, curgere regulată a apelor,etc.), condițiilorgeopolitice (conducte transfrontaliere, conducte amplasate în zone delicatedin punct de vedere al conflictelor armate) precum și condițiilor impuse de

    beneficiar (debit minim de transport, tip de produs transportate, etc.),d. Modificarea capacității de transport și a destinației sistemelor de conducte ca

    urmare a modificării atât a cantității necesare a fi transportate cât mai ales a

    reorganizării furnizorilor și a beneficiarilor (schimbare sens de transport, schimbare rută de transport, relocare locație beneficiari și furnizori, etc.), e. Modificarea sistemului de transport ca urmare a modificării proprietăților

    produselor transportate.Cel mai rentabil și mai răspândit mijloc de transport pentru hidrocarburile

    lichide este sistemul de transport prin conducte. Lungimea conductelor poate variade la câteva sute de metri (în interiorul rafinăriilor) până la mii de kilometrii, iardiametrul interior poate varia de la câțiva milimetrii până la 1,2 m.

    Pentru transp ortul produselor petroliere se utilizează ca metodă sisteme detransport cu ajutorul cisternelor CF a cisternelor auto, precum și a vapoarelor și

    șlepurilor petroliere. Pentru acest tip de transport sunt necesare echipamente șiconstrucții speciale care vor fi descrise într -un capitol separat.În viața unui sistem de conducte există mai multe etapede dezvoltare a

    acestuia, pornind de la proiectare, construcție, exploatare și întreținere până lareparare și abandonare.

    Tocmai de aceea pentru fiecare parte din viața conductei, este necesarăelaborarea de metodologii și proceduri astfel încît să fie asigurate:

    a. Protecția mediului înconjurător, b. Transportul în siguranță a produselor petroliere, c. Pregătirea personalului astfel încât să dețină competențele necesare,

    d.

    Menținerea unui sistem de calitate în funcțiune,

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    3/317

    3

    e. Menținerea înregistrărilor în conformitate cu legislația în vigoare pe toatădurata de funcționare a sistemului.

    Condiția de bază ce trebuie să o îndeplinească activitatea de proiectare,construire, exploa tare și abandonare a unui sistem de conducte, este de a funcționa

    fără defecțiuni și pericole pe toată durata existenței acestui sistem și în concordanțăcu legislația în vigoare la aceea dată. Întocmirea documentației de proiectare pentru o conductă sau un sistem de

    conducte se face la cererea beneficiarului pe baza unei teme de proiectare ce vaconține:

    a. Caracteristicile fluidului vehiculat, b. Proprietățile reologice ale fluidului (vâscozitate, densitate, temperatura de

    congelare, conținut de sulf, conținut de apă, etc.), c. Punctul de plecare și de sosire a conductei. Condițiile de bază pentru proiectarea unui conducte sunt următoarele:

    a. Realizarea unui debit de fluid transportat și aunei presiunii minime la sosireîn instalațiile finale de depozitare și utilizare (conform cerințelor beneficiarului),

    b. Determinarea unei presiuni maxime de pompare necesară pentru: - livrarea lichidelor (ținând cont de temperatura lichidului transportat, de proprietățile tixotropice ale acestuia, de temperatura mediului ambiant),- alegerea grosimii peretelui conductelor de transport fluide,- alegerea utilajelor de pompare și a vanelor de secționare de pe traseulconductelor,- alegerea materialului țevii și a instalațiilor aferente,

    c.

    Alegerea unor instalații auxiliare (funcție de proprietățile fluidelortransportate). Acestea instalații auxiliare sunt necesare pentru încălzirea produselor transportate, cur ățirea periodică a conductelor, deblocare în cazde înfundare a conductelor, intervenția pentru repararea și operarea continuă a conductelor,

    d. Respectarea cerințelor impuse de legislația în vigoare (cerințe de securitateși sănătate a lucrătorilor și personalului contractant, cerințe de protecțiamediului și a apelor, cerințe legate de siguranța în exploatare a instalațiilorde t ransport fluide). Aceste cerințe trebuie să fie conforme cu legislația dinRomânia și cu cea a Uniunii Europene.

    e. Alegerea unui traseu cât mai scurt între punctul de plecare și punctul desosire a conductelor de transport fluide, dar cu respectarea cerințelor de protecția a mediului înconjurător și a populației din zonele prin care trecetraseul de conducte,

    1.2. Proprietățile lichidelor transportate

    1.2.1. Compoziția țițeiurilor

    Țițeiul este o soluție neomogenă formată din hidrocarburi lichide și compușicu sulf, azot sau compuși de natură asfaltică.

    De asemenea țițeiul conține și molecule de apă, nisip,metale, etc.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    4/317

    4

    De menționat că în zăcământ în țiței (funcție de presiunea și temperaturazăcământului) se găsesc și hidrocarburi gazoase dizolvate (metan, etan, propan,

    butan, pentan) sau gaze asociate (metan, etan, propan, butan, pentan).Proporția hidrocarburilorlichide variază cu natura țițeiurilor, putând fi diferită

    chiar și în cadrul aceluiași zăcământ.Tabelul 1.1. Compoziția țițeiurilor după elementele chimice [1]

    Element Procentajul în greutate Carbon 83 - 85%

    Hidrogen 10 - 14%Azot 0.1 - 2%

    Oxigen 0.05 - 1.5%Sulf 0.05 - 6.0%

    Metale < 0.1%

    Tabelul 1.2. Compoziția țițeiurilor după clasele de hidrocarburi [1] Hidrocarbura Media Interval de apariție

    Parafine (alcane) 30% 15 - 60%naftene 49% 30 - 60%aromate 15% 3 - 30%asfaltene 6% urme

    Proporția hidrocarburilor variază cu natura țițeiurilor, la țițeiurile parafinoaseconținutul de hidrocarburi este de 90-98% iar la cele naften-aromatice de circa 50%.

    Hidrocarburile parafinice sunt predominante în țiței având structura chimicăCnH2n+2 . Sunt caracterizate prin structuri cu catene deschise formate din atomi decarbon cu legături simple.

    Hidrocarburile parafinice se în nor mal parafine (caracterizate printr- o catenăliniară) și izoparafine (caracterizate printr -o catenă principală și una sau mai multecatene laterale).

    Țițeiurile parafinoase conțin mai multe nomal parafine, porporția acestorascăzând cu creșterea numărului de atomi de carbon din compoziție.

    Hidrocarburile naftenice sunt de forma C nH2n…CnH2n-6 și au o structurăciclică (atomii de carbon fiind legați prin lanțuri închise având legături covalentesimple). Această clasă de hidrocarburi este stabilă pentru catenele cu 5 și 6 cicluri decarbon, fiind de asemenea într -o mare varietate de structuri da torate variațieinumărului de carbon conținuți în același ciclu. Naftenele policiclice pot ficondensate (cu o catenă comună) sau pot conține cicluri izolate (legate printr -ocatenă).

    În țiței există circa 30…60 % hidrocarburi naftenice, creșterea numărului decicluri în molecule ducând la creșterea densității și a punctului de fierbere.

    Hidrocarburile aromatice sunt caracterizate de prezența în molecule a unornuclee benzenice. Pe lângă aceste nuclee acest tip de hidrocarburi mai poate conțineatomi de carbon legați prin cicluri naftenice și atomi de carbon în catene parafinice.Aromatele sunt mai puțin prezente în țiței și pot avea structuri policiclice legate sau

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    5/317

    5

    condensate.Compușii cu sulful sunt prezenți în țiței în cantități variabile sub forme

    anorganice (sulf și hidrogen sulfurat) și organice (mercaptani, tiofenoli, etc.). Sulful elementar nu se găsește în zăcământul de țiței, el apare ca urmare a

    reacției de oxidare a hidrogenului sulfurat. 2 H 2S+O 2=S2 +2 H 2O (1.1) Azotul este prezent în compoziția țițeiurilor în proporție de maximum 1 %.

    Analiza spectrală a compușilor cu azot din țiței a dus la identificarea unor derivați ai parafinei înrudiți cu clorofila din plante și cu hermina din sânge. Aceste elementecreează premiz ele considerării originii organice a țițeiului va fiind sustenabilă.

    Figura 1.1. Structura porfirinelor de vanadiu (A)asemănătoare cu structura clorofilei (B), [2]

    1.2.2. Clasificarea țițeiurilor

    Metodele de clasificare a țițeiurilor au drept scop aprecierea calitativă aacestora, unele dintre ele având ca și criteriu de clasificare compoziția chimică,altele având criteriu de clasificare posibilitatea de prelucrare și de utilizare a

    principalelor produse ale acestuia.Cea mai des utilizată clasificare este cea a originii țițeiului (fiind folosită în

    tranzacțiile comerciale).

    1.2.2.1. Clasificarea după densitate

    Este cea mai veche clasificare. Pleacă de la ideea că densitatea scăzută a unuițiței (densitatea API mare) duce în urma prelucrării la o proporție mai mare de fracțiiușoare (o proporție scăzută de reziduu).

    Țițeiurile se împart astfel în țițeiuri ușoare, medii și grele.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    6/317

    6

    Tabelul 1.3 . Clasificarea țițeiurilor după densitate Densitatea relativă la

    15°C (kg/m3)Densitatea la 60 °C API Clasa țițeiurilor

    0,854 34 Ușor (light) 0,854-0,933 34-20 Mediu (medium)

    0,933 20 Greu (heavy)

    Această clasificare este arbitrară, ea nu are valoare din punct de vedere chimic, fiind utilizată mai ales pentru diferențierea țițeiurilor din aceiași sursă.

    1.2.2.2. Clasificarea după caracterul chimic al țițeiului

    Această clasificare ia în considerare caracterul chimic al țițeiului în corelațiecu densitatea.

    Tabelul 1.4 . Clasificarea țițeiurilor caracterul chimic al țițeiurilor Caracterul chimic Densitatea relativă

    Parafinos 0,815-0,830Mixt 0,836-0,855

    Naftenic 0,860-0,955

    1.2.2.3. Clasificarea după conținutul de sulf

    Această clasificare ia în considerare conținutul de sulf din țiței, îm părțindțițeiurile în sulfuroase și nesulfuroase (dulci).

    1.2.2.4. Clasificarea Van Nes-Van Westen

    Această clasificare face parte din acel grup de metodece caracterizeazăcaracterul chimic al unei fracții distilate (deci caracterul chimic al țițeiului).Clasificarea pornește de la analiza pe grupe structurale a unui ulei (analiza n-d-M) cedă distribuția atomilor de carbon în structurile aromatice, naftenice sau parafinice.

    Țițeiurile sunt reprezentate într -o diagramă terțiară. În această diagramă suntreprezentate tipurile de țiței parafinice (1), naftenice (2), parafin-naftenice (3),aromatico- parafinice (4), aromatice intermediare (conținutul de aromate mai mare de50 % și conținutul de parafine mai mare de 10 %-5) și aromato-asfaltice (conținutulde naftene mai mare de 25 % iar conținutul de parafine mai mic de 10 %-6).

