prezentare georgel gheorghita

79
Dokumentnummer Elemente de noutate în interconectarea sistemului energetic român Interconectare la tensiune continuã ( 29 Octombrie 2009 Bucharest) Ing. Ecaterina DRĂGAN Dr. Ing. Georgel GHEORGHI ŢĂ S.C. FICHTNER ENGINEERING S.A. (Member of FICHTNER Group) FICHTNER ENGINEERING

Upload: ioanitescumihai

Post on 01-Dec-2015

80 views

Category:

Documents


3 download

DESCRIPTION

Prezentare Georgel Gheorghita

TRANSCRIPT

Page 1: Prezentare Georgel Gheorghita

Dokumentnummer

Elemente de noutate în interconectarea sistemului energetic român

Interconectare la tensiune continuã( 29 Octombrie 2009 Bucharest)

Ing. Ecaterina DRĂGANDr. Ing. Georgel GHEORGHIŢĂ

S.C. FICHTNER ENGINEERING S.A.(Member of FICHTNER Group)

FICHTNER ENGINEERING

Page 2: Prezentare Georgel Gheorghita

Dokumentnummer2

Advantaje ale Interconactarii Sistemelor Energetice

FICHTNER ENGINEERING

o Exploatarea economica a centralelor mari

o Reducerea Rezervelor de Putere din Sistem

o Utilizarea optima a resurselor

o Flexibilitate in alegerea locurilor de instalare de Centrale noi

o Cresterea fiabilitatii sistemului

o Reducerea pierderilor prin optimizarea modului de exploatare a sistemului

Page 3: Prezentare Georgel Gheorghita

Dokumentnummer3

Optiuni privind Interconectarea Sistemelor Energetice FICHTNER ENGINEERING

Page 4: Prezentare Georgel Gheorghita

Dokumentnummer4

De ce Interconectare la tensiune continua ? FICHTNER ENGINEERING

Tensiunea continua:

-Este unica solutie pentru interconectarea a doua sisteme cu frecvente diferite

-Cand distanta de transport depaseste 600 km, devine mai economica decat solutia bazata pe tensiune alternativa

-Este unica solutie pentru legaturi in cablu submarin

Page 5: Prezentare Georgel Gheorghita

Dokumentnummer5

HVDC principle

In a HVDC system, the electricity is:

- Taken from a 3-phase AC network - Converted to DC in a converter station- Transmitted by DC OHL or cable (underground or sub sea)- Converted back to AC in another converter station- Injected into AC network

FICHTNER ENGINEERING

Page 6: Prezentare Georgel Gheorghita

Dokumentnummer6

FICHTNER ENGINEERING

Page 7: Prezentare Georgel Gheorghita

Dokumentnummer7

Convertorul si cablele/linia de tensiune continua se pot configura monopolar sau bipolar functie de:

Puterea nominala de transferLungimea cablelor si/sau a linieiCost investitieCost pierderiFiabilitate si disponibilitateAnaliza economica a costurilor de operare Considerente privind impactul asupra mediului

Configuratii FICHTNER ENGINEERING

Page 8: Prezentare Georgel Gheorghita

Dokumentnummer8

HVDC configuration and operating modeFICHTNER ENGINEERING

Page 9: Prezentare Georgel Gheorghita

Dokumentnummer9

Statia de conversieFICHTNER ENGINEERING

Partea centrala intr-un Convertor il reprezinta grupul de semiconductoare.

Puterea transferata intre grupul de semiconductoare si Sistem este tip trifazat

Cand sensul de transfer este dinspre Sistem spre semiconductoare Converterul functioneaza ca Redresor

Cand sensul de transfer este dinspre semiconductoare spre Sistem Converterul functioneaza ca Invertor

Page 10: Prezentare Georgel Gheorghita

Dokumentnummer10

Ansamblul Transformator - SemiconductoareScopul functional al ansamblului Transformator – Semiconductoare este de a transforma tensiunea alternativa in tensiune continua. Schema cea mai utilizata este cu 12 module de semiconductoare in scopul preluarii tensiunilor defazate prin schemele stea si triunghi in secundar

FICHTNER ENGINEERING

Page 11: Prezentare Georgel Gheorghita

Dokumentnummer11

FICHTNER ENGINEERING

Page 12: Prezentare Georgel Gheorghita

Dokumentnummer12

Balance between reactive power requirement of the HVDC converter and reactive power output

Procesul de conversie din tensiune alternativa in tensiune continua bazat pe tehnologia clasica, implica cerinta de putere reactiva. Puterea reactiva este asigurata prin filtre instalate in partea de tensiune alternativa a Statiei de Conversie. Surplusul sau deficitul de putere reactiva este obiect al transferului din si catre Sistem.

