efectele biologice ale radiatiilor ionizante

52
EFECTE BIOLOGICE ALE RADIAȚIILOR IONIZANTE INTRODUCERE Imediat după descoperirea radiaților roentgen și apoi a radioactivității, s-a sesizat și caracterul periculos al radiaților ionizante, în cazul folosirii neraționale. Pionerii rontgenografiei au cunoscut pe propria lor piele acțiunea radiaților ionizante, iar după descoperirea radioactivității, primele victime au apărut în 1920, în S.U.A., în rândul muncitorilor care au aplicau vopsele luminoase pe cadranele ceasornicelor. Acestora li s-au adăugat savanții Marie Curie și Irene Joliot-Curie, renumiți cercetători în domeniul radiaoctivității, care au decedat după grele suferințe, de leucemie radioindusă. Indiferent de urmările provocate de impactul radiațiilor ionizante cu organismul viu, acțiunea biologică prezintă unele particularități și anume: - organismul omenesc nu este dotat cu un organ de simț care să sesizeze prezenta radiațiilor ionizante, iar efectul biologic nu este vizibil în momentul iradierii; - efectele biologice sunt cumulative și nu au un caracter particular care să ne permită deosebirea de efectele apărute altfel decât prin iradiere. - modificările și simptomele evoluează lent după iradiere. În realitate, efectele biologice produse de acțiunea radiaților ionizante asupra ființelor, în special a omului, sunt rezultatul unei lungi serii de fenomene care se declanșează la trecerea radiaților prin organismele vii. 1

Upload: andreea-nichitus

Post on 06-Aug-2015

2.601 views

Category:

Documents


6 download

DESCRIPTION

radiatii ionizante

TRANSCRIPT

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

INTRODUCERE

Imediat după descoperirea radiaților roentgen și apoi a radioactivității, s-a sesizat și

caracterul periculos al radiaților ionizante, în cazul folosirii neraționale. Pionerii

rontgenografiei au cunoscut pe propria lor piele acțiunea radiaților ionizante, iar după

descoperirea radioactivității, primele victime au apărut în 1920, în S.U.A., în rândul

muncitorilor care au aplicau vopsele luminoase pe cadranele ceasornicelor. Acestora li s-au

adăugat savanții Marie Curie și Irene Joliot-Curie, renumiți cercetători în domeniul

radiaoctivității, care au decedat după grele suferințe, de leucemie radioindusă.

Indiferent de urmările provocate de impactul radiațiilor ionizante cu organismul viu,

acțiunea biologică prezintă unele particularități și anume:

- organismul omenesc nu este dotat cu un organ de simț care să sesizeze prezenta

radiațiilor ionizante, iar efectul biologic nu este vizibil în momentul iradierii;

- efectele biologice sunt cumulative și nu au un caracter particular care să ne permită

deosebirea de efectele apărute altfel decât prin iradiere.

- modificările și simptomele evoluează lent după iradiere.

În realitate, efectele biologice produse de acțiunea radiaților ionizante asupra

ființelor, în special a omului, sunt rezultatul unei lungi serii de fenomene care se declanșează

la trecerea radiaților prin organismele vii. Evenimentele inițiale, sunt ionizări și excitări ale

atomilor și moleculelor din mediul de interacțiune de-a lungul traiectorilor particulelor

ionizante. Ulterior aceste perturbări fizice antrenează reacții fizico-chimice, urmate de reacții

chimice, generând în final efecte biologice. Prin urmare avem: efecte stohastice și

nestohastice care sunt explicate mai pe larg în continuarea acestui proiect.

Radiațiile Roentgen constituie una din descoperirile epocale ale stiinței contemporane

care s-a impus în toate domeniile de activitate prin importanța covârșitoare a aplicațiilor sale

multilaterale.

Descoperirea radiațiilor Roentgen a deschis în medicină noi căi de diagnostic și terapie;

în știință-metode noi de cercetare nedestructivă a materialelor, metode noi de automatizare a

proceselor tehnologice; în agricultură-metode noi de înfluențare și dirijare a eredității, etc.