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    7/317

    7

    Figura 1.2. Corelația țițeiurilor după densitatea API și sulf [3]

    Figura 1.3. Clasificarea țițeiurilor după distribuțiaatomilor de carbon din structură [4]

    1.2.2.5. Clasificarea după temperatura de congelare

    Această clasificare împarte țițeiul în trei clase subâmpărțite și acestea însubclase și tipuri.

    Criteriul de împărțire în cele trei clase îl constituie temperatura de congelare a păcurii obținută în urma distilării atmosferice.

    Clasa A este reprezentată de un țiței neparafinos (asfaltos) al cărui reziduu deDA are temperatura de congelare sun -15 °C, iar conținutul în parafină este sub 1 %.

    Țițeiurile din clasa A se subâmpart în patru categorii: Categoria A1- țiței uleios, octanic - având conținut de benzină ușoară 60 % la

    100 °C-final 155 °C, cu CO >70 și păcură adecvată producerii de uleiuri cu

    12 3

    45

    6

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    8/317

    8

    temperatura de congelare coborâtă, Categoria A2- țiței neuleios, octanic - având conținut de benzină ușoară 60 %

    la 100 °C-final 155 °C, cu CO >70 și păcură improprie producerii de uleiuri, Categoria A3- țiței uleios, neoctanic - având conținut de benzină ușoară cu

    CO

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    9/317

    9

    Tabelul 1.5 .Clasificarea ţiţeiurilor dupã temperatura de congelare a pãcurii [5]

    Clasa Tipul Sub-tipul

    ProduseCaracteriza-rea ţiţeiului

    Pãcurã,temp. de

    colgelare

    Producţiede

    uleiuri

    Benzinacifra

    octanicã

    Randamentul benzineiUsoarã

    F 155 0CTotalã

    F 185 0C

    A

    A1 A < -15 + >70 >10 Neparafinos

    uleiosoctanic

    B < -15 + >70 5 – 10C < -15 + >70 < 5

    A2 A < -15 - >70 >10 Neparafinos

    neuleiosoctanic

    B < -15 - >70 5 – 10C < -15 - >70 < 5

    A3 A < -15 + >70 >10 Neparafinos

    uleiosneoctanic

    B < -15 + >70 5 – 10C < -15 + >70 < 5

    A4

    A < -15 - >70 >10 Neparafinos

    neuleiosneoctanic

    B < -15 - >70 5 – 10C < -15 - >70 < 5

    B BD -14 la +19 >20 Mixt (semi-

    parafinos)neoctanic

    E -14 la +19 15 – 20F -14 la +19 < 15

    C CD > +20 >20

    parafinosneoctanicE > +20 15 - 20

    F > +20 < 15

    1.2.3. Categorii de fluide

    Fluidele ce trebuiesc transportate prin conducte se clasifică conformstandardului SR EN 14161 [6], în :

    Categori a A -fluide tipic neinflamabile, având ca și principal constituent apa,

    Categori a B -fluide inflamabile și/sau toxice care suntlichide la temperaturamediului ambiant și în condiții de presiune atmosferică (țițeiul, condensatulstabilizat și produsele petroliere),

    Categori a C care conține fluide neinflamabile și netoxice ce sunt gaze latemperatura mediului ambiant și în condiții de presiune atmosferică (azotul, argonul,aerul și dioxidul de carbon)

    Categori a D ce conține gazele naturale netoxice, cu o singură fază.

    Categori a E conține fluidele inflamabile și/sau toxice care sunt gaze latemperatura mediului ambiant și în condiții de presiune atmosferică și sunttransportate ca și/sau lichide (etan, gazolină, gaz petrolier lichefiat-propan sau butan,gaze naturale lichide, amoniac, clor).

    În tabelul 1.6. s-au prezentat date relevante despre fluide.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    10/317

    10

    Tabelul 1.6. Date relevante despre fluide

    1.2.4. Proprietățile fluidelor

    1.2.4.1. Greutatea specifică

    Greutatea specifică medie a unui corp este raportul dintre greutatea saG şivolumul săuV :

    V g m

    sauV G

    .

    (1.2)

    în care: m = masa corpului (kg)

    g = acceleraţia gravitaţională (m2/s)Greutatea specifică a unui lichid petrolier aflat la temperatura t , se determină

    cu ajutorul ecuației:

    00

    1 t t t

    (1.3)

    DATE CE CARACTERIZEAZĂFLUIDELE

    GAZE NATURALE

    ETAN,GAZOLINA

    ŢIŢEI,CONDENSAT

    Compoziţia chimică ( % mol.) X xPrezenţa H2O, CO 2, H 2S X xPunctul de rouă al apei în funcţie de

    presiune pentru gazele lichefiate ( 0C)X

    Săruri de HCO3, O 2 (% gr. sau mol.) xConductivitatea termică (W/m°C) X xCăldura specifică (J/kg°C) X xTemperatura de formare a hidraţilor înfuncţie de presiunie

    X

    Diagrama de faza XViscozităţile cinematice în funcţie detemperatura

    x

    Viteza de forfecare pentru lichidele parafinoase (Nm 2/sec.)

    x

    Temperatura de congelare (°C) xTemperatura de tulburare (°C) xConţinutul de mercur X

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    11/317

    11

    în care: 0 = greutatea specifică a lichidului la temperatura de referinţă t0 = 20°C

    = coeficient de corecţie, valori orientative pentru acesta sunt prezentate întabelul 1.7.

    Tabelul 1.7. Valorile coeficientului de corecție pentru diferite densități ale țițeiurilor

    Densitatearelativă

    Coeficientul decorecţie pentru

    1°C

    Densitatearelativă

    Coeficientulde corecţiepentru 1°C

    Densitatearelativă

    Coeficientulde corecţiepentru 1°C

    0,700-0,710 0,000897 1,801-0,810 0,000765 0,901-0,910 0,0006330,710-0,720 0,000884 0,811-0,820 0,000752 0,911-0,920 0,0006200,721-0,730 0,000870 0,821-0,830 0,000738 0,921-0,930 0,0006070,731-0,740 0,000857 0,831-0,840 0,000725 0,931-0,940 0,0005940,741-0,750 0,000844 0,841-0,850 0,000712 0,941-0,950 0,0005810,751-0,760 0,000831 0,851-0,860 0,000699 0,951-0,960 0,0005670,761-0,770 0,000818 0,861-0,870 0,000686 0,961-0,970 0,0005540,771-0,780 0,000805 0,871-0,880 0,000675 0,971-0,980 0,0005410,781-0,790 0,000792 0,881-0,890 0,000660 0,981-0,990 0,0005280,791-0,800 0,000778 0,891-0,900 0,000647 0,991-0,1000 0,000515

    Determinarea greutăţii specifice a amestecurilor se poate calcula utilizândrelaţiile din tabelul1.8.

    În tabel apar următoarele notificații: V 1 , V 2 , ..., V i - volumul fiecărui component al amestecului,V = V 1 + V 2 + ... + V i - volumul total al amestecului,n1 , n 2 , ..., n i - proporţia fiecărui component în unitatea de

    volum a amestecului, în procent volum,G1 , G 2 , ..., G i - greutatea fiecărui component al amestecului,G = G 1 + G 2 + ... + G i - greutatea totală a amestecului,n' 1 , n' 2 , ..., n' i - proporţia fiecărui component în unitatea de volum

    a amestecului, în procent volum, 1 , 2 , ..., i - greutatea specifică a fiecărui component a

    amestecului,

    am - greutatea specifică a amestecului,

    1.2.4.2. Densitatea (masa specifică)

    Masa specifică medie sau densitatea medie a unui fluid, este raportuldintre masă şi volumul său:

    V m

    (1.4)

    Î ntre masa specifică t a unui lichid petrolier aflat la o temperaturăt şi masaspecifică

    0 la temperatura de referinţă t

    0= 20°C, există relaţia:

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    12/317

    12

    )(1 00

    t t t

    (1.5)

    Tabelul 1.8. Formule pentru calculul greutății specifice a amestecurilor de fluide Nr.crt.

    Date determinate Formule pentru calculul greutăţii specifice a amestecului

    1.V 1 , V 2 , ..., V i V = V 1 + V 2 + ... + V i

    1 , 2 , ... , i

    am

    i iV V V V

    1 1 2 2 ...

    2. n1 , n 2 , ... , n i 1 , 2 , ... , i

    am i in n n 1 1 2 2 ...

    3.

    G1 , G 2 , ..., G i

    G = G 1 + G 2 + ... + G i 1 , 2 , ... , i

    ami

    i

    GG G G 1

    1

    2

    2

    ...

    4. n' 1 , n' 2 , ... , n' i 1 , 2 , ... , i

    ami

    i

    n n n

    1

    1

    1

    2

    2

    ' ' '

    ...

    Densitatea variază în funcție de proporția hidrocarburilor cu număr mare decarbon în moleculă și de tipul hidrocarburilor (la același număr de atomi de carbon

    din moleculă, densitatea crește înordinea parafine-naftene-aromate).Valoarea densității unui țiței la orice temperatură se poate exprima prinrelația:

    ),15,273(15,293 T T (1.5)Unde factorul are expresia:

    15,293001315,0825,1 . (1.6)

    Densitatea relativă a produselor petroliere se poate calcula în intervalul 0-150°C cu relația lui D.I.Mendeleev și anume:

    ),15,293(15,29315,27715,277 T d d T (1.7)

    În ecuația de mai susd este densitatea țițeiului la temperatura t în raport cucea a apei la 4°C.

    Densitatea în grade API se poate calcula cu relația:

    5,1315,141

    60 F d API (1.8)

    Unde: F d 60 este densitatea relativă determinată în laborator la 60°F.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    13/317

    13

    1.2.4.3. Densitatea relativă

    Densitatea relativă a unui corp este raportul dintre masa specifică a aceluicorp şi masa specifică a unui corp de referinţă aflat într -o stare dată.

    Conform STAS 35- 81 densitatea relativă a produselor petroliere lichide,semisolide şi solide se stabileşte prin raportarea masei specifice pentru produsul aflatla temperatura de t 0 = + 20°C la masa specifică a apei distilate la temperatura de +4°C şi presiunea de 760 Torr.

    )4(

    0

    t a

    p t

    (1.9)

    Densitatea amestecurilor de produse petroliere, se poate calcula cu relaţia: n

    i , ,iam d V d

    1

    1529315277100

    1. (1.10)

    Densitatea relativă a fracţiilor înguste (10….20oC) poate fi calculată curelaţia

    nmT d

    100

    15,29 315,27 7 (1.11)

    Pentru ţiţeiurile neparafinoase se poate considera că β = 0,722 si n = 0,13,T m f iind temperatura medie ponderată.

    Variaţia densităţiicu presiunea se poate determina astfel: ,e 00

    p p (1.12)

    sau prin dezvoltarea în serie ,1 00 p p (1.13)relaţie care este valabilă până la presiuni de 500 bar.În această relaţie este coeficientul de compresibilitate.