In plus sunt instalate filtre pentru armonici pe partea de tensiune alternativa si de nivelare pe partea de tensiune continua

Filtre

Filter output

Converter requirement

Unbalance

FICHTNER ENGINEERING

Page 13: Prezentare Georgel Gheorghita

Dokumentnummer13

FICHTNER ENGINEERING

Cable submarine:

Cerinte:

Lungimi mari (joctiuni reduse)

Nivel ridicat de fiabilitate (control de fabricatie ce exclude defecte ascunse)

Durata de exploatare ridicata

Rezistenta mecanica adecvata transferului de pe vas in mare si a instalarii

Impact redus asupra mediului

Cerinte reduse de mentenanta

Factori privind selectia: Puterea de transfer si cerinte

specifice ale Sistemelor Traseu, caracteristici geologice si

date privind rezistivitatea si temperatura apei

Lungime traseu. Adancime Protectii impuse (adancime de

ingropare, activitate marina, vietuitoare marine)

Siguranta transferului de putere Cosiderente de mediu Criterii economice

Page 14: Prezentare Georgel Gheorghita

Dokumentnummer14

FICHTNER ENGINEERING

Submarine Cables.

Page 15: Prezentare Georgel Gheorghita

Dokumentnummer15

Submarine, neutral and fibber optic cables for mono-polar schemes

For mono-polar HVDC schemes with metallic return cable, two schemes have been applied up to now:

- Medium voltage cable (~20 kV) laid at a distance of 20 to 40 m in parallel with the HVDC cable (for SwePol project)

- HVDC cable and metallic return cable (20 kV) bundled together, including fiber optical communication cable (for Basslink & Neptune Project).

FICHTNER ENGINEERING

Page 16: Prezentare Georgel Gheorghita

Dokumentnummer16

For the classical bi-pole scheme various cable options are possible for the sea cable section. Three variants are shown as an example.:

- Two separately laid high voltage cables + separate fiber optic cable

- Two separately laid high voltage cables+ separate metallic return cable + separate fiber optic cable

- One combination of high voltage cable-metallic return cable-fiber optic cable + a second high voltage cable

Submarine and fibber optic cables for bi-pole schemesFICHTNER ENGINEERING

Page 17: Prezentare Georgel Gheorghita

Dokumentnummer17

FICHTNER ENGINEERING

Submarine Cable Laying

Page 18: Prezentare Georgel Gheorghita

Dokumentnummer18

FICHTNER ENGINEERING

Page 19: Prezentare Georgel Gheorghita

Dokumentnummer19

Land Cable Install

The HVDC and MVDC Land Cables install depends to the Client requirements and local experience. The sections lengths are normally minimum of 500m to a maximum of 1000m.Below is described the installing into polyethylene conduits. The conduits, one for each cable, have been preinstalled by means of “cut and cover trench excavation” techniques. The ducts were installed at 1300mm depth in a concrete surround with the appropriate spacing. The remainder of the trench were backfilled with excavated material.

Horizontal directional drilling (HDD) technique can be used to put conduit in place where trenching is not feasible, especially where the cable crossed the major transportation routes such as highways and train tracks. The drill length can be between a minimum of approx. 100m to a maximum of approx. 600m. The cables will be installed through the conduits by means of pulling winches with the aid of a low friction water resistant silicone based compound applied on the cable during the operation; this guaranteed a low friction between cable and conduit (less than 0,2) and no abrasion on the cable external sheath.

HVDC trench sections in Long Island and inside HDD. ( Neptune Project ).

Page 20: Prezentare Georgel Gheorghita

Dokumentnummer20

Ground Electrode / Sea ElectrodeThe ground electrode of a HVDC system is required to provide an earth return circuit, permitting the current to flow into the earth in a mono-polar mode or others modes involving current discharges into the soil. Because of the large magnitude (on the order of kA) and great duration (days) of the ground return current, the design of the DC ground electrodes involves aspects ranging from electrical and thermal properties of the design to safety of people and animals in a large area around the electrode and adverse effects on metallic utilities in the vicinity of ground electrode.