1

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

CAPITOLUL 1

RADIAȚII IONIZANTE

Radiațiile ionizante sunt formate din radiațiile nucleare și radiațiile X (röntgen).

Radiațiile nucleare sunt radiațiile pe care le emite nucleul atomic atât spontan – în urma

dezintegrărilor caracteristice radioactivității naturale sau artificiale – cât și în urma reacțiilor

nucleare. Radiațiile X sunt emise de electroni, fie la trecerea lor pe nivele profunde ale

atomului (spectru caracteristic), fie prin frânarea electronilor liberi de mare energie (spectru

continuu). Aceste radiații au energie mare și în urma interacției lor cu materia pot ioniza

atomii, datorită acestui fapt purtând numele de radiații ionizante.

În secolul nostru practica a pus omenirea față în față cu aceste radiații. S-a văzut că

aceste radiații pot avea o serie de efecte nefaste asupra materiei vii, dar și o serie de efecte

care se pot utiliza pentru dezvoltarea bunăstării materiale și spirituale a societății umane.

Astfel, aceste radiații administrate în doze mari materiei vii duc la moartea acesteia,

administrate în doze medii duc la îmbolnăviri, întârzieri în dezvoltere etc., iar administrate în

cantități mici pot avea chiar efecte similatoare. Totalitatea efectelor radiațiilor ionizante

asupra materiei vii constituie efectul radiobiologic cu studiul căruia se ocupă radiobiologia.

Mecanismul apariției efectului radiobiologic este extrem de complex. Pentru

instaurarea lui este necesar mai întâi ca materia vie să interacționeze cu radiațiile ionizante, în

limbaj fizic această afirmație traducându-se prin existența unui transfer de energie de la

radiația ionizantă la materia vie. Aceasta este prima etapă din mecanismul efectului

radiobiologic: etapa fizică. Aceasta durează extrem de puțin, un timp mai mic de 10 -10 s, dar

este extrem de importantă, de ea depinzând toată dezvoltarea ulterioară a efectului

radiobilogic. În această etapă atomii și moleculele care au primit energie se ionizează sau se

excită. În a doua etapă din mecanismul apariției efectului, etapa chimică, atomii și moleculele

ionizante se recombină, cele excitate se dezexcită, producând, în general, radicali liberi –

specii chimice cu o reactivitate remarcabilă. Având în vedere că în materia vie predomină apa,

cei mai frecvenți radicali liberi care apar în această etapă sunt radicalii liberi obținuți în urma

radiolizei apei. Și această a doua etapă durează foarte puțin, radicalii liberi având un timp de

viață extrem de scurt. Primele două etape nu sunt specifice materiei vii; ele decurg identic,

atât la materia vie, cât și la cea moartă, cu o construcție chimică identică cu cea vie.

2

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

Specificitatea de acțiune asupra materiei vii începe cu etapa a treia a mecanismului de apariție

a efectului. În acastă etapă radicalii liberi apăruți în etapa chimică interacționează cu

macromoleculele de interes biologic, adiționează ireversibil la acestea, inactivându-le.

Cinetica reacțiilor biochimice este profund modificată. Această etapă, spre deosebire de

primele două, poate dura foarte mult, inactivarea macromeoleculelor biologice fiind de durată.

Totalitatea acestor efecte biochimice la organismul viu conduce la apariția unor modificări

vizibile macroscopic pe organismul viu în cea de-a patra treaptă de realizare a efectului

radiobiologic – etapa biologică. Această etapă care este și ea specifică lumii vii durează foarte

mult și poate afecta mai multe generații succesive.

1.1 Tipuri de radiații

Având în vedere importanța interacției radiațiilor ionizante cu materia vie, de care

depinde toată dezvoltarea ulterioară a efectului radiobiologic, nu este de mirare faptul că

radiobiologia acordă o mare importanță capitolului interacției acestor radiații cu materia. Dar

inainte de a trece la analiza interacției radiațiilor ionizante cu materia este bine să precizăm

care sunt acestea și să le clasificăm.

O primă categorie de radiații ionizante frecvent utilizate sunt radiațiile

electromagnetice de mare energie (frecvență mare, lungie de undă mică): radiațiile γ și

radiațiile X.