    Pentru hid rocarburi pure, variatia densităţii cu temperatura poate fi exprimatăși cuurmătoarea relaţie ce poate fi obținută experimental:

    ,)()( 20044 0 t t bt t ad d t t (1.14)

    în care:T este temperatura la care se cere valoarea densităţii;T 0 este temperatura lacare este datã densitatea; iara, b sunt constante, calculate prin regresie, plecând de ladensităţi obţinute pe cale experimentală.Apa pură are o valoare maximă a densităţiide 999,97 kg/m 3 la 3,98 oC (se aproximează la 1000 kg/m3 la 4 oC).

    Variaţia densității apei împreună cu a vâscozităţii apei funcție de temperatură este redată în tabelul 1.9.

    Prin îngheţare(0oC) apa îşi măreşte volumul, gheaţa are o densitate mai micădecât apa din care provine (916,75 kg/m 3 la 0 oC).

    Volumul gheţiidevine cu 1/11 mai mare decât volumul apei din care provine.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    14/317

    14

    Tabelul 1.9. Proprie tățile apei nemineralizate Proprietăţi/

    T oC

    0 4 10 20 30 40 60 80 100

    Densitatea,

    kg/m 3 999,87 1000 998,73 998,28 995,67 992,21 983,21 971,80 958,38

    Vâscozitatea cinematică,

    cSt1,794 1,567 1,310 1,011 0,804 0,660 0,477 0,368 0,296

    Vâscozitate dinamică,

    cP1,797 1,523 1,301 1,007 0,800 0,654 0,469 0,651 0,284

    1.2.4.4. Masa moleculară

    La amestecurile care au compoziţie cunoscută, masa molecularã medie M se poate determina cu ajutorul relației:

    ,/sau111

    n

    i i

    in

    ii

    n

    iii M

    g g M x M M (1.15)

    unde:- M i este masa moleculară a componentului i;- xi este fracţia molară a componentului i ,- g i este fracţia masică a componentuluii.

    Masa moleculară ne arată de câte ori masa moleculei substanței respective

    este mai mare decât a 1/12 parte a masei unui atom al izotopului de12

    C.Cu cât masa moleculară a fracțiilor de țiței este mai mare cu atât temperaturasa de fierbere va fi mai mare.

    B.V.Voinov a propus pentru masa moleculară a unei fracții petroliere relația: mmmm cT bT a M ,, (1.16)

    În relația 1.16 mmT , este temperatura medie molară de fierbere,a,b,c fiindcoeficienți determinați experimental.

    Pentru hidrocarburilor parafinice relația de mai sus se scrie astfel: mmmm T T M ,, 001,03,060 (1.17)

    Valorile mai exactă ale greutății moleculare este dată de relația lui Kesler -Lee(T f este temperatura de fierbere):

    122

    72

    108,1

    )98,181

    8828,1()02266,080882,01(

    108,1

    )79,720

    3437,1()02058,0770044,01(

    8,1)3287,36523.4(4,94866,12272

    f

    f

    f

    f

    f

    T

    T

    T

    T

    T M

    (1.18)

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    15/317

    15

    1.2.4.5. Conductivitatea termică

    Conductivitatea termică reprezintă fluxul de căldură ce poate trece prinunitatede suprafață (pe o distanță de 1 metru). Valoarea fluxului de căldură se poate determina cu relația:

    15,29 315,277

    51031,6134,0

    T . (1.19)

    În practică fluxul de căldură variază între 0,05 și 0,3 W/mK Pentru roci și soluri, conductivitatea termică s poate calcula cu relația:

    675,1272,251

    T . (1.20)

    1.2.4.6. Coeficientul de dilatare volumică

    Coeficientul de dilatare volumică indică creșterea de volum a lichiduluidatorită creșterii temperaturii.

    Pentru țiței se poate calcula cu relațiaexperiment ală:

    T 2204204 5965634025831

    . (1.21)

    1.2.4.7. Căldura specifică masică

    Pentru țițeiuri și fracțiile de hidrocarburi în stare lichidă, căldura specificămasică se poate determina cu relațiile (relația lui Cragoe fiind mai utilă în calcule):

    C.S. Cragoe :204

    38,35,762

    T c

    (1.22)

    W.R.Gambil :1515

    4,31685

    T c

    (1.23)

    O altă relație a luiCragoe este formula:

    )00081,0403,0(1

    15

    t C

    [Kcal/Kgf°C] (1.24)

    în care: t = temperatura lichidului, °C 15 = greutatea specifică a lichidului la 15°C, kgf/dm3

    Formula este utilă pentru ţiţei şi fracţiuni de ţiţei având greutatea specifică la15°C de 0,72 .... 0,96 kgf/dm3 şi pentru intervalul de temperatură 0 .... 400°C.

    Pentru proiectare se va folosi formula lui Karavaev, mai simplă, dar destulde precisă:

    C = 0,4825 + 0,00077 ( t - 100) Kcal/kgf°C (1.25)

    În acelaşi scop se poate folosi şi diagrama din figura1.4.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    16/317

    16

    1.2.4.8. Limitele de explozie

    Limita inferioară și limita superioară de explozie definește intervalul în care

    poate avea loc o explozie a unui gaz inflamabil (se exprimă în volum de gazinflamabil în amestec cu aerul). Limitele de explozie pentru unele hidrocarburi sunt date în tabelul 1.10

    (domeniul de explozie se mărește cu creșterea temperaturii și se micșorează cucreșterea volumului de gaze inerte).

    Tabelul 1.10. Limitele de explozie în amestec cu aerul

    HidrocarburaHidrocarbura în aer,

    %vol. HidrocarburaHidrocarbura în

    aer, %vol.metan

    etanetilenã acetilenã propann-butann-pentann-hexan

    ciclohexann-heptann-decan

    benzene

    5,00 - 15,00

    2,00 - 13,003,02 - 34,002,50 - 80,002,10 - 9,501,80 - 8,401,40 - 8,301,20 - 7,701,30 - 8,351,00 - 7,000,78 - 2,60

    1,30 - 7,90

    toluen

    naftalinã diclormetanclorbenzen

    metanoletanol

    acetonã etilenoxidebnzinã petrol

    hidrogen

    hidrogen sulfurat

    1,27 - 7,00

    0,90 - 5,9013,00 -18,001,30 - 11,005,50 - 36,503,10 - 20,002,10 - 13,003,00 -100,001,30 - 6,001,16 - 6,00

    4,10 - 74,20

    4,30 - 45,20

    1.2.4.9. Temperatura (punctul) de inflamabilitate

    Este temperatura la care o probă de produs petrolier încălzită crează ocantitate de vapori ce formează un amestec inflamabil cu aerul. Această temperaturăcaracterizează un produs din punct de vedere al pericolului de aprindere în timpuldepozitării și mai ales în timpul deversării pe sol sau ape (în caz de poluareaccidentală). De menționat că temperatura de aprindere este acea temperatură la carelichidul are o cantitate suficie ntă de vapori care aprinsă arde fără intervenția uneisurse exterioare de căldură.

    1.2.4.10. Conductivitatea electrică

    Pentru uleiurile rafinate, conductivitatea electrică are valori foarte mici, eacrescând cu temperatura și scade cu vâscozitatea. De asemenea conductivitateaelectrică crește în prezența sărurilor, a acizilor organici și a acizilor corespunzători precum și cu oxidarea produsului.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    17/317

    17

    Figura 1.4. Căldura specifică a unor produse petroliere

    1.2.4.11. Permisivitatea relativă (constanta dielectrică)

    Constanta dielectrică se definește ca fiind raportul dintre capacitatea unuicondensator la care spațiul dintre electrozi și în jurul acestora este umplut înîntregime cu produs petrolier și capacitatea aceluiași condensator considerat în vid.

    Valoarea p ermisivității produselor petroliere și a țițeiului scade la creștereatemperaturii.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    18/317

    18

    1.2.4.12. Compresibilitatea și elasticitatea

    Compresibilitatea reprezintă cota de reducere a volumului produsului petrolierodată cu creșterea presiunii.

    , pV

    V 1d1d (1.26)

    Coeficientul de elasticitate cubică este inversul compresibilității.

    1.2.4.13. Absorția și cavitația

    Lichidele petroliere absorb (dizolvă) gazele cu care vin în contact. Greutateagazelor absorbite crește odată cu presiunea așa încât volumul gazului dizolvatrămâne constant.

    Odată cu scăderea presiunii are loc o degajare a unei părți a gazelor dizolvate(dacă presiunea lichidului scade până la presiunea de vaporizare, odată cu degajareagazelor se p roduce și vaporizarea lichidului). Acest fenomen complex poartă numelede cavitație, fenomenul fiind întâlnit în paleții turbinelor de la vapoare sau a

    pompelor centrifuge.

    1.2.4.14 . Impuritățile

    În țiței și în apa de zăcământ pot apărea impuritățimecanice datoratetransportului țițeiului în rocile colectoare.

    Particulele pot fi în suspensie sau dizolvate. Cele aflate în suspensie audimensiuni mai mari decât moleculele, fiind sub influența forței lui Arhimede și aforțelor de vâscozitate.

    Particulele dizolvate sunt alcătuite din molecule (sau ioni) conținute înstructura moleculară a lichidului (mai ales în cazul apelor).

    Coloizii sunt particule foarte mici (care din punct de vedere tehnic suntsuspensii dar uneori posedă proprietăți de substanțe dizolvante).

    Tabelul 1.11. Clasificarea particulelor solide în funcție de diametrul acestora

    Particule dizolvate Particule coloidaleParticule în suspensie

    sau nefiltrabile10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1

    1.2.4.15. Punctul (temperatura) de congelare

    Temperatura de congelare este temperatura maximă la care țițeiul (sau produsul petrolier), aflat într -o eprubetă, nu-și schimbă meniscul prin înclinareaacesteia la 45 ° față de orizontală (timp de 1 minut).

    Valoarea acestei temperaturi depinde de concentrația de parafine și decantitatea de uleiuri din țiței.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    19/317

    19

    Temperatura de congelare este determinată în laborator, fiind funcție detratamentele termice aplicate țițeiurilor, aditivilor introduși precum și a tehnologieide determinare. De menționat că în laborator se determină atât punctul de congelarecât și punctul de curgere (punctul în care produsul curge).

    Valoarea punctului de congelare nu are nici o legătură cu fenomenul de depunere a parafinei solide pe pereții conductei (această depunere are loc la ovaloare mai mică a temperaturii decât cea a punctului de congelare).

    Punctul de congelare nu este o caracteristică fizică aditivă, valoarea lui laamestecurile de țiței fiind stabilită experimental.

    În ceea ce privește influența calității țițeiurilor asupra punctului de congelarese specifică că acesta este influențat de:

    a. Cantitatea de parafină, b. Prelucrarea termică a țițeiurilor, c. Caracteristicile tixotrope a țițeiurilor paraf inoase congelabile.

    Experimentele au arătat că tratarea termică a țițeiurilor în intervalul 0-40°Cduce la creșterea temperaturii de congelare, în intervalul 40-50°C aceasta atingevalori maxime, apoi scade la temperaturi de încălzire de peste 50°C.