FICHTNER ENGINEERING

The diameter of ground electrodes (D) is based on limiting the maximum step potential at the surface.

Assuming that the maximum step potential (E) = 5 V/m, the maximum electrode current (I) = 2000 A and the burial depth (h) = 2.5 m, a typical value of the diameter D for a soil resistivity (ρ) = 100 Ohm-m would be 810 m.

Page 21: Prezentare Georgel Gheorghita

Dokumentnummer21

Ground Electrode / Sea ElectrodeCriteria for Separation Distances between Electrode and Other Facilities

1. Electrical substations with grounded neutral transformers 15 km2. Major oil and gas pipelines 8 km3. Urban gas, water and sewer lines 5 km 4. Submarine cables 5 km 5. Concentric neutral power cables 5 km 6. Communication cables 3 km 7. Transmission Lines 2 km8. Steel wharfs 1 km 9. Bridges 1 km 10. Railway tracks 2 km 11. Buried metal tanks 1 km 12. Large reinforced concrete structures 1 km 13. Rural power distribution 2 km

Page 22: Prezentare Georgel Gheorghita

Dokumentnummer22

HVDC Line

Page 23: Prezentare Georgel Gheorghita

Dokumentnummer23

Schematic View of a Bipolar HVDC Transmission Line.

NOTES:- Ions produced by corona at each conductor bundle, travel along electric-field lines to the conductors of opposite polarity and to ground in the absence of wind

-The values of electric field in case of +/- 500 kV are in range of 40 kV/m under poles and 15 kV/m at 25 m far from line axis

-+

- Insulation, tower elements and conductors of the “+” pole are covered in time withLichen and dust

- Insulation, tower elements and conductors of the “-” pole are clean, not subject of Lichen or dust depots

Page 24: Prezentare Georgel Gheorghita

Dokumentnummer24

CABLE – HVDC Line TRANZITION YARD

Page 25: Prezentare Georgel Gheorghita

Dokumentnummer25

FICHTNER ENGINEERING

Page 26: Prezentare Georgel Gheorghita

Dokumentnummer26

The HVDC links in EuropeFICHTNER ENGINEERING

Page 27: Prezentare Georgel Gheorghita

Dokumentnummer27

FICHTNER ENGINEERING

Page 28: Prezentare Georgel Gheorghita

Dokumentnummer28

TRANSMISSION PLANNING EXPERIENCEFICHTNER – FICHTNER ENGINEERING

FOCUS: HVDC PROJECTS

FICHTNER - FICHTNER ENGINEERING

Page 29: Prezentare Georgel Gheorghita

Dokumentnummer29

1. Romania – Turkey HVDC Interconnector

Connection point with Romanian Power System: 400kV S/S Constanţa Nord;

Connection point with Turkish Power System: 400kV S/S Alybeiköy, in Asia;

The cables voltage level: 400 kV, or 500 kV;

The capacity: 600MW;

The length: about 400 km;

Losses on the cable:- in 600MW transfer: ~ 12MW;- in 500MW transfer: ~ 9MW Alibeyköy

FICHTNER ENGINEERINGTRANSELECTRICA

Page 30: Prezentare Georgel Gheorghita

Dokumentnummer30

Romania – Turkey HVDC Interconnector overview

Submarine cable

400 kV S/SRomania

400 kV S/STurkey

or OHL or OHL

ROMANIA TURKEY

ELEMENT 01

TELConstanţa

NordSubstation

ELEMENT 07

TEIASAlibeyköy Substation

ELEMENT 02TEL

Converter station and

link to Constanţa

Nord substation

ELEMENT 06

TEIASConverter

station and link to

Alibeyköy substation

ELEMENT03

TELUnderground cable between

converter station and HVDC cable

connection

ELEMENT03

TELUnderground cable between

converter station and HVDC cable

connection

ELEMENT04

HVDC cable

BLACK SEA

FICHTNER ENGINEERINGTRANSELECTRICA

Page 31: Prezentare Georgel Gheorghita

Dokumentnummer31

PROJECT LocationType of DCconverter

Lengthand type

of DC OH line or cable

NetPower(finalstage)

MW

DCVoltage

kV

Intendedyear of

operation(first

stage)

FichtnerScope

Sarawak

Pen. Malaysia

Bakun -

Bentong

One bipole

Line commutated

1000 km Overhead

Lineand

676 km submarine

cable

1600 ±500 2015 Conceptual design

Specification

Construction supervision

Ethiopia-Kenya

Sodo (Ethiopia)