Radiațiile γ. Sunt radiații electromagnetice de mare energie (mai mare decât ordinul de

mărire al KeV) emise de către nucleul atomic atunci când nucleonii (neutronii și protonii)

costituenți se restructurează trecând de pe nivelele excitate pe nivelele fundamentale.

Această restructurare are loc după reacții nucleare în urma cărora nucleonii au rămas

pe nivele energetice excitate. Spectrul energetic al acestor radiații este discret.

Radiațiile X (sau RÖNTGEN). Sunt radiații electromagnetice de mare energie,

identice ca proprietăți cu radiațiile γ, dar a căror origine este diferită; apar în urma tranziției

electronilor între diferite nivele energetice. Ele pot fi produse de către instalațiile clasice de

producere a radiațiilor X sau de betatroane (în acest caz radiațiile sunt de mare energie). Un

caz particular de emisie de radiații X caracteristice îl întâlnim în radioactivitatea artificială –

în captura K. În cadrul acestui fenomen, un proton din structura nucleului atomic captează un

electron de pe nivelul cel mai profund al atomului – pătura K. Atomul rămânând cu un gol pe

nivelul electronic cel mai adânc, electronii periferici vor sări pe acest nivel rămas liber

3

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

emițând cuante X caracteristice. Radionuclizii care au în schema de dezintegrare captura K și

care sunt frecvent utilizați în practica radiobiologică sunt: 40K, 51Cr, 54Mn, 64Cu, 85Sr, 125I, 196Hg, etc..

O a doua categorie de radiații ionizante sunt radiațiile corpusculare încărcate electric.

Sunt formate din particule sau grupuri de particule cu masă de repaos diferită de zero,

încărcate electric. Ele sunt:

Radiațiile α. Sunt nuclee de heliu, formate din doi protoni și doi neutroni. Cel mai

frecvent utilizăm radiațiile α produse de radionuclizi de la sfârșitul tabloului lui Mendeleev

(elemente transuranice și elemente radioactive naturale). În radioactivitatea artificială

radiațiile α sunt extrem de rare și de lipsite de importanță din puntul de vedere al

radiobilogiei. Particula α emisă preia energia eliberată de către radionuclidul care se

dezintegrează și datorită acestui fapt spectrul energetic alfa al unei specii nucleare date este

dicret.

Radiațiile β -. Sunt formate din electroni emiși de către nuclee. Acești electroni apar în

urma transformării spontane a unui neutron din nucleu într-un proton, un electron și un

antineutrin (acesta din urmă fiind o particulă neutră, fără masă de repaus):

(1.1)

Electronul și antineutrinul părăsesc nucleul împărțindu-și energia eliberată în

dezintegrare. Având în vedere faptul că modul de împărțire a energiei între cele două particule

produse este întâmplător, spectrul energetic al electronilor beta emiși de un radionuclid dat

este continuu, cuprins între zero și energia maximă (Wmax) eliberată de respectivul nucleu în

dezintegrare. Radioactivitatea β – o întâlnim la fel de frecvent și în radioactivitatea naturală cât

și în cea artificială.

Radiațiile β +. Sunt formate din electroni pozitivi (pozitroni sau antielectroni) emișii

de către nuclee. Acest tip de radioactivitate este caracteristic doar radioactivitătii artificiale.

Pozitronul apare în interiorul nucleului în urma transformării spontane a unui proton într-un

neutron, un electron pozitiv și un neutron:

4

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

și similar cu dezintegrarea β – spectrul electromagnetic al pozitronilor emiși de o specie

nucleară dată este continuu, cuprins între zero și energia eliberată în urma dezintegrării.

Pozitronul nu este însă o particulă sensibilă: ea își pierde energia cinetică prin ciocniri elastice

și apoi ciocnind un electron obișnuit se anihilează – dispar împreună dând doi fotoni de 511

keV fiecare conform relației lui Einstein de echivalență a masei cu energia. Deci o substanță

radioactivă emițătoare β + emite și radiații γ de anihilare de 511 keV. Emițători β + curent

utilizați în radiobiologie sunt: 22Na, 64Cu, 63Zn, 77Ba, 124I, etc..