    Prin congelarea țițeiului, de fapt congelează doar parafina, masa de bază alichidului rămânând lichidă. Cristalele de parafină se distribuie uniform în lichidformând o structură de gel, care prin agitare se destinde, vâscozitatea scăzând brusc.

    După ce lichidul trece în repaus, țițeiul formează din nou o structură de gel.

    Un exemplu de comportare al țițeiului tratat termic (țiței Dudești) este redat întabelul 1.12.

    Tabelul 1.12. Variația temperaturii de congelare cu a temperaturii de tratare pentru un țiței Dudești

    Temperaturade tratare

    °C, timp de30 minute

    30 35 40 45 50 55 60 65

    Temperaturade congelare

    °C

    26 26,5 26,5 27,5 27,5 27 25 22

    Se observă următoarele analizând graficul din figura1.5:- valoarea maximă a temperaturii de congelar e este 27,5 °C, - valoarea intermediară a temperaturii de congelare este 24,5 °C, - valoarea minimă a temperaturii de congelare este 22 °C, - temperatura de congelare crește până la 27,5°C corespunzător temperaturii de

    tratare de 50 °C apoi scade.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    20/317

    20

    Figura 1.5. Var iația temperaturii de congelare cu a temperaturii de tratare pentru un țiței Dudești

    1.2.4.16 . Depunerile de parafină

    Prin depuneri de parafină se înțelege toate depunerile aderente la conducte(parafine, cerezine).

    Cerurile de petrol conțin componenți lichizi, produse asfaltice și cantitățivariabile de argilă și nisip.

    Condițiile depunerii pe conducte a parafinelor și cerurilor de petrol sunt: - scăderea presiunii, - scăderea temperaturii, - scăderea saturației de gaze din țiței, - viteza de curgere a fluidului,- conținutul de apă și impurități mecanice, - timpul de contact între țiței și conducte.

    În timpul pompării țițeiului prin conducte pot apărea următoarele situații: a. presiunea se menține constantă, dar temperatura scade sub temperatura de

    depunere a parafinei (în acest caz apare un sistem bifazic lichid-solid, fazasolidă fiind reprezentată de cristalele de parafină). Pe măsură ce temperaturascade are loc depunerea de parafină pe pereții conductelor. Dacă țițeiul esteîn mișcare are loc depunerea la o temperatură mai mare decât în staționare.Cantitatea de parafină depusă crește cu scăderea temperaturii și scade cucreșterea presiunii. Temperatura la care are loc depunerea de parafine estefuncție de presiune (cu cât presiunea este mai redusă gazele din soluție sedestind și deci are loc un transport trifazic-scade cantitatea de lichid).

    0

    5

    10

    15

    20

    25

    30

    0 20 40 60 80

    T e m p e r a t u r a

    d e

    c o n g e l a r e

    ° C

    Temperatura de tratare °C

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    21/317

    21

    b. Dacă temperatura este constantă și presiunea scade, în țiței are loc fenomenulde separare gaze formându-se un amestec bifazic țiței-gaze.

    c. Dacă presiunea și temperatura scade se creează condițiile favorabile pentrudepunerea parafinei.

    Pentru calcularea valorii punctului de congelare la amestecurile de țiței se poate utiliza cu succes Indicii Henri Maurin (indici de parametrizare aamestecurilor).

    Indi cii Henri Maurin, care sunt redați în tabelul 1.13.

    Exemplul 1 :Să se determine punctul de congelare al unui amestec format din 70% ţiţei

    cu punctul de congelare +20 oC (H = 77,4) si respectiv 30% ţiţei cu punctul decongelare -24 oC (H = 19,8).

    IHM = 77,4 0,7 + 19,8 0,3 = 60,12. Din tabelul 1. 13 rezultă temperatura decongelare +14 oC.

    1.2.4.17. Vâscozitatea

    Conform STAS 1080- 73 mărimile folosite pentru definirea fluidelor (normalvâscoase) sunt vâscozitatea dinamică şi cea cinematică, care sesupun legii lui

    Newton din dinamica fluidelor:

    nddv

    (1.27)

    Sau:

    AF

    (1.28)

    în care: - = tensiunea tangenţială în direcţia curgerii, între două straturi de fluid

    paralele- F = forţa necesară pentru menţinerea curgerii,- A = aria suprafeţei de separare dintre cele două straturi de fluid, - = vâscozitatea dinamică (absolută),

    - nd

    dv este gradientul de viteză,

    - Vâscozitatea unui lichid reprezintă frecarea internă a acestuia, adicăfrecareacare ia naştere când moleculele fluidului se deplasează unele în raport cucelelalte sub influenţa unei forţe exterioare.

    - Majoritatea produselor petroliere sunt considerate fluide newtoniene undevâscozitatea depinde de presiune și temperatură.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    22/317

    22

    Tabelul 1.13. Indicii Henri Maurin pentru calculul punctului de congelare şicurgerePunct de

    congelare, oCIndice de

    amestec, HPunct de

    congelare, oCIndice de

    amestec, H

    -50 11,2 0 37,2-45 12,2 +1 38,3-40 14,0 +2 39,5-35 15,8 +3 40,9-30 17,6 +4 42,4-29 17,9 +5 43,8-28 18,3 +6 45,2-27 18,7 +7 46,7-26 19,0 +8 48,4-25 19,4 +9 50,2-24 19,8 +10 52,0-23 20,3 +11 54,2-22 20,8 +12 56,3-21 21,3 +13 58,5-20 21,8 +14 60,6-19 22,3 +15 62,8-18 22,9 +16 65,3-17 23.4 +17 68,2-16 24,0 +18 71,0-15 24,5 +19 74,2-14 25,0 +20 77,4-13 25,6 +21 80,7-12 26,2 +22 83,9-11 26,9 +23 87,1-10 27,6 +24 90,4-9 28,3 +25 94,0-8 29,0 +26 97,6-7 29,8 +27 101,4-6 30,7 +28 105,8

    -5 31,8 +29 110,1-4 32,9 +30 115,4-3 34,0 - --2 35,0 - --1 36,1 - -

    Vâscozitatea cinematică este raportul dintre vâscozitate dinamică și densitatealichidului la temperatura și presiunea determinării.

    (1.29)

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    23/317

    23

    Mărimea vâscozităţii poate fi exprimată în: -unităţi dinamice; -unităţi cinematice; -unităţi convenţionale.

    a) Vâscozitatea dinamică ( µ) este raportul dintre tensiunea tangenţială îndirecţia vitezei şi gradientul vitezei,dv/dy (derivaţia vitezei dupănormala la elementul de suprafaţă):

    dydv

    (Ns/m 2) (1.30)

    b) Vâscozitatea cinematică ( ) este raportul dintre vâscozitatea dinamică μ şimasa specifică :

    g

    sau

    .

    (m 2/s) (1.31)

    c) Vâscozitatea convenţională reprezintă timpul de scurgere a unuianumit volum de produs la temperatura de lucru stabilită cu diferite aparate, cum arfi: vâscozimetrul Engler, aparatul Saybolt Universal, vâscozimetrul Redwood.

    d) Vâscozitatea relativă se exprimă prin raportul dintre vâscozitateadinamică a unui lichid şi vâscozitatea dinamică a apei la temperatura de 20°C.

    r

    o

    o H O

    Co

    CP 2

    20

    1

    (1.32)

    e) Vâscozitatea amestecurilor

    Pentru dimensionarea conductelor prin care se transportă amestecuri delichide petroliere, este necesară determinarea directă în unităţi absolute a vâscozităţiiamestecurilor pentru întreg domeniul temperaturilor de transport ce intră înconsideraţie.

    Pentru calculele orientative şi în fazele preliminare de proiectare,determinarea viscozităţii unui amestec se poate face cu formula:

    ii

    am

    f f f

    1lg...

    1lg

    1lg

    1lg

    22

    11 (1.33)

    în care: f 1 , f 2 , ...., f i = reprezintă fracţiunea molară a componentului

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    24/317

    24

    În practică pentru amestecuri de țițeiuri se poate utiliza metoda estimăriivâscozității prin parametrizarea amestecurilor (indicii Henri Maurin).

    În tabelele 1.18 și 1.19 sunt redați îndicii de amestec Henri Maurin pentru

    vâscozitatea cinematică și pentru vâscozitatea dinamică. Dimensiunile, unitatea de măsură şi relaţiile de conversie pentru acestemărimi sunt date în tabelele nr.1.14, 1.15. 1.16, 1.17 şi figura1.6:

    Tabelul 1.20 redã corespondenta între unitãţile de vâscozitate cinematicã,oE- cSt (conform STAS 1666 - 73).

    f.Unităţi de măsură

    Tabelul 1.14 Unități de măsură pentru vâscozitatea dinamică

    Sistem uzual SI MKFS FPS CGSU.M. Pa s N.s/m 2 kg/m.s

    kgf.s/m 2 pdl.s/ft 2 P

    Tabelul 1.15 Unități de măsură pentru vâscozitatea cinematică

    Sistem SI MKFS FPS CGSU.M. m 2/s m 2/s ft 2/s St

    Tabelul 1.16 Unități de măsură pentru vâscozitatea convenţională

    Vâscozimetrufolosit

    VâscozimetrulEngler

    Aparatul SayboltUniversal

    ViscozimetrulRedwood(I sau II)

    U.M. °E "S "R

    Tabelul 1.17 Transformarea unităților de vâ scozitate

    Unitatea poise. cP Pa s1 poise 1 100 0,1

    1 centipoise(cP) 0,01 1 0,0011Pascal secunda 10 1000 1

    1lbm/(ft s) 14,88 1488 1,488

    1 lb f /ft 478,8 4,788 10 47,88

    1 Pa s=1 kg/(m s)1 kg f=9,80665 N1 Pa=1kg/m s 2

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    25/317

    25

    Tabelul 1.18. Indicii Henri Maurin pentru calculul vâscozitãtii cinematice de amestecCSt H cSt H cSt H1,0 3,25 30 28,88 220 35,48

    1,5 8,32 40 30,03 240 35,712,0 11,40 50 30,86 260 35,922,5 13,55 60 31,51 280 36,113,0 15,18 70 32,04 300 36,293,5 16,46 80 32,58 320 36,454,0 17,52 90 32,87 340 36,615,0 19,17 100 33,20 360 36,756,0 20,43 110 33,49 380 36,887,0 21,44 120 33,76 400 37,008,0 22,27 130 34,00 420 37,129,0 22,97 140 34,21 440 37,23

    10,0 23,59 150 34,41 460 37,3412,0 24,58 160 34,60 500 37,5314,0 25,38 170 34,77 600 37,9516,0 26,05 180 34,93 700 38,3018,0 26,62 190 35,08 800 38,5920,0 27,11 200 35,22 1000 39,07

    Transformãrile valorii vâscozitãţii cinematice a unui lichid în sistemeleconvenţionale mai sus menţionate sunt urmãtoarele:

    din "grade" Engler în cSt:

    301

    10 6,7 E E (1.34)

    din "grade" Saybolt în cSt:

    S S

    195226,0 (pentru intervalul 32-100 secunde) (1.35)

    S S

    135220,0 (pentru t >100 secunde) (1.36)

    din "grade" Redwood în cSt

    R R

    179260,0 (pentru intervalul 32-100 secunde) (1.37)

    R R

    50247,0 (pentru t >100 secunde) (1.38)

    Exemplul 2 :Să se determine vâscozitatea unui amestec format din 33000 kg ţiţei

    cu vâscozitatea de 2 °E ( IHM = 24,5) la +20 oC si 25000 kg titei cu

    vâscozitatea de 6,5 °E ( IHM = 30,78) la +20

    o

    C.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    26/317

    26

    IHM =33000 24,5 +25000 30,78 =27,20.Din tabelul 1.19 rezultã vâscozitate de 2,9°E (20 cSt).