-Longonot(Kenya)

One bipoleGround return

Linecommutated

1066km

OHLbipolar

2000 ±500 2014 Feasibility

Environ. study

Resettlement

HVDC TRANSMISSION PLANNING- CURRENT PROJECTS

FICHTNER - FICHTNER ENGINEERING

Page 32: Prezentare Georgel Gheorghita

Dokumentnummer32

PROJECT Location Type of DCconverter

Lengthand type

of DC OH line or cable

NetPower(final

stage)

MW

DCVoltage

kV

Intendedyear of

operation(first

stage)

FichtnerScope

NorGerCable

Tonstad(Norway)

Moorriem(Germany)

One bipole

Line commutated

630 km subsea

cable 50 km land

cable50 km

overhead line

1400 ±500 2015 Feasibility study

Georgia –Turkey

Akaltsikhe(Georgia)

Three back- to back blocks

3x350 MW

Optim.in

manuf.phase

2013 Conceptual design

Specific.

Constr. superv.

HVDC TRANSMISSION PLANNING- CURRENT PROJECTS

FICHTNER - FICHTNER ENGINEERING

Page 33: Prezentare Georgel Gheorghita

Dokumentnummer33

PROJECT Location Type of DCconverter

Lengthand type of DC

OH line or cable

NetPower(final

stage)

MW

DCVoltage

kV

Intendedyear of

operation(first

stage)

FichtnerScope

SAPMPRD Congo

Inga

Kolwezi

Two BipolesGround Return

Line commutated

1700 km 1000 ± 500 2012 Rehabilitation concept for the existing bipole

Specification of rehabilitation and new works

Construction supervision

HVDC TRANSMISSION PLANNING- CURRENT PROJECTS

FICHTNER - FICHTNER ENGINEERING

Page 34: Prezentare Georgel Gheorghita

Dokumentnummer34

MAJOR PROJECT OF REGIONAL IMPORTANCE (Interconnection Ethiopia- Kenya to Tanzania and Uganda)

PLANNING HORIZON 2008-2030

1066 km, remote hydropower from Gilgel Gibe II and IIIWOLAYTA SODO (ETHIOPIA) to LONGONOT (KENYA)

Phase 1 - target capacity 1000 MW Phase 2 - target capacity 2000 MW

Conventional bipole, four converters per pole in final stage, line commutated 500 kV 1066 km bipolar OHL Ground return, ground electrode line

2. KENYA-ETHIOPIA – HVDC PROJECT KEY DATAFICHTNER - FICHTNER ENGINEERING

Page 35: Prezentare Georgel Gheorghita

Dokumentnummer35

KENYA – ETHIOPIA- RECOMMENDED HVDC CONCEPTFICHTNER - FICHTNER ENGINEERING

Page 36: Prezentare Georgel Gheorghita

Dokumentnummer36

Norway: dominated by hydro

power (almost 100% of the entire production) dry / wet years determine

production output 50% of Europe‘s storage

capacity

Germany:Mix of different generation:

thermal powernuclear power

Increasing share of wind power

3. NorGer HVDC CABLE LINK- FEASIBILITY STUDIES

Page 37: Prezentare Georgel Gheorghita

Dokumentnummer37

• 630 km HVDC submarine cable connection, 50 km land cable, 50 km OHL

• 1400 MW in one stage • Commissioning: 2015• “Market coupling” as operation

principle• ‘Merchant’ cable• Compensation for the fluctuation in

German wind power production by Norwegian hydropower

• Increased the security of power supply in Norway (power shortage in dry years)

• System and balancing services

NorGer Cable - HVDC KEY PROJECT DATA

Page 38: Prezentare Georgel Gheorghita

Dokumentnummer38

ENVIRONMENT IMPACT Construction phase pollution of sea through sediments bird and fish fauna interference Operation phasemagnetic field warming of seabed bird and fish fauna interference during cable repairs

Crossing of national park and protected areas necessaryTime-consuming permitting procedures for land cable sections to HVDC terminals

NorGer Cable - HVDC KEY PROJECT DATA

Page 39: Prezentare Georgel Gheorghita

Dokumentnummer39

IMPACTS ON NAVIGATION

Crossing of heavy shipping traffic necessary

Solutions to minimize impacts on navigation required in the construction and operation phases

