lucrarea nr. 16 circuite basculante bistabile · lucrarea nr. 16 circuite basculante bistabile...

19
LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE 6FRSXOOXFU ULL /XFUDUHDvœLSURSXQHVWXGLHUHDGLIHULWHORUWLSXULGHFLUFXLWHEDVFXODQWH ELVWDELOH&%%XWLOL]DWHvQFLUFXLWHOHœLVLVWHPHOHGLJLWDOH 2. Aspecte teoretice *HQHUDOLW L Circuitele basculante bistabile (CBB) fac parte din marea familie a FLUFXLWHORUORJLFHVHFYHQ LDOHFOVFXQRVFXWHvQOLWHUDWXU œLVXEGHQXPLUHD de sisteme de ordin > 1. Trecerea de la sistemele de ordin zero (c.l.c.) la cele de ordin superior se face prin intURGXFHUHDXQRUUHDF LLFDUH-LFRQIHU VLVWHPXOXLSURSULHWDWHDGHPHPRULH$VWIHOLHœLULOHFLUFXLWXOXLVHFYHQ LDO VXQWSDU LDOLQGHSHQGHQWHGHVHPQDOHOHGHLQWUDUHGLQDFHOPRPHQW depinzând -WRWSDU LDO-GHVW ULOHDQWHULRDUHDOHFLUFXLWXOXL 2.2. Circuitul basculant bistabîl RS CBB-56VHRE LQHSULQLQWURGXFHUHDXQHLUHDF LLvQWU-un sistem elementar de RUGLQ]HUR6LVWHPXODVWIHORE LQXWHVWHGHRUGLQ CBB-56SRDWHILUHDOL]DWvQYDULDQWDDVLQFURQ VLQFURQ VDX0DVWHU-Slave" VW SkQ-sclav) 2.2.1. CBB-RS asincron CBB-RS asincron, cunoscut -GDWRULW SURSULHW LORUVDOHGHDPHPRUD-œL VXEGHQXPLUHDGHODWFK] YRUSRDWHILUHDOL]DWFX125-uri sau cu NAND-uri vQYDULDQWD125ILJIXQF LRQDUHDFLUFXLWXOXLHVWHLOXVWUDW de tabelul de tranzL LHWDEvQFDUHV-a notat cu indice "n" - valoarea ORJLF SUH]HQW œLFXQ-YDORDUHDORJLF YLLWRDUH

Upload: others

Post on 12-Aug-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

LUCRAREA NR. 16

CIRCUITE BASCULANTE BISTABILE

���6FRSXO�OXFU ULL /XFUDUHD�vúL�SURSXQH�VWXGLHUHD�GLIHULWHORU�WLSXUL�GH�FLUFXLWH�EDVFXODQWH�ELVWDELOH��&%%��XWLOL]DWH�vQ�FLUFXLWHOH�úL�VLVWHPHOH�GLJLWDOH� 2. Aspecte teoretice �����*HQHUDOLW L Circuitele basculante bistabile (CBB) fac parte din marea familie a FLUFXLWHORU�ORJLFH�VHFYHQ LDOH��F�O�V����FXQRVFXWH�vQ�OLWHUDWXU �úL�VXE�GHQXPLUHD�de sisteme de ordin > 1. Trecerea de la sistemele de ordin zero (c.l.c.) la cele de ordin superior se face prin intURGXFHUHD�XQRU�UHDF LL�FDUH-L�FRQIHU �VLVWHPXOXL�SURSULHWDWHD�GH��PHPRULH���$VWIHO��LHúLULOH�FLUFXLWXOXL�VHFYHQ LDO�VXQW�SDU LDO�LQGHSHQGHQWH�GH�VHPQDOHOH�GH�LQWUDUH�GLQ�DFHO�PRPHQW��depinzând -�WRW�SDU LDO�-GH�VW ULOH�DQWHULRDUH�DOH�FLUFXLWXOXL� 2.2. Circuitul basculant bistabîl RS CBB-56�VH�RE LQH�SULQ�LQWURGXFHUHD�XQHL�UHDF LL�vQWU-un sistem elementar de RUGLQ�]HUR��6LVWHPXO�DVWIHO�RE LQXW�HVWH�GH�RUGLQ��� CBB-56�SRDWH�IL�UHDOL]DW�vQ�YDULDQWD�DVLQFURQ ��VLQFURQ �VDX��0DVWHU-Slave" �VW SkQ-sclav) 2.2.1. CBB-RS asincron CBB-RS asincron, cunoscut -�GDWRULW �SURSULHW LORU�VDOH�GH�D�PHPRUD�-�úL�VXE�GHQXPLUHD�GH��ODWFK���] YRU��SRDWH�IL�UHDOL]DW�FX�125-uri sau cu NAND-uri vQ�YDULDQWD�125��ILJ��������IXQF LRQDUHD�FLUFXLWXOXL�HVWH�LOXVWUDW �de tabelul de tranzL LH��WDE��������vQ�FDUH�V-a notat cu indice "n" - valoarea ORJLF �SUH]HQW �úL�FX��Q����-�YDORDUHD�ORJLF �YLLWRDUH�

Page 2: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

Q Q D��6FKHP �ORJLF b) 6FKHP �EORF

Fig. 16.1. CBB-RS asincron, varianta NOR 7DE��������7DEHO�GH�WUDQ]L LH�DO� Fig. 16.2 . Diagrama VK pentru CBB-RS asincron, varianta NOR CBB-RS asincron, varianta NOR

nnQR Sn

Astfel, pentru RnSn = 00 (prima linie a tabHOXOXL�GH�WUDQ]L LH���SRU LOH�31�úL�32 VXQW�YDOLGDWH�úL�YDORDUHD�ORJLF �D�OXL�4n ( nQ ��GH�OD�LHúLUHD�SRU LL�31 (P2)