    Tabelul 1.19 . Indicii de amestec Henri Maurin pentru vâscozitatea Engler

    E H E H E H E H1,12 11,401,2 14,10 4,9 29,68 8,6 31,81 21,5 34,661,3 17,35 5,0 29,76 8,7 31,85 22,0 34,731,4 19,17 5,1 29,84 8,8 31,89 22,5 34,791,5 20,70 5,2 30,00 8,9 31,93 23,0 34,851,6 21,83 5,3 30,00 9,0 31,97 23,5 34,851,7 22,67 5,4 30,07 9,1 32,01 24,0 34,971,8 23,32 5,5 30,14 9,2 32,04 24,5 35,031,9 24,00 5,6 30,20 9,3 32,07 25,0 35,08

    2,0 24,50 5,7 30,32 9,4 32,11 25,5 35,142,1 24,90 5,8 30,35 9,5 32,15 26,0 35,182,2 25,28 5,9 30,41 9,6 32,19 26,5 35,232,3 25,62 6,0 30,48 9,7 32,23 27,0 35,292,4 26,00 6,1 30,55 9,8 32,27 27,5 35,342,5 26,24 6,2 30,60 9,9 32,30 28,0 35,392,6 26,50 6,3 30,66 10,0 32,33 28,5 35,442,7 26,79 6,4 30,73 10,5 32,46 29,0 35,492,8 27,00 6,5 30,78 11,0 32,62 29,5 35,542,9 27,20 6,6 30,85 11,5 32,76 30,0 35,583,0 27,45 6,7 30,92 12,0 32,91 30,5 35,633,1 27,68 6,8 30,96 12,5 33,04 31,0 35,673,2 27,82 6,9 31,02 13,0 33,17 31,5 35,713,3 28,00 7,0 31,06 13,5 33,29 32,0 35,733,4 28,10 7,1 31,11 14,0 33,40 32,5 35,783,5 28,25 7,2 31,16 14,5 33,51 33,0 35,823,6 28,42 7,3 31,22 15,0 33,61 33,5 35,823,7 28,55 7,4 31,27 15,5 33,71 34,0 35,893,8 28,65 7,5 31,32 16,0 33,80 34,5 35,933,9 28,70 7,6 31,37 16,5 33,89 35,0 35,974,0 28,80 7,7 31,42 17,0 33,98 35,5 36,01

    4,1 28,90 7,8 31,47 17,5 34,07 36,0 36,054,2 29,01 7,9 31,52 18,0 34,15 36,5 36,094,3 29,12 8,0 31,56 18,5 34,23 37,0 36,124,4 29,23 8,1 31,60 19,0 34,31 37,5 36,164,5 29,23 8,2 31,65 19,5 34,38 38,0 36,194,6 29,40 8,3 31,69 20,0 34,46 38,5 36,234,7 29,49 8,4 31,73 20,5 34,53 39,0 36,264,8 29,59 8,5 31,77 21,0 34,59 39,5 36,274,9 29,68 8,6 31,81 21,5 34,66 40,0 36,28

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    27/317

    27

    Tabelul 1.20 . Conversia din unitãţi de vâscozitate cinematicã în unităţi vâscozitate Engler

    cSt E cSt E cSt E cSt E2,00 1,119 6,75 1,543 18,50 2,70 48 6,37

    2,10 1,129 7,00 1,546 19,00 2,75 50 6,622,20 1,140 7,25 1,586 19,50 2,81 55 7,282,30 1,150 7,50 1,608 20,00 2,87 60 7,932,40 1,160 7,75 1,630 20,50 2,92 65 8,582,50 1,169 8,00 1,651 21,00 2,98 70 9,232,60 1,179 8,25 1,673 21,50 3,04 75 9,892,70 1,189 8,50 1,696 22,00 3,10 80 10,542,80 1,198 8,75 1,718 22,50 3,16 85 11,202,90 1,207 9,00 1,740 23,00 3,22 90 11,863,00 1,217 9,25 1,763 23,50 3,28 95 12,513,10 1,226 9,50 1,785 24,00 3,34 100 13,173,20 1,235 9,75 1,808 24,50 3,40 105 13,833,30 1,244 10,00 1,831 25,50 3,52 110 14,483,40 1,253 10,20 1,849 26,00 3,58 120 15,803,50 1,262 10,40 1,868 26,50 3,64 130 17,113,60 1,271 10,60 1,886 27,00 3,70 135 17,773,70 1,280 10,80 1,906 27,50 3,76 140 18,433,80 1,289 11,00 1,924 28,00 3,82 145 19,083,90 1,298 11,20 1,942 28,50 3,88 150 19,744,00 1,307 11,40 1,961 29,00 3,94 160 21,064,10 1,315 11,60 1,980 29,50 4,00 170 22,374,20 1,324 11,80 1,999 30,00 4,07 180 25,004,30 1,333 12,00 2,020 31,00 4,19 190 25,004,40 1,341 12,50 2,070 32,00 4,32 200 26,304,50 1,350 13,00 2,120 33,00 4,44 210 27,604,60 1,359 13,50 2,170 34,00 4,57 220 28,904,70 1,367 14,00 2,220 35,00 4,70 230 30,304,80 1,376 14,50 2,270 36,00 4,82 240 31,604,90 1,384 15,00 2,320 37,00 4,95 250 32,90

    5,00 1,393 15,50 2,370 38,00 5,08 260 34,205,25 1,414 16,00 2,430 39,00 5,21 270 35,505,50 1,436 16,50 2,430 40,00 5,33 280 36,805,75 1,457 17,00 2,480 42,00 5,59 290 38,206,00 1,479 17,50 2,530 44,00 5,85 300 39,406,25 1,500 18,00 2,590 46,00 6,116,50 1,521 2,640

    Peste 300 cSt (mm 2/s) se aplicã relaţia = 7,6 E

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    28/317

    28

    g.Variaţia vâscozităţii cu temperatura

    Vâscozitatea ţiţeiurilor parafinoase se menţine scãzută, până la o anumitãtemperatur ă, putin superioară temperaturii de congelare, după care, la scădereatemperaturii, vâscozitatea creşte brusc la valori foarte ridicate.Aceast fapt se datorează procentului ridicat de produse albe (care au ovâscozitate redusă). De asemenea în aceste țițeiuri sunt prezente și cantități de parafină care dacă rămâne în soluție nu afectează vâscozitatea. În momentul în caretemperatura țițeiului scade și pariculele de parafină ies din soluție și congeleazăcrește și vâscozitatea. La amestecuri (în aceste condiții), vâscozitatea va fi dată decea a componenților și de proporțile lor în compunerea amestecului.

    În cazul țițeiurilor de tipul B (uleioase), variația vâscozității cu temperaturaeste mai puțin accentuată.

    La valori normale ale temperaturii (20 oC – 70 oC), vâscozitatea acestor țițeiuri

    este mai mică decât a țițeiurilor parafinoase.La țițeiurile asfaltoase cu scăderea temperaturii va crește vâscozitatea maimult decât a unui țiței parafinos. În cazul în care nu sunt date suficiente privind variația vâscozității cu temperatura se poate apela la relația lui Walter.

    ,log8,0loglog T B A (1.39)Unde:

    8,010 )log(10 T B A (1.40)respectiv

    ,10 3 (1.41) prin convertire din cSt în cP.

    În relaţiile de mai sus:- - vâscozitatea cinematicã (cSt);-T - temperatura absolutã (K);- - vâscozitatea dinamicã (cP);- ρ - densitate (kg/m 3);-A, B - constante.

    Constantele A și B se pot determina dacă se cunosc valorile a două vâscozitățicinematice la două temperaturi diferiteT 1 și T 2.

    1

    2

    1

    2

    log

    8,0log8,0log

    log

    T T

    B

    (1.42)

    22 log8,0loglog T B A (1.43)Domeniul de valabilitate al acestei relaţii este 40…110oC (erorile sunt

    minime fatã de valorile determinate experimental).

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    29/317

    29

    Atunci când avem un interval de temperatură a variației vâscozității între-10 0C și+160 oC se va utiliza relaţia Makhija şi Stairs :

    '

    ''log

    T T

    B A ,

    ' T T

    ' B' A

    10 (1.44)

    în care valorile parametrilor sunt urmãtoarele: A' = 1,5668; B' = 230,298; T ' =147,797.

    Figura nr. 1.6 - Diagrama d e transformare pentru calculul vâscozităţii cinematice

    1.2.4.18. Presiunea de vapori

    Presiunea de vapori este aceea presiune pe care vaporii care se găsesc încontact cu lichidul din care provin o exercită asupra lichidului (la o anumitătemperatură).

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    30/317

    30

    Presiunea de vapori este presiunea la care lichidul se află în echilibru cuvaporii săi.

    Presiunea de vapori se determină experimental, fiind specifică fiecăruit tip dețiței în parte.

    Un țiței ce are o presiune de vapori mare este mai ușor de transporat (cu câtvaporii ies din soluție și se pierd în timpul transportului, vâscozitatea crește). La un sistem monocomponent, presiunea de vapori la o anumită temperatură

    are o valoare unică, care se poate determina exper imental.La sistemele multicomponent valoarea presiunii de vapori la o anumită

    temperatură poate avea o infinitate de valori datorată modificării compoziției fazelor(în funcțe de cantitatea vaporizată).

    La hidrocarburile unde nu se cunoaște valoarea șinici presiuna de vaporiexistă posibilitatea de a determina această caracteristică pe baza relației :

    )1()0( )(log)(loglog r r r p p p (1.45)

    În relația 1.45 este factor acentric al hidrocarburii iar )0()(log r p și)1()(log r p sunt termini de corelație.

    Pentru amestecuri, cum sunt țițeiurile și produsele petroliere, presiunea devapori este funcție de compoziția fazei de vapori și a fracției lichide, de proporțiileacestora precum și de temperatura amestecului.

    )()(

    68,26715,7)3158log(0T f

    T f pv (1.46)

    Relația este utilizată pentru presiunile vaporilor saturați ale fracțiilor petoliereînguste, la presiuni scăzute (relația lui Ashwort), unde f(T) are expresia :

    1)8,307108000(

    259,1)( 5,02 T

    T f (1.47)

    Factorul acentric este un parametru de corelare. Acesta caracterizeazăexcentricitatea moleculelor față de modelul teoretic (care ia în considerare un modelsferic).