NorGer HVDC Cable – TECHNICAL CHALLENGES

Page 40: Prezentare Georgel Gheorghita

Dokumentnummer40

MULTI-INFEED HVDC INTERFERENCE (on the Norway side, hydropower exporter to Northern Europe)Increasing number of merchant HVDC links in a same system area creates technical problems, especially for Line Commutated Converters. Sympathetic commutation failures► Sequential restarting strategy of the HVDC terminals must be designed on a regional base with close cooperation of all TSOsSharing of the Short Circuit Capacity ►Short circuit capability must be “shared” between the HVDC terminals

NorGer HVDC Cable – TECHNICAL CHALLENGES

Page 41: Prezentare Georgel Gheorghita

Dokumentnummer41

MULTI-INFEED HVDC INTERFERENCE (on the Norway side, hydropower exporter to Northern Europe)Increasing number of merchant HVDC links in a same system area creates technical problems, especially for Line Commutated Converters. Sympathetic commutation failures► Sequential restarting strategy of the HVDC terminals must be designed on a regional base with close cooperation of all TSOsSharing of the Short Circuit Capacity ►Short circuit capability must be “shared” between the HVDC terminals

NorGer HVDC Cable – TECHNICAL CHALLENGES

Page 42: Prezentare Georgel Gheorghita

Dokumentnummer42

INGA – KOLWEZI HVDC LINK REHABILITATION

FICHTNER`s SCOPE of WORKREHABILITATION CONCEPT, SPECIFICATION, TENDER EVALUATION, CONSTRUCTION SUPERVISION

PROJECT OBJECTIVES Make available huge hydro power potential at INGA (RD Congo) to the poorly developed KATANGA (Shaba) region and to export to North Zambia and SAPP countries

4. SOUTHERN AFRICAN POWER MARKET PROJECTFICHTNER - FICHTNER ENGINEERING

Page 43: Prezentare Georgel Gheorghita

Dokumentnummer43

KEY DATAProject start /finish 2009/2011First stage 500 MWSecond stage 1000 MWHVDC converter two bipoles in final stage Voltage ± 500 kVBipolar OH line length 1700 kmREHABILITATION SCOPE IN STAGE 1Replacement of the valves Replacement of the control and protection system Refurbishment of the AC equipment and auxiliaries

INGA – KOLWEZI HVDC LINK REHABILITATION

FICHTNER - FICHTNER ENGINEERING

Page 44: Prezentare Georgel Gheorghita

Dokumentnummer44

INGA – KOLWEZI HVDC LINK REHABILITATIONFICHTNER - FICHTNER ENGINEERING

Page 45: Prezentare Georgel Gheorghita

Dokumentnummer45

INGA – KOLWEZI HVDC LINK REHABILITATIONFICHTNER - FICHTNER ENGINEERING

Page 46: Prezentare Georgel Gheorghita

Dokumentnummer46

GEORGIA-TURKEY AKHALTSIKHE HVDC BACK TO BACKFICHTNER`s SCOPE of WORKPhase I- concept development- preparation of tender documents- tendering and bid evaluation- contracting Phase II- design review and approval- shop testing- construction and contract supervision- supervision of commissioning and taking over assistance duringfirst 3 months of operation

5. BLACK SEA TRANSMISSION NETWORK PROJECTFICHTNER - FICHTNER ENGINEERING

Page 47: Prezentare Georgel Gheorghita

Dokumentnummer47

KEY DATA:Project start /finish 2009/2013First stage 700 MWSecond stage 1050 MWHVDC converter three blocks

PROJECT OBJECTIVES:Export of hydropower from Georgia- Kudhoni

GEORGIA-TURKEY AKHALTSIKHE HVDC BACK TO BACKFICHTNER - FICHTNER ENGINEERING

Page 48: Prezentare Georgel Gheorghita

Dokumentnummer48

GEORGIA-TURKEY AKHALTSIKHE HVDC BACK TO BACKFICHTNER - FICHTNER ENGINEERING

Page 49: Prezentare Georgel Gheorghita

Dokumentnummer49

6. BAKUN INTERCONNECTIONFICHTNER - FICHTNER ENGINEERING

Page 50: Prezentare Georgel Gheorghita

Dokumentnummer50

PROJECT OBJECTIVE

INTERCONNECTION OF THE 2400 MW BAKUN HEP (STATE OF SARAWAK) WITH TNB (PENINSULAR MALAYSISA) IN 2015/16 OVER A 676 km CABLE THROUGH THE SOUTH CHINA SEA, 300 km OHL in PENINSULAR MALAYSIA, 700 km OHL in SARAWAK

EXPORT TO PENINSULAR MALAYSIA PLANNED WITH 800 MW CAPACITY IN 2015, DOUBLED TO 1600MW IN 2016.