DMXQJH�OD�LHúLUHD�SRU LL�32 (P1) sub forma nQ (Qn���2EVHUY P�F �YDORULOH�ORJLFH�DOH�LHúLULORU�U PkQ�neschimbate, deci Qn+] = Qn. Pentru RnSn=01 (Rn=0, Sn O���LHúLUHD�SRU LL�YD�IL�

nQ = nn SQ + = 1+nQ = 1=0, (16.1)

GHFL�OD�LQWUDUHD�SRU LL�31�VH�DSOLF �5n ��úL� nQ ���(YLGHQW��OD�LHúLUHD�SRU LL�31 vom avea:

10001 ==+=+=+ nnn QRQ (16.2) Prin urmare atunci ckQG�LQWUDUHD�6�HVWH�DFWLYDW ��6n O���VH�UHDOL]HD] vQVFULHUHD�XQXL��O��ORJLF�vQ�PHPRULH��'HQXPLUHD��6��D�LQWU ULL�HVWH�R�prescurtare D�FXYkQWXOXL��6(7��GLQ�OLPED�HQJOH] �FDUH�vQVHDPQ ��vQVFULHUH�� Pentru RnSn=10 (Rn=l, Sn=0), se poate demonstra - urmând o cale VLPLODU �

Rn SN Qn+1 0 0 Qn

0 l i 1 0 0 1 1 x

RnSn

Q n

00 01 11 10

0 0 1 X 0

1 1 1 X 0

Page 3: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

celei de mai sus -�F �VH�RE LQH�4n+1=0. 5H]XOW �F �DFWLYDUHD�LQWU ULL�5��5n O���FRQGXFH�OD�úWHUJHUHD�LQIRUPD LHL din memorie, echivalent cu punerea pe "O" a memoriei. Denumirea "R" a LQWU ULL este o prescurtare a cuvântului "RESET" diQ�OLPED�HQJOH] �FDUH�vQVHDPQ ��úWHUJHUH�� Pentru RnSn O�O�LHúLULOH�FHORU�GRX �SRU L�VXQW�IRU DWH�VLPXOWDQ�vQ��2��ORJLF��deci s-DU�DMXQJH�OD�VLWXD LD�LQDGPLVLELO �vQ�FDUH�

011 == ++ nn QQ (16.3) 'LQ�DFHVW�PRWLY�FRPELQD LD�GH�LQWUDUH����HVWH�LQWHU]LV ��GH�RELFHL�SULQ ORJLF �VXSOLPHQWDU ��LDU�vQ�ORFD LD�FRUHVSXQ] WRDUH�GLQ�WDE�������VH�SXQH�VHPQXO��[��VSHFLILF�ORFD LLORU�vQ�FDUH�IXQF LD�HVWH�QHGHILQLW � 3HQWUX�D�RE LQH�R�IRUP �PLQLPDO �D�IXQF LHL�GH�LHúLUH��FRQVWUXLP�GLDJUDPD�Veitch - KDPDXJK��9.��D�FLUFXLWXOXL��ILJ��������úL��GXS �JUXS UL�FRQYHQDELOH��RE LQHP� Qn+1 =Sn+ nnQR (16.4) 5HOD LD��������VH�YHULILF �QXPDL�SHQWUX�SULPHOH�WUHL�OLQLL�DOH�WDE������� Varianta NAND a CBB-RS asincron este pUH]HQWDW ��vQ���ILJ������� Q Q D��VFKHPD�ORJLF b) schema bloc

Fig. 16.3. CBB-RS asincron, varianta NAND

FXQF LRQDUHD�FLUFXLWXOXL�HVWH�LOXVWUDW �vQ�WDEHOXO��GH��WUDQ]L LH��WDE�����������LU�PLQLPL]DUHD�IXQF LHL�GH�LHúLUH�HVWH�UHDOL]DW �FX�DMXWRUXO�GLDJUDPHL�9.��ILJ��16.4.

Page 4: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

7DE��������7DEHO�GH�WUDQ]L LH�DO� CBB-RS asincron, varianta NAND

Sn

nNQR

Fig. 16.4. Diagrama VK pentru CBB-RS asincron, varianta NAND

2EVHUY P�F �vQ�XUPD�PLQLPL] ULL�VH�RE LQH�DFHHDúL�H[SUHVLH��������SHQWUX�Qn+1. CBB-56�DVLQFURQ��LQGLIHUHQW�GH�YDULDQWD�GH�LPSOHPHQWDUH�DGRSWDW ��SUH]LQW �XUP WRDUHOH�GHILFLHQ H� -��DFHOHDúL�VHPQDOH�FDUH�LQGLF �PRGXO�&80��vQ�FDUH��WUHEXLH�V �VH�IDF �comutarHD��GLFWHD] �úL�PRPHQWXO�&Æ1'�WUHEXLH�V �DLE �ORF�DFHDVWD� -��SHQWUX�DQXPLWH�WUDQ]L LL�DOH�LQWU ULORU�FLUFXLWXOXL��VWDUHD�LHúLULORU�HVWH�LPSUHYL]LELO � ([HPSOX��7UDQ]L LD���-> ���D�LQWU ULORU��SRDWH�DGXFH�LHúLULOH�4��Q ale CBB din fig�������vQ�RULFDUH�GLQ�FHOH�GRX �VW UL�SRVLELOH��$VWIHO��SHQWUX�5nSn=1l, vom avea Q=Q � ��úL�SRU LOH�31 P2 vor fi validate. Pentru RnSn = 00, aGPL kQG�F �SRDUWD�P1�HVWH�PDL�UDSLG ��VH�YD�RE LQH�XQ��O��ORJLF�OD�LHúLUHD�4��FHHD�FH�IRU HD] �- SULQ�UHDF LH�- un "O" logic la Q ��(YLGHQW��GDF �DSOLF P�DFHHDúL�VXSR]L LH�pentru poarta P2��YDORULOH�ORJLFH�DOH�LHúLULORU�VH�LQYHUVHD] � 2.2.2. CBB-RS.sincron CBB-56�VLQFURQ�VH�RE LQH�GLQ�&%%-56�DVLQFURQ�SULQ�DG XJDUHD�D�GRX �SRU L����úL����YDOLGDELOH�GH�XQ�LPSXOV�GH�WDFW��ILJ�������úL�������

nR nS Qn+1 0 0 Qn

0 l 1 1 0 0 1 1 x

nn SR

Q n

00 01 11 10

0 X 0 0 1

1 X 0 1 1

Page 5: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

Q Q D��VFKHPD�ORJLF b) schema bloc

Fig. 16.5. CBB-RS sincron, varianta NOR )XQF LRQDUHD�FHORU�GRX �&%%-56�VLQFURQH�ILLQG�VLPLODU ��QH�YRP�OLPLWD�OD�H[SOLFDUHD�IXQF LRQ ULL�FLUFXLWXOXL�GLQ�ILJ������D� D��VFKHPD�ORJLF b) schema bloc

Fig. 16.6. CBB-RS sincron, varianta NAND

Page 6: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

2EVHUY P�F �SHQWUX�CLK ����SRU LOH���úL���VXQW�LQKLEDWH�úL�RULFH�PRGLILFDUH�

a lui SR, nu va afecta CBB-XO�65�DVLQFURQ�IRUPDW�GLQ�SRU LOH�O�úL����vQWU-

DGHY U��LQWU rile acestuia pentru CLK � �O�YRU�IL����úL��FRQIRUP�SULPHL�OLQLL�GLQ�WDE��������LHúLULOH�YRU�U PkQH�QHVFKLPEDWH� Când CLK � �2��SRU LOH���VL���VXQW�YDOLGDWH�úL�LQWU ULOH� SR , transformate în RS, vor avea acces la CBB-56�DVLQFURQ��DF LRQkQG�FRnform tab. 16.1. 3HQWUX�R�IXQF LRQDUH�VLQFURQ �D�FLUFXLWXOXL�HVWH�QHFHVDU�FD�LPSXOVXO�GH�CLK FDUH�GLFWHD] �&Æ1'�V �VH�H[HFXWH�FRPHQ]LOH SR ��V �DSDU �QXPDL�GXS �ce acestea s-au stabilizat. Modificarea lui SR în intervalul de timp în care SRU LOH�GH�LQWUDUH�����VXQW�GHVFKLVH��FRQGXFH�OD�R�IXQF LRQDUH�DVLQFURQ �D�FLUFXLWXOXL��'LQ�DFHVW�PRWLY��VXQW�QHFHVDUH�FRQGL LL�UHVWULFWLYH�SHQWUX�UHOD LD�de timp dintre CLK �úL� SR . &LUFXLWXO�GLQ�ILJ�������IXQF LRQHD] �VLPLODU��LPSXOVXO�GH�WDFW�ILLQG�GH�DFHDVW �GDW �DFWLY�SH�SDOLHUXO��O��ORJLF� 2.2.3. CBB-RS - "Master-Slave" 'XS �FXP�UHLHVH�GLQ�ILJ��������&%%-RS-06�UHSUH]LQW �R�H[WHQVLH�VHULH�D�bistabilului RS sincron implementat cu NAND-uri (v. fig. 16.6). Schema ORJLF �HVWH�SUH]HQWDW �vQ�ILJ������D��LDU�GLDJUDPHOH�&/.�úL�CLK - în fig. ����E�úL�F�

Fig. 16.7. CBB-RS-MS - Schema bloc

Page 7: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

a) schema b), c) diagrame

Fig. 16.8. CBB-RS-MS

În intervalul (l) - �����SRU LOH�GH�LQWUDUH���0���0��úL�GH�WUDQVIHU���6���6��VXQW�blocate iar MASTER-XO�HVWH�L]RODW�DWkW�GH�LQWU UL�FkW�úL�GH�6/$9(� în intervalul (2) - �����SRU LOH��0���0�VXQW�YDOLGDWH�úL�LQIRUPD LD�VH�vQVFULH�vQ�0$ù7(5��SRU LOH��6���6�ILLQG�EORFDWH��CLK = O), SLAVE este în FRQWLQXDUH�L]RODW�ID �GH�0$6TER. În intervalul (3)-����VH�UHSHW �VLWXD LD�GLQ�LQWHUYDOXO��O�-(2) când MASTER-ul HUD�L]RODW�DWkW�GH�LQWU UL�FkW�úL�GH�6/$9(� ÎQ�VIkUúLW��GXS �PRPHQWXO������SRU LOH��0���0�VXQW�EORFDWH��0$67(5-ul L]RODW�ID �GH�LQWU UL��LDU�SRU LOH��6���6�VXQW�YDOLGDWH�úL�LQIRUPD LD�GLQ�0$ù7(5�VH�WUDQVIHU �vQ�6/$9(� Concluzionând, înscrierea infRUPD LHL�vQ�0$ù7(5�DUH�ORF�vQDLQWH�GH�PRPHQWXO������SRVLELO�FKLDU�SH�IURQWXO�GHVFUHVF WRU�DO�&/.���LDU�WUDQVIHUXO�HL�vQ�6/$9(��úL�GHFL�OD�LHúLUH��DUH�ORF�GXS �PRPHQWXO������GHFL�SH�DFHODúL�IURQW�

Page 8: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

GHVFUHVF WRU�DO�&/.�� 3ULQ�XUPDUH��SHQWUX�vQVFULHUHD�I U �HURUL�D�LQIRUPD LHL�vQ�&%%-RS-MS, este QHFHVDU�FD�DFHDVWD�V �U PkQ �VWDELO �OD�LQWUDUH�XQ�LQWHUYDO�GH�WLPS��Q�MXUXO�intervalului (3)-(4). CBB-RS-06�QX�HOLPLQ �SRVLELOLWDWHD�WUDQ]L LLORU�QHGHWHUPLQDWH��Y��WDE�������si 16.2). Evident, se pot construi CBB-RS-MS FDUH�V �FRPXWH�SH�WUDQ]L LD�SR]LWLY �D�impulsului de tact. 2.3. Circuitul basculant bistabil de tip D 2.3.1. CBB de tip D asincron &%%�GH�WLS�'�DVLQFURQ��ILJ��������VH�RE LQH�GLQWU-un CBB-RS asincron (fig. 16.1, tab. 16.1 sau fig. 16.3, tab. 16.2), prin DWDúDUHD�XQXL�LQYHUVRU�vQ�VFRSXO�HOLPLQ ULL�VW ULORU�QHGHWHUPLQDWH� 7DE��������7DEHO�GH�WUDQ]L LH�DO�&%%�GH�WLS�'

nnn RSD == Qn Qn + 1

1 x 1

0 X 0

Fig. 16.9. CBB de tip D 'DWRULW �LQYHUVRUXOXL��GLQ�WDE�����������U PkQ�QXPDL��OLQLLOH�SHQWUX�FDUH Dn = Sn = nR deci liniile 2 si 3. 'HRDUHFH�UHSHW �SUDFWLF�LQVWDQWDQHX�OD�LHúLUH�FHHD�FH�L�VH�DSOLF �OD�LQWUDUH��Y��tab. 16.3), circuitul nX�SUH]LQW �LQWHUHV�SUDFWLF� 2.3.2. CBB de tip D sincron &%%�GH�WLS�'�VLQFURQ��ILJ��������úL��������VH�RE LQH�GLQWU-un CBB-RS VLQFURQ��ILJ�������úL��������WRW�SULQ�DWDúDUHD�XQXL�LQYHUVRU�

Page 9: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

D��PRGXO�GH�RE LQHUH����b) schema bloc a) modul de RE LQHUH�������b) schema

bloc Fig. 16.10. CBB de tip D Fig. 16.11. CBB de tip D sincron pe palier inferior sincron pe palier superior &D�úL�vQ�FD]XO�&%%-RS sincron, pentru a comuta sincronizat de CLK este QHFHVDU�FD�LQIRUPD LD�GH�OD�LQWUDUHD�'�V �VH�PRGLILFH�vQ�DIDUD�SDOLHUXOXL�DFWLY al impulsului CLK (CLK ���SHQWUX�ILJ��������úL�&/. ��SHQWUX�ILJ����������vQ�WLPSXO�SDOLHUXOXL�UHVSHFWLY�HD�U PkQkQG�VWDELO ��$SDUL LD�SDOLHUXOXL�DFWLY�DO�LPSXOVXOXL�GH�&/.�WUDQVIHU �OD�LHúLUH�LQIRUPD LD�GH�OD�LQWUDUHD�ELVWDELOXOXL��SpuQHP�F �VH�UHDOL]HD] �R��WHPSRUL]DUH�FRPDQGDW �SULQ�&/.���'H�IDSW��denumirea de bistabil de tip D, provine din englezescul DELAY=întârziere. vQ�ILJ��������DP�UHSUH]HQWDW�VFKHPD�ORJLF �D�XQXLD�GLQ�FHOH�GRX �ODWFK-uri de FkWH���EL L�GH�WLS�'�FRQ LQXWH�vQ�FLUFuitul integrat CDB 475 (K155TM7), fig. A. 11 -�DQH[ ��LDU�vQ�WDE�������-�IXQF LRQDUHD�ODWFK-ului respectiv. %LVWDELOXO�GH�WLS�'�VLQFURQ�DUH�QXPHURDVH�DSOLFD LL�SUDFWLFH�GLQWUH�FDUH�amintim: latch-ul adresabil, memoria RAM, etc. Fig. 16.12. SFKHPD�ORJLF �D�ODWFK-ului de tip D din structura CI - CDB 475