    Factorul de excenticitate a fost definit de Pitzer (1955) prin relația:

    1)log( cr

    v

    p p

    (1.48)

    In relația de mai sus v p este valoarea presiunii de vapori a componentului lao temperatură cr T T 7,0 .

    Kesler (1975) a propus o nouă ecuație pentru presiunea de vapori : B A

    cr v e p p (1.49)

    Coeficienții A și B au valorile :6)(169,0ln289,1

    096,6927,5 r r

    r

    T T T

    A (1.50)

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    31/317

    31

    6)(436,0ln472,13212,15

    252,15 r r r

    T T T

    B (1.51)

    Tabelul 1.22. Valoarea funcției f(T)Temperatura

    °C f(T) Temperatura

    °C f(T) Temperatura

    °C f(T) Temperatura

    °C f(T)

    -40 12,122 100 5,595 240 3,144 380 1,952-30 11,363 110 5,343 250 3,031 390 1,891-20 10,699 120 5,107 260 2,924 400 1,832-10 10,031 130 4,885 270 2,821 410 1,7760 9,448 140 4,677 280 2,724 420 1,721

    10 8,914 150 4,480 290 2,630 430 1,66820 7,967 160 4,124 300 2,642 440 1,61830 7,967 170 4,124 310 2,456 450 1,56940 7,548 180 3,959 320 2,375 460 1,52150 7,160 190 3,804 330 2,297 470 1,47660 6,800 200 3,658 340 2,222 480 1,43270 6,660 210 3,519 350 2,150 490 1,33980 6,155 220 3,387 360 2,080 500 1,34890 5,866 230 3,263 370 2,005 -

    Temperatura redusă are valoarea :

    cr r T

    T T (1.52)

    Pentru evaluarea factorului acentric se recomandă relațiile :

    8,0cr

    f

    T T (1.53)

    1)011,0408,1(359,80075,0135,0904,7 2 K K (1.54)

    Pentru :

    8,0cr

    f

    T

    T (1.55)

    6

    6

    436,0ln472,1315

    252,12

    169,0ln288,1096,6

    927,5)696,14

    ln(

    cr p

    (1.56)

    În relațiile de mai sus, factorul de caracterizarek se calculează cu relația :

    15,28 815,28 8

    33 4,0, )(216,1

    d

    T k pm (1.57)

    Factorul de acentricitate poate fi calculat și cu relația lui Edmister (1958):

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    32/317

    32

    1)1(

    )659,14

    log(

    73

    f

    cr

    cr

    T

    T

    p

    (1.58)

    T m,p este temperatura medie ponderată. Factorul acentric permite și evaluarea factorului critic de neidealitate (Salerno,

    1958):2016,0800,0291,0 cr Z (1.59)

    Exemplul 3.Un țiței are următoarea comportare experimentală:

    Temperatura,°C

    DensitateaKg/m 3

    VascozitateaCinenatica, cP

    VascozitateaDinamica,

    cSt

    Punctul decongelaretitei, °C

    Punctul decongelare

    reziduu, °C

    Continutulde parafina

    %

    20 0,8720 31,014 27,044 + 4 + 25 9,52

    30 0,8653 18,421 15,939 + 4 + 25 9,5240 0,8585 11,113 9,541 + 4 + 25 9,5250 0,8518 8,184 6,971 + 4 + 25 9,5260 0,8451 6,461 5,460 + 4 + 25 9,52

    Să se trasezegraf ic comportarea experimentală. a) Densitatea titeiului functie de temperatura

    0,872

    0,8653

    0,8585

    0,8518

    0,8451

    0,84

    0,845

    0,85

    0,855

    0,86

    0,865

    0,87

    0,875

    0 10 20 30 40 50 60 70

    Temperatură

    D e n s

    i t a

    t e a

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    33/317

    33

    b) V âscozitatea cinematica a țițeiului funcție de temperatură

    c) Vascozitatea dinamica a titeiului functie de temperatura

    31,014

    18,421

    11,113

    8,1846,461

    0

    5

    10

    15

    20

    25

    30

    35

    0 10 20 30 40 50 60 70

    Temperatură

    V â s c o z i

    t a t e c

    i n e m a

    t i c

    ă

    27,044

    15,939

    9,541

    6,9715,46

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50 60 70

    Temperatură

    V â s c o z i

    t a t e d i n a m

    i c ă

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    34/317

    34

    1.3. Analiza țițeiurilor românești

    Țițeiurile extrase din zăcămintele românești au o structură complexă fiinddiferite atât datorită locului de extracție cât și proprietăților fizico-chimice (Tabelul1.23).

    Tabelul 1.23 Proprietățile unor țițeiuri extrase din zăcămintele românești. Tipuri

    (sortimente)de ţiţei

    Densitate20°C

    DensitateAPI

    Apă % vol.

    Cloruri ppm

    Sulf% g

    ASTMD-1298

    ASTMD-1298

    ASTMD-95

    IP 265 ASTMD-129

    A1 Vest 0,916 22,2 0,2 123 0,34A3 Vest 0,879 28,6 0,4 227 0,32

    A3 Vest 0,923 21,1 0,2 53 0,3A3 Selecţionat 0,880 28,4 0,5 124 0,35A3 Neselecţionat 0,887 27,3 0,2 37 0,4A3 Videle 0,943 18,0 0,5 139 0,3A3 Independenţa 0,937 18,7 1,8 229 0,7A3 Suplac 0,962 15,1 1,0 13 0,17B Oltenia 0,833 37,5 0,2 19 0,19B Rest 0,872 30,0 0,2 115 0,19C Selecţionat 0,821 39,9 0,4 51 0,15C Moldova 0,853 33,6 0,3 109 0,29C Marin 0,838 36,4 0,8 52 0,01C Rest 0,858 32,7 0,1 218 0,18

    1.3.1. Analiza țițeiurilor românești funcți e de raportul dintre temperaturamediului ambient și temperature de congelare

    Pomparea țițeiurilor pe conducte este influențată de temperatura de congelareși de raportul acesteia cu temperatura mediului ambiant(temperatura mediului careînconjoară conducta de transport produse petroliere).

    Pomparea țițeiurilor este îngreunată în cazul țițeiurilor parafinoase și în cazulțițeiurilor care au o temperatură de congelare apropiată de temperatura mediului.

    Temperat ura solului la 1 m adâncime este redată în tabelul 1.25.

    Tabelul 1.25. Temperatura solului la 1 m adâncime Luna Ian Feb Mar Apr Mai Iun Iul Aug Sept Oct Noi Dec

    Temperatura°C

    4 2 3 7 11 15 18 20 16 14 10 6

    Pe graficul varia ției temperaturii solului la nivelul conductei se traseazăvariația temperaturii de congelare a țițeurilor necesare a fi transportate.

    Se observă că în cazul țițeiului cu temperatura de congelare de +2°C nu suntnecesare tratări ale țițeiurilor decât înluna februarie.

    Pentru țițeiul cu temperatura de congelare de +8°C sunt necesare tratări alețițeiurilor in lunile ianuarie-aprilie și noiembrie-decembrie.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    35/317

    35

    Tabelul 1.24. Comportarea țițeiurilor românești

    Nr.crt.

    Tipţiţei

    d15 [kg/m 3]

    Temp.decongelare

    [°C]

    Viscozitate [cSt]Locaţia La

    20°C

    La

    50°C 1. Ţicleni C Sel. 856,6 -20 11,20 4,482. Bodrog A3 Sel. 879,7 -45 28,57 11,013. Satchinez C Sel.+Cond. 818,1 19 19,35 2,984. Turnu C Sel. 825,9 15 9,57 3,365. Turnu C Sel. 851,0 10 17,26 6,146. Ţicleni Condens. 793,4 -20 1,73 1,327. Mădulari C Sel. +Cond. 788,9 -16 1,75 1,178. Bucşani C Sel. 827,0 19 13,39 3,279. Vîrteju B Olt 814,1 0 3,17 1,80

    10. Orleşti B Rest 884,3

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    36/317

    36

    Figura nr. 1.7 – Variația temperaturii solului la 1 m adâncime

    Pentru țițeiul cu temperatura de congelare de +22°C, transportul țițeiului se poate face doar dacă este tratat pentru reducerea temperaturii de congelare.

    Din punct de vedere al temperaturii minime de congelare, ţiţeiurile se potclasifica în:

    1. ţiţeiuri foarte congelabile - acele ţiţeiuri care aut congelare > t mediu (tot anul sau sezonier);

    2. ţiţeiuri puţin congelabile - acele ţiţeiuri care aut congelare < t mediu .Unde t mediu - temperat ura mediului care înconjoară conducta (aer, sol).

    Exemplu Dacă avem două stocuri din acelaşi ţiţei, ce au o temperatură de congelare

    tcongelare = +2°C, şi o parte din stoc se pompează la sud, unde temperatura minimă asolului este t mediu = +6°C, şi altă parte la nord, unde temperatura minimă a soluluieste t mediu = +1°C, acelaşi ţiţei se poate clasifica în:

    primul caz: t congelare < t mediu puţin congelabil; al doilea caz: t congelare > t mediu foarte congelabil.

    1.3.2. Analiza țițeiurilor românești funcție de vâscozitate

    Vâscozitatea țițeiurilor influențează energia de pompare a acestuia. Astfelenergia consumată la pompare a unui țiței este direct proporțională cu presiunea de

    pompare p și cu debitul de pompareQ (nu se ține cont de traseul conductei și derandamentul pompei).

    t d Lv

    E 8

    3 (1.60)

    Notând cu K produsul elementelor constante şi neglijând variaţia densităţii cutemperatura:

    25,0

    K E (1.61)

    0

    5

    10

    15

    20

    25

    0 2 4 6 8 10 12 14

    luna

    t e m p e r a t u r a ° C

    Titei cu temperatura de congelare +22 °C

    Titei cu temperatura de congelare +8 °C

    Titei cu temperatura de congelare +2 °C

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    37/317

    37

    Ţinând cont de cele expuse, din punct de vedere al viscozităţii, ţiţeiurile seclasifică în:

    * ţiţeiuri puţin vâscoase (pompabile) - ţiţeiuri ce auvâscozitatea mai mică de < 80 cP;

    * ţiţeiuri vâscoase (greu pompabile) - ţiţeiuri ce auvâscozitatea cuprinsă între (80-1280) cP;* ţiţeiuri foarte vâscoase (foarte greu pompabile) -

    ţiţeiurile ce au vâscozitatea mai mare de > 1280 cP.

    Exemplu

    Valoarea minimă a viscozităţii, la 2°C: 1,72 cP. Valoarea vâscozităţii pentru dublarea energiei necesare la pomparea ţiţeiului:

    1 = 80 x 10-3 Ns/m 2 = 80 cP.

    Trecerea de la ţiţeiuri greu pompabile la ţiţeiuri foarte greu pompabile seface considerând 2 = 1280 x 10 -3 Ns/m 2 = 1282 cP.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    38/317

    38

    Capitolu l 2.Calculul hidrauli c al conductelor de transport li chide

    2.1. M odelu l teoretic

    Din punct de vedere hidraulic o conductă de transport fluide este un spațiu (deorice formă și lungime) unde are loc o mișcare a unui fluid.