BAKUN INTERCONNECTIONFICHTNER - FICHTNER ENGINEERING

Page 51: Prezentare Georgel Gheorghita

Dokumentnummer51

1600 MW HVDC Link, ±500 kV2 x 676 km Submarine Cables1000 km Bipolar Overhead Line

Converter Stations US$ 500 millionSubmarine Cables US$ 2000 millionHVDC Overhead Transmission Lines US$ 800 millionTotal US$ 3200 million

BAKUN INTERCONNECTION - Project Cost EstimationFICHTNER - FICHTNER ENGINEERING

Page 52: Prezentare Georgel Gheorghita

Dokumentnummer52

TRANSMISSION EXPERIENCE( INTERNATIONAL )

FOCUS: HVDC SEA CROSSING PROJECTS

Page 53: Prezentare Georgel Gheorghita

Dokumentnummer53

1. HVDC Gotland (The HVDC pioneer - The first commercial HVDC Light project )

Scheme GOTLAND 1 GOTLAND 2 GOTLAND 3

Commissioning year

1970 1983 1987

Power transmitted, MW

(20) + 10 130 130

Direct voltage, kV (100) + (50) 150 150

Converters per stations

(2) + (1) 1 1

Cable arrangement

1 cable, ground return

1 cable, ground return

1 cable

Length of cable 96 km 96 km 96 km

Grounding of the DC circuit

for full current in two sea electrode stations

for full current in two sea electrode stations

for full current in two sea electrode stations

Power Company Statens Vattenfallsverk, Vällingby, SWEDEN

Statens Vattenfallsverk, Vällingby, SWEDEN

Statens Vattenfallsverk, Vällingby, SWEDEN

FICHTNER ENGINEERING

Page 54: Prezentare Georgel Gheorghita

Dokumentnummer54

2. Cross-Skagerrak 1 and 2 (between Norway and Denmark)

Scheme SKAGERRAK 1 & 2

Commissioning year

1976-1977

Power transmitted, MW

500

Direct voltage, kV ±250

Converters per stations

2

Cable arrangement 1 cable per pole

Length of cable 127 km

Grounding of the DC circuit

for full current in two ground electrode stations

Power Company Statkraft, NORWAYElsam, DENMARK

FICHTNER ENGINEERING

Page 55: Prezentare Georgel Gheorghita

Dokumentnummer55

3. HVDC Cross-Channel (between UK and France)

The HVDC Cross Channel is the high voltage direct current connection that operates under the English Channel between the French and British electricity grids.

Cross Channel 1

Transmission voltage: 100 kV Length: 64 km Monopolar HVDC system Power: 160 MW Commisioning: 1961 Type of cable: MI

Cross Channel 2

Transmissionvoltage: 270 kV Length: 8x46 km Monopolar HVDC system Power: 2000 MW Commisioning: 1986 Type of cable: MI

FICHTNER ENGINEERING

Page 56: Prezentare Georgel Gheorghita

Dokumentnummer56

4. HVDC Inter-Island (between the islands of New Zealand)

The Inter-Island HVDC link is the high voltage direct current connection between the two main islands of New Zealand, put into service in 1965.

Transmission voltage: 400 kV

Length: 40 km undersea Cook Strait

Bipolar HVDC system

Power: 1200 MW

Commisioning: 1965 and upgraded in 1993

Type of cable: MI

During this upgrade the static inverters that usethe mercury arc valves were modified and switched in parralel In 2007, Pole 1 was shut down for a new Pole 2

FICHTNER ENGINEERING

Page 57: Prezentare Georgel Gheorghita

Dokumentnummer57

5. HVDC Italy-Corsica-Sardinia (SACOI, between Italy, Corsica and Sardinia)

The HVDC Italy-Corsica-Sardinia (also called SACOI) is used for the exchange of electric energy between the static inverter plant Suvereto on the Italian mainland, the static inverter plant Lucciana on Corsica and the static inverter plant Codrongianos on Sardinia.