Page 10: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

7DE��������([SOLFDWLY�SHQWUX�IXQF LRQDUHD�ODWFK-ului de tip D ,QWU UL ,HúLUL Mod

operare En Dn Qn+1 1+nQ

1 0 0 1 Autorizare date 1 1 1 0

Blocare date 0 x Qn nQ

2.3,3, CBB de tip D Master-Slave CBB-D-06�VH�GHRVHEHúWH�GH�&%%-'�VLQFURQ�SULQ�IDSWXO�F ��DúD�FXP�DP�Y ]XW�úL�vQ�FD]XO�&%%-RS-MS, comutarea se produce pe frontul (anterior sau posterior) al impulsului de CLK. Circuitul integrat cel mai reprezentativ este CDB 474, fig. A. l O -�DQH[ ��FDUH�FRQ LQH�GRX �ELVWDELOH�GH�WLS�'�VLQFURQH�FX�FRPXWDUH�SH�IURQW��)XQF LRQDUHD�DFHVWRUD�HVWH�FHD�GHVFULV �vQ�WDE��������5HPDUF P�IDSWXO�F �LQWU ULOH� SsiR sunt active în "O" logic si sunt independente de tact. Astfel, pentru S �2�VH�RE LQH�4 O��LDU�SHQWUX�R = 0=>Q = 0. 'LQWUH�FHOH�PDL�IUHFYHQWH�DSOLFD LL�DOH�&%%-D-06��HQXPHU P��UHJLVWUXO�GH�deplasare serie, paralel, serie-paralel, universal, etc. &LUFXLWHOH�EDVFXODQWH�ELVWDELOH�GH�WLS�56�úL�'�IDF�SDUWH�GLQ�VLVWHPHOH�GH�RUGLQXO�,��1H�RFXS P�vQ�FRQWLQXDUH�GH�DOWH�GRX �WLSXUL�GH�ELVWDELOH��7�úL�-�.���FDUH��SUH]HQWkQG�FkWH�R�UHDF LH�VXSOLPHQWDU ��VXQW�FRQVLGHUDWH�VLVWHPH�GH�ordinul II. 2.4. Circuitul basculant bistabil de tip T %LVWDELOXO�GH�WLS�7�VH�RE LQH�GLQWU-XQ�ELVWDELO�'�SULQ�LQWURGXFHUHD�XQHL�UHDF LL�VXSOLPHQWDUH�LHúLUH-LQWUDUH��DSOLFDW �SULQ�LQWHUPHGLXO�XQXL�F�O�F��HOHPHQWDU�(fig. 16.13). D��PRGXO�GH�RE LQHUH b) schema bloc

Fig. 16.13. CBB de tip T sincron Tab.

Page 11: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

������7DEHOXO�GH�WUDQ]L LH�DO�&%%�– T

Tn Qn+1 0 Qn 1

nQ 'LQ�WDEHOXO�GH�WUDQ]L LH��WDE��������VH�SRDWH�GHGXFH�H[SUHVLD�IXQF LHL�GH�LHúLUH� Qn+1=Qn nT + nTQ + = Qn ⊕T. (16.1) %LVWDELOXO�7�GLQ�ILJ��������QX�vQGHSOLQHúWH�IXQF LD�GH�PHPRULH�SURSLX-]LV ��FXP�HVWH�FD]XO�ELVWDELOHORU�56�úL�'���DYkQG�XQ�FRPSRrtament definit atât de LQWUDUH�FkW�úL�GH�VWDUHD�vQ�FDUH�VH�DIO ��(O�HVWH�FHO�PDL�VLPSOX�VLVWHP�DXWRPDW�úL�HVWH�XWLOL]DW��VSUH�H[HPSOX��OD�FRQVWUXLUHD�QXP U WRDUHORU�DVLQFURQH� 2.5. Circuitul basculant bistabil de tip JK 5HDPLQWLP�IDSWXO�F �ELVWDELOXO�'�D�DS UXW�FD�XUPDUH�D�QHFHVLW LL�GH�D�vQO WXUD�WUDQ]L LLOH�QHGHWHUPLQDWH�DOH�ELVWDELOHORU�56��$FHODúL�HIHFW�GH�HOLPLQDUH�D�WUDQ]L LLORU�QHGHWHQQLQDWH�VH�SRDWH�RE LQH�SULQ�LQWURGXFHUHD�GH�UHDF LL�VXSOLPHQWDUH�vQ�VWUXFWXULOH�56� 2.5.1. CBB-JK asincron BistaELOXO�-.�DVLQFURQ��ILJ����������SRDWH�IL�RE LQXW�GLQ�ELVWDELOXO�56�DVLQFURQ�SULQ�LQWURGXFHUHD�XQHL�UHDF LL�

Fig. 16.14. Schema CBB-JK asincron

Page 12: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

'LQ�ILJ��������VH�SRDWH�GHGXFH�VXFFHVLY�IXQF LD�GH�LHúLUH�D�FLUFXLWXOXL�� Sn=Jn nQ ; (16.2) Rn = KnQn (16.3)

( ) ( )( )( )( )

nnnnn

nnnnnnnnnnnn

nnnnnnnnnnn

QKQJQ

QJQKQJKQQJQK

QQJQKQQJQKQ

+=

++=++

=+=++=

+

+

1

1

; (16.4)

LQkQG�VHDPD�GH�WDEHOXO�GH�WUDQ]L LH�DO�&%%-RS asincron, tab. 16.1, putem DOF WXL�WDE�������

7DE��������7DEHOXO�GH�WUDQ]L LH�DO�&%%-JK asincron

Jn Kn Rn Sn Qn+1 0 0 0 0 Qn 1 0 0

nQ 1

0 1 Qn 0 0 1 1 Qn

nQ nQ 6H�REVHUY �F �SHQWUX�-n=Kn=1�LHúLULOH�RVFLOHD] � 2.12. CBB-JK sincron Schema CBB--.�VLQFURQ��ILJ���������VH�RE LQH�GLQ�FHD�SUHFHGHQW �SULQ�introducerea unei borne suplimentare pentru tact iar tabelul de tranzL LH�HVWH�tab. 16.7.

Fig. 16.15. Schema CBB-JK sincron Tab.