    Convențional conductele se pot clasifica funție de următorii termeniihidraulici :

    g v

    g v

    g v

    d L

    2

    2

    2)(

    2

    2

    2

    (2.1.)

    În ecuația 2.1 :

    - d L este pierderea de energie (disiparea energiei cinetice, potențiale și de

    poziție prin efecte termice și vibrații), - este coeficientul de rezistență hidraulică –proporțional cu lungimea, - este coeficientul de rezistență locală, - L reprezintă lungimea conductei, - d este diametrul interior al conductei,

    Dacă parametruld L este mai mare decât 50 atunci conducta este lungă

    (magistrală) din punct de vedere hidraulic, ultimii termeni putând fi neglijați,

    Dacă 0,2<d L < 50, conducta este scurt ă (locală) din punct de vedere

    hidraulic, termenii din relația 2.1. fiind de aceiași ordin de mărime și deci sunt luațiîn considerare.

    Dacăd L < 0,2 , conducta este considerat ă din punct de vedere hidraulic de

    tip duză sau orificiu, astfel că se vor lua în calcul doar pierderile locale. Modelul teoretic al calcului hidraulic al conductelor de transport țiței, este

    dezvoltat în urma scrierii ecuației lui Bernoulli pentru două puncte ale conductei. Astfel ecuația se poate scrie astfel:

    p gz p gz p 2222

    211

    21

    1 2v

    2v

    (2.2)

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    39/317

    39

    În prima parte a ecuației ne referim la secțiunea de intrare, iar în membruldrept ne referim la secțiunea de ieșire.

    În ecuația 2.2. avem:- este densitatea produsului transportat,

    - 1 și 2 sunt coeficienții Coriolis pentru corecția energetică (ecuația luiBernoulli a fost scrisă pentru un curent linear),

    - 1 p și 2 p sunt presiunile lichidului transportat la intrarea în conductă și laieșirea din conductă,

    - 21v și22v sunt pătratele vitezei lichidului transportat la intrarea în

    conductă și la ieșirea din conductă, - 1 z și 2 z sunt cotele conductei măsurată în centrele secțiunilor față de un

    reper (de obicei nivelul mării-cota zero), la intrarea în conductă și la ieșireadin conductă,

    - p este pierderea de presiune în timpul transportului prin conducte, - g este accelerația gravitațională.

    Pentru o conductă cu secțiune constantă, debitul este constant deci și vitezelev1 și v2 sunt egale.

    Deci ecuația 2.2. se poate scrie: 1221 z z g p p p (2.3)

    Pierderea (căderea) de presiune în timpul transportului prin conducte este atâtlocal cât și longitudinal.

    n

    iid

    l p 1

    2

    2v

    (2.4)În ecuația de mai susi reprezintă coeficienţii de pierderi locale . Pentru cazul când pierderile locale nu pot fi neglijate, se va introduce

    lungime a echivalentă: n

    iie

    d l

    1

    (2.5)

    astfel c ă formula (2.4) se scrie:

    d

    l l p e

    2

    v 2. (2.6)

    În calculele ulterioare se mai presupune c ă lungimea l e este inclus ă înlungimea total ă l și deci ecuația 2.2 devine:

    122

    21 2v

    z z g d l

    p p m (2.7)

    Dacă împărțim relația 2.7 la g obținem:

    122

    21

    2v

    z z d l

    g g p p m

    , (2.8)

    În relația 2.8 toate mărimile sunt exprimate în unit ăţi de lungime.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    40/317

    40

    Putem definii panta hidraulică a conductei (ce reprezintă căderea de presiuneîn unități de lungime pe unitatea de lungime a conductei) prin relația:

    d g

    i m

    2

    v 2 (2.9)

    În calcule este util să lucrăm cu debitul pompat pe conducte decât săutilizămviteza medie v m ,

    12522

    21

    8 z z g l

    d Q

    p p

    , (2.10)

    Dacă împărțim relația 2.10 la g obținem:

    12522

    21 8 z z l gd Q

    g p p

    . (2.11)

    Panta hidraulic ă are expresia:

    52

    28d g

    Qi

    (2.12)

    Înlocuim în relația 2.11 termenul 5228

    gd Q

    cu panta hidraulică și obținem:

    1221 z z l i g p p

    . (2.13)

    Notând cu:

    1221 z z g p ph p (2.14)

    Și înlocuind în relația 2.13 obținem: l ih p (2.15)

    În practică definim modulul de debit ca fiind:

    gd d

    k 24

    2

    (2.16)

    Cu ajutorul modulului de debit formula 2.11 devine:

    1222

    21 z z l k Q g p p (2.17)

    sau

    l k Q

    h p 22

    , (2.18)

    Între modulul de debit și panta hidraulică există relația:

    iQk

    2

    2 . (2.19)

    Coeficientul de rezistență hidraulică se poate scrie astfel:

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    41/317

    41

    m

    ARe

    , (2.20)

    În relația 2.20, Re reprezintă numărul lui Reynolds șim=1 pentru regimullaminar (formula lui Stokes), m=0,25 pentru regimul turbulent în conductehidraulice netede cu Re

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    42/317

    42

    l S d

    4 (m) (2.24)

    sau

    m

    l

    m

    l

    vG

    vQd

    785,0785,0 (m) (2.25)

    unde:Q l = debitul de lichid m

    3/svm = viteza medie admisă, m/s G l = debit gravimetric, = greutatea specifică a lichidului, (Kgf/m3)

    l QG (kg/mc) (2.26)

    Se alege din st andardul de ţevi pentru conducte, un diametru apropiat de celrezultat din calcul.

    Se vor lua în continuare în considerare încă două diametre de conductă,imediat inferior şi imediat superior celui rezultat după efectuarea calcului iniţial,scopul fiind de a stabili diame trului optim de conductă.

    În situaţia în care se cunosc presiunile în secţiunea iniţială a conductei şi presiunea în secţiunea finală a conductei, a cărei valoare este impusă deconsiderentele tehnologice în legătură cu manipularea în continuare alichiduluitransportat, diametrul conductei se va determina avându-se în vedere pierderea de presiune admisă.

    Se va alege diametrul pentru care pierderea de presiune este egală sau cevamai mică decât pierderea de presiune admisă.

    2.3. Calculu l debitul ui maxim pentru o conductă existentă

    Debitul q (m 3/s) al unei conducte circulare de diametru d (m) şi lungimea L(m) este dat de formula:

    jd g q 5

    24

    (2.27)

    sau:

    jd

    q 5

    48,3 (2.28)

    În cazul unei conducte care prezintă rezistenţa la curgere (pierderi desarcină) locale, valoarea lui j se va calcula din relaţia:

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    43/317

    43

    Le j

    j t (2.29)

    unde : jt - rezistenţa la curgere (pierdere de sarcină) totală Le - lungimea echivalentă a conductei.

    2.4 Determinar ea presiu ni i de pompare pe conductă

    Presiunea totală necesară pentru vehicularea fluidului în conductă sedetermină prin însumarea diferitelor pierderi de presiune:

    P total = P f + P elevatie + P final (Pa) (2.30)

    sau, exprimată în metri coloanalichid H total =h frecări +h elevaţie +h final (m) (2.31)

    Pierderile de presiune prin frecare ( P f ) sunt datorate rezistenţelor liniare( P fr ) şi rezistenţelor locale( P l .):

    P f = P fr + P l . (2.32)

    a) Determinarea presiunii de pompare P 1, pentru o conducta cu secţiuneatransversală constantă şi pentru un P 2 cunoscut, se poate face cu relaţia:

    hfinal z z g d

    Lv P P

    m 12

    2

    21

    2 , (Pa) (2.33)

    unde: λ = coeficient datorat pierderilor de presiune prin frecări L = lungimea conductei de transport , majorată cu suma lungimilorechivalente pentru compensarea pierderilor locale prin robinete, armături,coturi, ramificaţii, etc. Se introduce în formulă în metri.d = diametrul interior al conductei, mv m= viteza medie de curgere a fluidului prin conductă, m/s

    g = acceleraţia datorită gravitaţiei, m/s2ɣ = greutatea specifică a fluidului transportat, kg/m3

    Δz = diferenţa de cotă dintre capătul amonte şi capătul aval al conductei, m. helevatie = Δz =z 2-z 1 (2.34) z 2= cota terenului, în metri, la capătul amonte al conductei z 1= cota terenului, în metri, la capătul aval al conductei h fina l = înălţimea celui mai mare rezervor din depozitul în care ajung lichidele

    pompate, (m)Dacă se introduce debitul fluidului transportat prin conductă- Q în relaţia de

    calcul pentru viteza medie rezultă: hfinal z z g l

    d Q

    P P 12522

    218

    , (Pa) (2.35)

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    44/317

    44

    b) Determinarea presiunii de pompare P 1, pentru o conductă cu secţiuneatransversală variabilă şi pentru un P 2 cunoscut, se face prin intermediulcalculului pantei hidraulice.

    Panta hidraulică reprezintă căderea de presiune (în unităţi de lungime) peunitatea de lungime a conductei:

    d g v

    i m 2

    2

    (2.36)

    respectiv,

    52

    28

    d g Q

    i

    (2.37)

    În acest caz formula căderii de presiune se poate scrie şi sub forma:

    )(12

    21 z z l i g

    P P

    (2.38)

    sau înălţimea de pompare:

    2121 z z

    g

    P P h p

    (2.39)

    2.5.Corespondenţa dintre diferite mărimi pentru presiune

    Tabelul 2.1.C orespondențe între diverse mărimi pentru presiune .

    PascalPa Bar(bar) Atmosferătehnică (at)

    Atmosferă (atm) Torr(mm Hg)

    Pound force

    per squareinch(psi)

    1 Pa 1 N/m 2 10 -5 1.0197*10 -5 9.8692*10 -6 7.5006*10 -3 145.04*10 -6

    1 bar 100 000 10 6 dyn/cm 2 1.0197 0.98692 750.06 14.504

    1 at 98 066.5 0.980665 1 kgf/cm 2 0.96784 735.56 14.504

    1atm 101.325 1.01325 1.0332 1 atm 760 14.696

    1 torr 133.322 1.3332*10 -3 1.3595*10 -3 1.3158*10 -3 1 mm Hg 19.337*10 -3

    1 psi 6 894.76 68.948*10 -3 70.307*10 -3 68 046*10 -3 51.715 1 lbf

    2.6. Calcul ul coefi cientu lu i de fr ecare

    Se calculează numărul Reynolds, notat cu Re:

    d Qd vd v mm

    4Re (2.40)

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    45/317

    45

    În relația 2.40 avem: - vâscozitate cinematică, m2/s (sau cSt /10 -6) - viscozitate dinamică, N s/m2 (sau P)

    pentru Re < 2320 regimul de curgere este laminar şi λ se calculeazăcu formula:

    Re64

    (2.41)

    pentru 3000< Re

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    46/317

    46

    Tabelul 2.2.V alorile medii orientative ale rugozităţii echivalente

    Valorile coeficientului depind de construcţia şi dimensiunile pieseispeciale.