Transmission voltage: 200 kV Length: 2x103+2x15 km Monopolar first/Bipolar HVDC system Power: 2x100/from 1992- 2x150 MW Commisioning: 1965 Type of cable: MI

FICHTNER ENGINEERING

Page 58: Prezentare Georgel Gheorghita

Dokumentnummer58

6 Konti-Skan (between Sweden and Denmark)

Scheme KONTI-SKAN 1 KONTI-SKAN 2

Commissioning year

1965/disconnected in 2006

1988

Power transmitted, MW

250 300

Direct voltage, kV 250 300

Converters per stations

1 1

Cable arrangement Mono-polar system

Mono-polar system

Length of cable 87 km 88 km

Power Company SVENSKA KRAFTNÄT, SWEDENENERGINET, DENMARKENEL, ITALYPPC, GREECE

KONTI-SKAN 1 KONTI-SKAN 2

FICHTNER ENGINEERING

Page 59: Prezentare Georgel Gheorghita

Dokumentnummer59

7. HVDC Vancouver Island (between Vancouver Island and the Canadian mainland)

The HVDC Vancouver Island is the name for HVDC interconnection between the Vancouver Island Terminal (VIT) on Vancouver Island and the Arnott Substation (ART) on the Canadian mainland.

Transmission voltage: 260/280 kV

Length: 33 km

Monopolar HVDC system light

Power: 312+370 MW

Commisioning: 1968,upgraded in 1977with another pole

Type of cable: MI

FICHTNER ENGINEERING

Page 60: Prezentare Georgel Gheorghita

Dokumentnummer60

8. Fenno-Skan (between Sweden and Finland)Scheme FENNO-SKAN

Commissioning year 1989

Power transmitted, MW 500

Direct voltage, kV 400

Converters per stations 1

Cable arrangement 1 cable

Length of cable 200 km

Grounding of the DC circuit

for full current in two sea electrode

Power Company Statens Vattenfallsverk, Vällingby, SWEDENImatran Voima oy, FINLAND

FICHTNER ENGINEERING

Page 61: Prezentare Georgel Gheorghita

Dokumentnummer61

9. BALTIC – CABLE (between Germany and Sweden)

Scheme BALTIC

Commissioning year

1994

Power transmitted, MW

600

Direct voltage, kV 450

Converters per stations

1

Cable system 1 cable

Length of cable 250 km

Power Company E.ON Sverige AB,SWEDENStatkraft Energi AS, NORWAY

Converter station in Germany

FICHTNER ENGINEERING

Page 62: Prezentare Georgel Gheorghita

Dokumentnummer62

10. HVDC Hokkaido-Honschu (Japan)

The HVDC Hokkaidō-Honshū is a high voltage direct current transmission line for the interconnection of the power grids of Hokkaidō and Honshū.

Transmission voltage: 250 kV

Length: 2x42 km

Monopolar HVDC system

Power: 300 MW

Commisioning: 1994

Type of cable: SCFF

FICHTNER ENGINEERING

Page 63: Prezentare Georgel Gheorghita

Dokumentnummer63

11. Kontek (between Germany and Denmark)The Kontek (the name comes from "continent" and the name of the former Danish power transmission company "Elkraft", which operated the power grid on the Danish islands Lolland, Falster and Sealand and had the abbreviation "ek")

Transmission voltage: 400 kV

Length: 45 km

Monopolar HVDC system

Power: 600 MW

Commisioning: 1996

Type of cable: OF(oil-filled)

FICHTNER ENGINEERING

Page 64: Prezentare Georgel Gheorghita

Dokumentnummer64

12. HVDC Leyte - Luzon (between Leyte and Luzon)

The HVDC Leyte - Luzon is a high voltage direct current transmission link in the Philippines between geothermal power plants on the island of Leyte and the southern part of island of Luzon.

Transmission voltage: 350 kV

Length: 21 km

Monopolar HVDC system

Power: 440 MW

Commisioning: 1998

Type of cable: MI

FICHTNER ENGINEERING

Page 65: Prezentare Georgel Gheorghita

Dokumentnummer65

13. Kii Channel HVDC system (through Kii-channel, Japan)

The Kii Channel HVDC system is at present the most powerful submarine cable high voltage direct current transmission system in the world. The Kii Channel HVDC system connects the static inverter plant at Anan on Shikoku with the static inverter plant at Kihoku on the island Honshū.