Page 13: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

������7DEHOXO�GH�WUDQ]L LH�DO�&%%-JK sincron

Jn Kn CLK Qn+1 0 0 0->1 Qn 1 0 0->1 1 0 1 0->1 0 1 1 0->1

nQ

x x 0 Qn

0->1 0 1 1 0 0->1 1 0

)XQF LRQDUH Sincron

Circuit blocat )XQF LRQDUH�- DVLQFURQ

6H�REVHUY �F �SULQ�OHJDUHD�vPSUHXQ �D�LQWU ULORU�-�úL�.�VH�RE LQH�XQ�ELVWDELO�GH�WLS�7�FDUH�EDVFXOHD] �GLQWU-o stare în alta pentru Jn=Kn=Tn O��vQ�SUH]HQ D�impulsului de CLK. 2.5.3. CBB--.�0DúWer Slave Bistabilul JK-06�VH�RE LQH�SULQ�FRQHFWDUHD�vQ�FDVFDG �D�GRX �&%%-JK sincrone. Circuitul integrat cel mai reprezentativ este CDB 472, fig. A.9 -�DQH[ ��SUHY ]XW�FX�RSHUDWRUL�$1'�FX�FkWH���LQWU UL�SHQWUX�LQWURGXFHUHD�LQIRUPD LHL�în VHF LXQHD��PDúWHU", precXP�úL�FX�LQWU UL�GH�vQVFULHUH��S ��úL�úWHUJHUH��R ) LQGHSHQGHQWH�GH�WDFW�úL�DFWLYH�vQ�VWDUH��-26���7UDQVIHUXO�LQIRUPD LHL�vQ�VHF LXQHD��VODYH��VH�SURGXFH�SH�IURQWXO�GHVFUHVF WRU�DO�LPSXOVXOXL�GH�&/.��Tabelul�GH�WUDQ]L LH�HVWH�WDE�������

7DE��������([SOLFDWLY�SHQWUX�IXQF LRQDUHD�&%%-JK-MS �����&RQYHUVLD�FLUFXLWHORU�ELVWDELOH�56��'��7úL-. ÎQ�QXPHURDVH�DSOLFD LL�HVWH�QHFHVDU �XWLOL]DUHD�XQui anumit tip de CBB,

Jn Kn Qn+1

0 0 Qn 0 1 0 1 0 1

1 1 nQ

Page 14: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

SUDFWLF�ILLQG�GLVSRQLELO�XQ�DOWXO��vQ�DFHVWH�FRQGL LL��GH�PDUH�DMXWRU�VXQW�HFXD LLOH�ORJLFH�GH�OHJ WXU �GLQWUH�GLIHULWH�WLSXUL�GH�ELVWDELOOH��UHOD LL�FH�VH�SRW�RE LQH�SH�ED]D�WDEHOXOXL�FRPSDUDWLY��WDE�������

Tab. 16.9. Tabel comparativ a! diferitelor tipuri de CBB

2.6.1. Conversia în T Pentru realizarea conversiei JK ->T sau D -> T ��WUHEXLH�J VLW �UHOD LD�GLQWUH�LQWUDUHD�7�D�ELVWDELOXOXL�VLPXODW�úL�LQWU ULOH�-.�VDX�'�DOH�ELVWDELOXOXL�disponibil -fig. 16.16. 3HQWUX�DFHDVWD�VH�FRQVWUXLHúWH�WDEHOXO�DMXW WRU�������DVWIHO��vQ�SULPHOH�GRX �coloane se trec�WRDWH�FRPELQD LLOH�ORJLFH�SRVLELOH�DOH�LQWU ULL��7n��úL�VW ULL (Qn��ELVWDELOXOXL�VLPXODW��vQ�XUP WRDUHOH�GRX �FRORDQH�- valorile logice ale LQWU ULORU�-nKn�úL�'n��FRPSOHWDWH�QXPDL�GXS �WUHFHUHD�vQ�XOWLPD�FRORDQ �D�YDORULORU�ORJLFH�DOH�LHúLULL�4n+1 a bistabilului simulat.

Fig. 16.16. Conversia în T: punerea problemei

Tip CBB RS D T JK

RnSN Qn+1 Qn Qn+1 Tn Qn+1 Jn Kn Qn+1

00 Qn 00 Qn Tabelul de 01 l

0 0 0 Qn 01 0 10 0 10 1 DGHY U 11 ? 1 1 1 nQ 11

nQ

Qn+1 nnn QRS + D

nnnn QTQT +

nnnn QKQJ +

EFXD LLOH�logice

1+nQ nnn QSR + D nnnn QTQT +

nnnn QKQJ +

Page 15: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

Tab. 16.10. Explicativ pentru realizarea conversiilor în T

Tn Qn Jn Kn Dn Qn+1 0 0 Ox 0 0 0 1 xO 1 1 1 0 1x 1 1 1 1 xl 0 0

&RPSOHWDUHD�FX�YDORULOH�ORJLFH�FRUHVSXQ] WRDUH�D�FROoanelor Jn.Ä�úL�'n se IDFH�SRUQLQG�GH�OD�YDORULOH�ORJLFH�DOH�VW ULL�SUH]HQWH�úL�YLLWRDUH��4n�úL�4n+1), GXS �R�VWXGLHUH�DWHQW �D�WDE������� $VWIHO��VLWXD LD�4n ���4Ä�� ���VH�RE LQH�DWXQFL�FkQG�-nKn=00 sau 01, deci JnKn 2[��XQGH�SULQ��[��vQ HOHJHP��LQGLIHUHQt". Qr O�úL�4n+1 O�VH�RE LQH�FkQG�JnKn =00 sau 10, deci JnKn� [2��ú�D�P�G� 6LPLODU�VH�SURFHGHD] �FX�FRORDQD�OXL�'n. 2GDW �FRPSOHWDW�WDE���������VH�SRDWH�WUHFH�OD�VLQWH] ��FRQVWUXLQG�GLDJUDPHOH�9.�SHQWUX�IXQF LLOH�GH�LHúLUH�-n, Kn�úL�'n - fig. 16.17. a) Jn=Tn b) Kn=Tn c) Dn=TnQn+TnQn=Tn ⊕Qn

)LJ���������6LQWH]D�IXQF LLORU�GH�LHúLUH�D�H�EORFXOXL�;�GLQ�ILJ�������

&X�DFHVWH�UH]XOWDWH��VFKHPD�JHQHUDO �GLQ�ILJ����������FDS W �Dspectele concrete din fig. 16.18. a) JK ->T b) D-> T

Fig. 16.18. Conversia în T

Page 16: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

2.6.2. Conversia în RS 3URFHGkQG��VLPLODU��RE LQHP��WDE������������FDUH��SHUPLWH��LPSOHPHQWDUHD�circuitelor de conversie JK— >56�úL�'— >RS.