    Practic, pentru includerea pierderilor de presiune datorate rezistenţelorlocale, se utilizeazănomogranel e şi diagramele din figurile 2.1, 2.2, 2.3, 2.4 și 2.5.

    Se citesc lungimile echivalente de conductă pe diagramele cu armaturi,fitinguri, ramificaţii, etc.

    Se însumează aceste lungimi echivalente (l e).Se adaugăl e la L pentru aflarea lungimii totale de conductă care duce la

    calcularea pierderii totale de presiune prin frecare.

    Figura 2.1. Diagrama Moddy

    Materialul ţevilorpentru conductă

    Starea ţevilor la interior K s (mm)

    Oţel- fără sudură NouIntrebuinţat

    0,02 - 0,050,10 – 1,0

    Oţel – cu sudură NouIntrebuinţat, uşor ruginit până la uşor cojit Exploatare îndelungată

    0,05 - 0,20

    0,20 - 0,500,50 - 1,00

    Fontă

    Nou, bituminat Nou, fără bitum Intrebuinţat ruginit Intrebuinţat până la un gradmare de ruginire

    0,10 - 0,200,30 - 0,401,00 - 1,501,00 - 3,00

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    47/317

    47

    Figura 2.2. Pierderile de presiune locale

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    48/317

    48

    Figura 2.3. Lungimi echivalente

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    49/317

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    50/317

    50

    Figura 2.5.Rezistențe în curbe

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    51/317

    51

    2.8. Determinarea numărului şi amplasamentului staţiilor de pompare

    În practică presiunea de pompare nu se poate realiza cu o singură staţieaşezată în punctul iniţial.

    Sau chiar dacă s-ar monta o singură stație, presiunile de pompare ar fi foartemari și deci ar fi necesară execuția unei conducte cu grosime de perete mare. Totodată pierderile prin frecare și greutatea lichidului necesar a fi transportat

    ar duce la un debit scăzut de pompare. Tocmai de aceea este necesar montarea unor noi staţii de pompare, numărul

    acestora fiind dat de relația:

    sh g P z z l i

    n / 212 (2.48)

    unde:

    lichid col m g

    P P g

    P h l p s s .., (2.49)

    P s = presiunea dată de staţia de pompare, N/mm2 P p = presiunea de refulare a pompei, N/m

    2

    P l = pierderi locale de presiune în staţie, N/m2i, l, z 1 , z 2 , P 2 , - au fost definiţi în paragrafele anterioare. Numărul n este un număr fracţionar (de regulă) caretrebuie rotunjit la un

    număr întreg în plus sau în minus. Amplasarea pe teren a staţiilor de pompare se poate face și prin construcţie

    grafică astfel: - se împarte segmentul AB ' care reprezintă presiunea de pompare P 1 / g la n

    - numărul de staţii rezultate din calcul (de exemplu n = 3 ), fig. 2.6.- din punctel e de diviziune se trasează paralele la dreaptă A'B' (care indică

    variaţia presiunii) până intersectează profilul terenului (punctele C şi D); - amplasarea staţiei principale este în punctul A, iar staţiile intermediare sunt

    în punctele C, D. Distanţa între staţii este A1C1 şi C1D1.

    Nota:1. In punctele C şi D presiunea în conductă nu este egală cu zero şi are o

    valoare impusă de presiunea de aspiraţie a pompelor. 2. În situaţia rotunjirii în plus a numărului de staţii reieşit din calcul (no > n )surplusul de presiune disponibil ( no - n)h s poate fi utilizat pentru mărirea capacităţiide transport.

    Dacă se urmăreşte menţinerea capacităţii de transport cerută prin datele proiectare se poate recurge la reducerea presiunii de refulare la fiecar e staţie şi decila reamplasarea corespunzătoare a staţiilor.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    52/317

    52

    Fig. 2.6 . Amplasarea staţiilor de pompare [5]

    Presiunea de refulare a staţiilor de pompare va fi dată de relația:h

    n

    nh

    s s'

    0

    (2.50)

    Amplasarea staţiilor intermediare rezultă prin construcţia graficădin figura2.6.

    3. În situaţia rotunjirii în minus a numărului de staţii (n0 < n ) atunci presiuneastaţiei este insuficientă pentru a asigura capacitatea de transport a conductei.

    Dacă diferenţa de presiune(n - n 0 )hs nu este prea mare, reprezentând cel mult0,2 h s, se poate recurge la creşterea presiunii de refulare a staţiei de pompare şi decila o reamplasare a acestora.

    Presiunea de refulare a st aţiei va avea valoarea dată de relaţia2.50.Dacă totuși nu este posibil mărirea presiunii staţiilor din cauza costurilor sau a

    amplsamentului , se va recurge la micşorarea pantei hidraulice "i" pe o porţiuneoarecare a conductei prin montarea unei intercalaţii cu diametrul mai mare sau aunei derivaţii.

    Lungimea porţiunii de conductă cu pantă hidraulică mai mică (i1 < i ) este datăde relația:

    shiinn

    x1

    0 (2.51)

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    53/317

    53

    2.9 . Metoda grafică de calcul pentru conductele de transport lichide

    Pentru soluţionarea corectă a problemelor practice de proiectare şi deexploatare a conductelor, metoda analitică de calcul a stațiilor de pompare,secompletează cu cea grafică. Prin acest lucru se controlează rezultatele obținute princele două metode.

    Metoda grafică este foarte utilă în cazul în care traseul conductei prezintădiferenţe mari de nivel.

    Pentru o lungime x de conductă ( x < l ), presiunea este o funcţie liniară de x: P = P 1 - g i x + g (z 1 - z) (2.52)

    unde: P şi z sunt presiunea, respectiv cota, la distanţax de la intrarea în conductă.

    Variaţia presiunii în lungul conductei se trasează pe un grafic ce arereprezentat în abscisă lungimea conductei, la o scară convenabil aleasă, iar înordonată cotele diferitelor puncte de pe traseu (începând cu cel iniţial şi terminândcu cel final), la o altă scară (scările se aleg diferit deoarece înălțimea variază în metriși lungimea în kilometri).

    În calcule este cunoscută presiunea de sosire P 2 (impusă de considerentetehnologice- necesară a se pompa într -un rezervor, într -o instalație de prelucrare saude ce nu într -o altă stație de pompare), trasarea graficului se realizează astfel :

    - în continuarea cotei z 2 a punctului final se trasează un segment de lungime

    p2 / g , paralel cu axa ordonatelor şi la aceeaşi scară ca şi cotele. - separat se construieşte un triunghi dreptunghic „abc” cu catetele paralelecu axele de coordonate şi având unghiul dintre ipotenuză şi paralela la axaabsciselor dat de relaţia:

    l

    htg arcitg arc p (2.53)

    Unde: i, h p , l au fost definiţi anterior Lungimile catetelor acestui triunghi sunt arbitrare; pentru uşurarea

    construcţiei, se fixează lungimeal 1 a catetei ab, iar lungimea l 2 a catetei ac, secalculează cu relația:

    tg l nl 12 (2.54)unde: n = raportul dintre scara ordonatelor şi scara absciselor - din B' se duce o paralelă la ipotenuza bc a tringhiului abc. Intersecţia

    acesteia cu axa ordonatelor în punctul A' determină segmentul AA' de lungime P 1 / g .

    Segmentul de dreapta A'B' reprezintă variaţia presiunii în lungul conductei(figura nr. 2.7).

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    54/317

    54

    Figura 2.7 - Conductă cu punct de culme [5]

    Notă: 1. Din reprezentarea grafică se observă presiunea maximă la care poate fi

    operată conducta. De obicei presiunea maximă de pompare nu este și presiuneamaximă de operare (Presiunea maximă de operare este presiunea maximă la careconducta poate fi operată-la care se deschis supapele de siguranță, iar presiuneamaximă de pompare este presiunea la care pompele sunt reglate).

    2. Pomparea se poate asigura cu o presiune astfel aleasă încât dreapta careindică variaţia presiunii să fie tangentă la profilul traseului în punctul N.

    3. Din punctul N (punct de culme u nde presiunea este egală cu ceaatmosferică, lichidul din conducă curge prin cădere liberă (în cazul în care linia presiunii este tangentă în punctul N). Calcululhidraulic se va efectua pentru porţiunea AN de lungimelc (numită lungime de calcul) şi numai în cazul în carecondiţiile de exploatare permit.

    4. În cazul transportului produselor petroliere cu pierderi prin evaporare la presiune atmosferică, sau a etanului şi gazolinei, poate apărea separarea gazelor dinsoluție în cazul curgerii libere și deci se va impune o presiune P 2 mai mare, dreaptavariaţiei de presiune deplasându-se în sus, paralel cu ea însăşi, până ce trece prin punctul B' (corespunzătorraportului P 2 / g ).

    5. În situaţia în care dreapta variaţiei presiunii în conductă intersectează profilul traseului conductei (fig. 2.8 ), obţinerea debitului indicat de calculul analiticse poate realiza astfel:

    - prin mărirea presiunii iniţiale, ceea ce revine la deplasarea drepteiA'B' paralel cu ea însăşi până ce devine tangentă la profil,

    - prin micşorarea pantei hidraulice pe o porţiune a conductei la ovaloare ,, 000 iitg i ceea ce conduce la montarea uneiintercalaţii cu diametru mai mare sau la montarea unei derivaţii.

    Lungimea acestei intercalaţii sau derivaţii se poate determina uşor pe calegrafică după ce se calculează pantai0. Astfel, dacă se duce din punctul A' şi din N

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    55/317

    55

    câte o paralelă la bc' şi din N o paralelă la A'B' se obţine punctele de intersecţie R şiS.

    Prin urmare, între A' şi N, presiunea poate varia fie după dreptele A'R şi RN,fie după dreptele A'S şi SN.

    Amplasarea intercalaţiei sau derivaţiei de lungimi a'b' sau s'n' (a'b' = s'n') se vaface în zona în care presiunea în conductă este mai mică.

    Figura 2.8 . Determinarea lungimii derivaţiei sau intercalaţiei [5]

    2.10 . Pompări succesive

    În cazul pompărilor succesive se vor stabili aranjamentele de segmente înlungul conductei care dau valori caracteristice pentru funcţionarea instalaţiei de

    pompare.Se va proceda astfel :1) Se stabileşte variaţia în lungul conductei a elementelorcaracteristice

    considerând că întreaga conductă este plină cu fiecare din fluidele de transportat. 2) Se stabilesc elementele caracteristice pentru capetele segmentelor conformfiecărei scheme de succesiune. 3) Se stabilesc elementele caracteristice pent ru întreaga conductă, prin

    însumare, conform fiecărei scheme de succesiune. Calculele se fac, aplicând- după caz- formulele pentru temperatura constantă

    sau pentru temperatura variabilă.

  • 8/15/2019 Transportul produselor petroliere prin conducte Indrumar de Proiectare

    56/317

    56