Transmission voltage: 2x250 kV

Length: 4x50 km

Bipolar HVDC system

Power: 2x1400 MW

Commisioning: 2000

Type of cable: SCFF

FICHTNER ENGINEERING

Page 66: Prezentare Georgel Gheorghita

Dokumentnummer66

14. HVDC Italy-Greece

Scheme ITALY-GREECE

Commissioning year 2000

Power transmitted, MW 500

Direct voltage, kV 400

Converters per stations 1

Cable arrangement 1 land and 1 sea cable

Length of cable 200 km (40+160km)

Grounding of the DC circuit

for full current in two sea electrode stations

Power Company ENEL, ITALYPPC, GREECE

Monopole with metallic return

FICHTNER ENGINEERING

Page 67: Prezentare Georgel Gheorghita

Dokumentnummer67

15. SwePol (between Poland and Sweden)

SwePol is the designation of a 245 kilometre long monopolar HVDC submarine cable between Stärnö peninsula just outside Karlshamn, Sweden, and Słupsk in Poland.

Transmission voltage: 450 kV Length: 245 km Monopolar HVDC system Power: 600 MW Commisioning: 2000 Type of cable: XLPE Monopole with

Midpoint Grounded

FICHTNER ENGINEERING

Page 68: Prezentare Georgel Gheorghita

Dokumentnummer68

16. HVDC Moyle (between Scotland and Northern Ireland)

The HVDC Moyle is the HVDC link between Auchencrosh in Scotland and Ballycronan More in Northern Ireland

Transmission voltage: 250 kV

Length: 2x55 km

Two Monopolar HVDC system

Power: 2x250 MW

Commisioning: 2001

FICHTNER ENGINEERING

Page 69: Prezentare Georgel Gheorghita

Dokumentnummer69

17. Cross Sound Cable (between New York's Long Island and Connecticut, USA)

The Cross Sound Cable Project (CSC) is a HVDC transmission system that interconnects the electricity market regions of New England and New York.

Transmission voltage: +/- 110 kV

Length: 2x42 km

Bipolar HVDC system

Power: 330 MW

Commissioning: 2002

Type of insulation: XLPE-polymer

FICHTNER ENGINEERING

Page 70: Prezentare Georgel Gheorghita

Dokumentnummer70

18. Neptune (between New Jersey-Long Island)

FICHTNER ENGINEERING

Page 71: Prezentare Georgel Gheorghita

Dokumentnummer71

19. BASSLINK (between Victoria, Australia and Tasmania, Australia)

Basslink is a HVDC link crossing Bass Strait, connecting the Loy Yang Power Station, Victoria on the Australian mainland to the George Town substation in northern Tasmania.Transmission voltage: 400 kV Length: 290 km Monopolar metallic return scheme Power rating: 500 MW Commissioning: 2006 Type of insulation: MI

FICHTNER ENGINEERING

Page 72: Prezentare Georgel Gheorghita

Dokumentnummer72

20. Estlink (between Estonia and Finland) The main purpose of the Estlink connection is to sell electricity produced in the Baltic to the Nordic electricity market, and to secure power supply in both regions.

• Transmission voltage: +/-150 kV • Length: 2x74 km • HVDC Light transmission technology• Power: 350 MW• Commisioning: 2006• Type of insulation cable: polymer

FICHTNER ENGINEERING

Page 73: Prezentare Georgel Gheorghita

Dokumentnummer73

20. Estlink (between Estonia and Finland)

FICHTNER ENGINEERING

Page 74: Prezentare Georgel Gheorghita

Dokumentnummer74

21.HVDC NorNed (between Norway and Netherlands)

The 580 kilometer-long NorNed link is the longest submarine high-voltage cable in the world. This HVDC transmission link is connecting the power grids of Norway and the Netherlands and enables power trading between the two countries and increases the reliability of electricity supply.

Transmission voltage: ±450 kVLength: 2x580 kmBipolar HVDC systemPower: 700 MWCommisioning: 2007Power company: Statnett, NORWAY

TenneT, NETHERLAND

FICHTNER ENGINEERING

Page 75: Prezentare Georgel Gheorghita

Dokumentnummer75

HVDC ProjectsFICHTNER ENGINEERING

Page 76: Prezentare Georgel Gheorghita

Dokumentnummer76

FICHTNER ENGINEERING

Page 77: Prezentare Georgel Gheorghita

Dokumentnummer77

FICHTNER ENGINEERING

Page 78: Prezentare Georgel Gheorghita

Dokumentnummer78

FICHTNER ENGINEERING

Page 79: Prezentare Georgel Gheorghita

Dokumentnummer79

FICHTNER ENGINEERING