Tab. 16.11. Explicativ pentru realizarea conversiilor în RS

1. 'HVI úXUDUHD�OXFU ULL

3HQWUX�LPSOHPHQWDUHD�úL�VWXGLHUHD�FLUFXLWHORU�EDVFXODQWH�ELVWDELOH�SUH]HQWDWH�vQ�SDUDJUDIXO�DQWHULRU��VH�YD�XWLOL]D�SODWIRUPD�GH�ODERUDWRU�úL�FLUFXLWHOH�LQWHJUDWH�&'%������&'%������&'%������&'%�����úL�&'%������SUH]HQWDWH�în fig. A.l, A.9, A.10,�$�����úL�$����-�DQH[ � 3.1. Studiul circuitului basculant bistabil – RS 3.1.1. Studiul CBB-RS asincron �����������6H�FRPSOHWHD] �FLUFXLWXO�GLQ�ILJ������D�FX�QXPHUHOH�SLQLORU�circuitului integrat folosit (CDB 400, fig. A. l), inclusiv pinii do alimentare. ����������6H�LPSOHPHQWHD] �&%%-RS asincron din fig. 16.3 pe zona cu socluri de CI a platformei. ����������6H�FRQHFWHD] �LQWU ULOH�R úL�S �DOH�&%%�OD�LHúLULOH�$1 (B-���úL�$0 (B-4) ale DF1�SXV�vQ�UHJLP�GH�QXP U WRr comandat de FTM (v. lucrarea nr. ����,HúLULOH�&%%-56�DVLQFURQ�VH�FRQHFWHD] �OD�%6��EL LL�&0�úL�&1. ���������6H�DOLPHQWHD] �FLUFXLWHOH�SODWIRUPHL�GH�OD�VXUVD�GH��9� ����������6H�YHULILF �FRUHFWD�IXQF LRQDUH�D�&%%-RS asincron cu ajutorul tab. 16.2. 3.1.2. Studiul CBB-RS sincron �����������6H�FRPSOHWHD] �FLUFXLWXO�GLQ�ILJ�������D�FX�QXPHUHOH�SLQLORU�

RNSN Qn Jn Kn Dn Qn+1

00 0 Ox 0 0 00 1 xO 1 1 01 0 1x 1 1 01 1 xO 1 1 10 0 Ox 0 0 10 1 x l 0 0 11 0 xx x 0/0 11 1 xx x 1/0

Page 17: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

circuitului integrat utilizat (CDB 400. fig. A.l), inclusiv pinii de alimentare. ����������6H�LPSOHPHQWHD] �&%%-RS sincron din fig. 16.6a pe zona cu socluri de CI a platformei. ����������6H�FRQHFWHD] �LQWU ULOH�5�úL�6�DOH�&%%�OD�LHúLULOH�$1 (B-���úL�$0 (B-4) ale DF1�úL�LQWUDUHD�&/.�D�&%%�OD�LHúLUHD�%0 (B-14) a DF2 (DF1�úL�')2 în UHJLP�GH�QXP U WRDUH�FRPDQGDWH�GH�)70���,QWU ULOH�DVLQFURQH��R úL S se FRQHFWHD] �OD�%6��EL LL�&0�úi C1��LDU�LHúLULOH�&%%-RS sincron -�OD�%6��EL LL�'0 úL�'1. ���������6H�DOLPHQWHD] �FLUFXLWHOH�SODWIRUPHL�GH�OD�VXUVD�GH��9� ���������6H�YHULILF �FRUHFWD�IXQF LRQDUH�D�&%%-RS sincron cu ajutorul tab. 1����úL�WDE��������REVHUYkQGX-se rolul palierului superior al impulsului de CLK. ����������6H�YHULILF �IXQF LRQDUHD�LQFRUHFW ��DVLQFURQ ��D�&%%-RS sincron cu DMXWRUXO�DFHORUDúL�WDEHOH������úL�������SHQWUX�&/. ��vQ�LQWHUYDOXO�GH�WLPS�vQ�FDUH�VH�PRGLILF �GDWHOH�OD�LQWU ULOH�5�úL�6� 3.2. Studiul circuitului basculant bistabil –D 3.2.1, Studiul CBB-D sincron 6H�XWLOL]HD] �FLUFXLWXO�LQWHJUDW�&%'�����.���70����ILJ��$�O�O�-�DQH[ � ���������6H�FRQHFWHD] �LQWU ULOH�'0�úL�(0-1��ILJ���������OD�LHúLULOH�$0 (B-���úL�%0 (B-14) ale DF1�úL�')2�vQ�UHJLP�GH�QXP U WRDUH�FRPDQGDWH�GH�)70��,HúLULOH�Q0�úL�Q 0�VH�FRQHFWHD] �OD�%6��EL LL�&0�úL�&1. ���������6H�DOLPHQWHD] �FLUFXLWHOH�SODWIRUPHL�GH�OD�VXVD�GH��9� ����������6H�YHULILF �FRUHFWD�IXQF LRQDUH�D�ODWFK-ului de tip D conform tab. 16.4. 3.2.2. Studiul CBB-D Master-Slave 6H�XWLOL]HD] �FLUFXLWXO�LQWHJUDW�&'%������ILJ��$��O�2�-�DQH[ � ����������6H�FRQHFWHD] �LQWU ULOH�O�'�úL��7�OD�LHúLULOH�$0 (B-���úL�%0 (B-14) ale DF1�úL�')2�vQ�UHJLP�GH�QXP U WRDUH�FRPDQGDWH�GH�)70��,HúLULOH�40�úL� 0Q se FRQHFWHD] �OD�%6��EL LL�&0�úL�&1. ���������6H�DOLPHQWHD] �FLUFXLWHOH�SODWIRUPHL�GH�OD�VXUVD�GH��9� ���������6H�LQL LDOL]HD] �ELVWDELOXO�SXQkQG�SLQXO� IR OD�PDV �úL�VH�YHULILF �IXQF LRQDUHa ca circuit de temporizare comandat de frontul impulsului de tact. 3.3. Studiul circuitului basculant bistabil - T ���������6H�LPSOHPHQWHD] �VFKHPD�GH�&%%-T din fig. 16.18, utilizând

Page 18: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

FLUFXLWHOH�LQWHJUDWH�&'%�����úL�&'%������ILJ��$�����úL�$�����-�DQH[ ���GXS �FRPSOHWDUHD��FX�QXP UXO�SLQLORU�FLUFXLWHORU��LQWHJUDWH���LQFOXVLY�ERUQHOH��GH�alimentare. ��������6H�FRQHFWHD] �LQWU ULOH�7�úL�&/.��ILJ���������OD�LHúLULOH�$0 (B-���úL�%0 (B-14) ale DF1�úL�')2�vQ�UHJLP�GH�QXP U WRDUH�FRPDQGDWH�GH�)70��,HúLULOH�4�úL�Q VH�FRQHFWHD] �OD�%6��EL LL�&0�úL�&1. �������6H�DOLPHQWHD] �FLUFXLWHOH�SODWIRUPHL�GH�OD�VXUVD�GH��9� ��������6H�YHULILF �FRUHFWD�IXQF LRQDUH�D�&%%-T conform tabelului 16.5 completat cu coloana CLK.

1.4. Studiul circuitului basculant bistabil - JKMaster-Slave 6H�XWLOL]HD] �FLUFXLWXO�LQWHJUDW�&'%������ILJ��$���-�DQH[ � ��������6H�FRQHFWHD] �LQWU ULOH�-1 K1 (cu J2, J3, K2, K3 -�QHFRQHFWDWH��OD�LHúLULOH�A1 (B-���úL�$0 (B-4) ale DF1�úL�LQWUDUHD�GH�WDFW�7�OD�LHúLUHD�%0 (B-14) DF2 (DF1�úL�')2 în�UHJLP�GH�QXP U WRDUH�FRPDQGDWH�GH�)70���,HúLULOH�4�úL�Q se FRQHFWHD] �OD�%6��EL LL�&0�úL�&1. �������6H�DOLPHQWHD] �FLUFXLWHOH�SODWIRUPHL�GH�OD�VXUVD�GH��9� �������6H�LQL LDOL]HD] �ELVWDELOXO�FRQHFWkQG�WHPSRUDU�SLQXO�R OD�PDV �úL�VH�YHULILF �IXQF LRQDUHD�FRQIRUP�WDE������� 3.4.4. Cu Jn=Kn O�VH�FRQHFWHD] �OD�LQWUDUHDT ��D�&%%�LHúLUHD�%-30 a GTA. &HOH�GRX �LQWU UL�DOH�RVFLORVFRSXOXL�FX�GRX �VSRWXUL�FXOHJ�VHPQDOH�GH�OD�intrarea T UHVSHFWLY�LHúLUHD�4�D�ELVWDELOXOXL�-.��FRQIRUP�VFKHPHL�GLQ�ILJ��16.19. Fig. 16.19. Montaj experimental pentru studiul regimului dinamic al CBB-

JK-MS

Page 19: LUCRAREA NR. 16 CIRCUITE BASCULANTE BISTABILE · lucrarea nr. 16 circuite basculante bistabile 6frsxo oxfu ull /xfuduhdvœlsursxqhvwxglhuhdglihulwhoruwlsxulghflufxlwhedvfxodqwh elvwdeloh

6H�REVHUY �GLYL]DUHD�GH�IUHFYHQ �UHDOL]DW �GH��FHOXOD�GH�PHPRULH���SUHFXP�úL�FRPDQGD�SH�IURQW�GHVFUHVF WRU�D�ELVWDELOXOXL� ���&RQ LQXWXO�UHIHUDWXOXL 4.1. Montajul experimental pentru studiul CBB-56�DVLQFURQ�úL�WDEHOXO�GH�IXQF LRQDUH� 4.2. Montajul experimenta] pentru studiul CBB-56�VLQFURQ�úL�WDEHOXO�GH�IXQF LRQDUH� 4.3. Montajul experimental pentru studiul CBB-D sincron si tabelul de IXQF LRQDUH� 4.4. Montajul experimental pentru studiul CBB-D Master-Slave si tabelul de IXQF LRQDUH� 4.5. Montajul experimental pentru studiul CBB-7���úL���WDEHOXO���GH�IXQF LRQDUH� 4.6. Montajul experimental pentru studiul CBB-JK Master-Slave (regim VWDWLF�úL�GLQDPLF��úL�WDEHOXO�GH�IXQF LRQDUH� �����2EVHUYD LL�SHUVRQDOH�DOH�VWXGHQWXOXL