Fluxuri de electroni. Sunt fluxuri de electroni accelerați obținuți cu ajutorul

acceleratoarelor de particule (acceleratori lineari și betatroane). Ele sunt fluxuri de particule

practic monoenergetice. Un caz particular de emisie spontană de electroni monoenergetici îl

întâlnim în radioactivitatea naturală și artificială: electronii de conversie internă (ECI).

Electronii de conversie internă se obțin pe la unii radionuclizi emițători gama prin efect

fotoelectric intern – păturile electronice ale nucleului emițător de radiație γ absorb prin efect

fotoelectric radiația emisă dând fotoelectroni. Aceștia, spre deosebire de electronii

fasciculelor β – au spectrul energetic discret, datorită faptului că spectrul energetic al radiației

γ care le dă naștere este discret. În practica radiobiologică întâlnim mai frecvent următorii

radionuclizi în a căror schemă de dezintegrare se găsesc electronii de conversie internă: 51Cr, 67Co, 57Ni, 64Cu, etc..

Fluxuri de nuclee accelerate. Sunt nuclee de mare energie obținute de la acceleratori

de particule (ciclotroane, sincofazotroane etc.). Utilizarea lor în radiobiologia experimentală

este extrem de limitată datorită costului exorbitant al experimentului.

O a treia categorie de radiații ionizante o constituie radiațiile cu masă de repaos nulă și

cu sarcina electrică nulă. Din această categorie de radiații ionizante singurii importanți pentru

radiobiologia experimentală sunt neutronii.

Neutronii. Sunt particule fără sarcină electrică, cu masa de repaus apropiată de cea a

protonilor. Sunt constituenți ai nucleului atomic. Se pot obține prin fisiunea elementelor grele

sau prin reacții nucleare. Dispozitivul experimental cel mai utilizat pentru iradierea

experimentală cu neutroni este reactorul nuclear, care prezintă și un dezavantaj esențial –

neutronii se obtin împreună cu radiații γ de intensitate destul de ridicată, aceste radiații

neputând fi disociate. Neutroni fără radiații γ asociate, dar în fluxuri mai mici, se pot obține

prin bombardarea beriliului cu particule α, pe care le putem obține de la o sursă radioactivă

(de exemplu de poloniu). Astfel, o sursă de poloniu de 1 Ci amestecată cu beriliu emite pe

5

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

secundă 107 neutroni fără fără a-i asocia cu radiație γ. Neutronii sunt frecvent utilizați în

radiobiologia experimentală.

1.2 Interacțiunea radiațiilor Roentgen cu substanța vie

Cu studiul reacțiilor organismului față de energia radiantă și cu mecanismul acțiunii

radiațiilor ionizante se ocupă o ramură nouă a științei, radiobiologia, totalitatea reacțiilor de

răspuns ale organismului față de acțiunea energiei radiante fiind denumită efect radiobiologic.

În radiobiologie, lămurirea proceselor, reacțiilor și mecanismelor de acțiune a

radiațiilor absorbite de organismul viu întâmpină multe greutăți. Aceasta, datorită în primul

rând cunoașterii încă insuficientă a naturii vii și în al doilea rând, datorită necunoașterii în

suficientă măsură a mecanismului intim de acțiune al radiațiilor ionizante absorbite. De aceea,

știința nu posedă încă o teorie radiobilogică generală, capabilă să explice complet toate

laturile și variațiile efectului radiobiologic, aplicabilă tuturor viețuitoarelor, tuturor condițiilor

organismelor mediului și felul iradierii. Totuși materialul faptic acumulat și interpretarea lui s-

au dovedit de acum suficiente pentru folosirea efectelor acțiunii biologice a radiațiilor

ionizante în activitatea practică medicală, agrozootehnică etc.

Efectul biologic confundânduse cu suma reacțiilor organismului iradiat, se constată în

general două posibilități de desfăsurare a interacțiunii radiațiilor cu substanța vie.

Prima posibilitate apare când intensitatea solicitării substanței vii se menține în

condiții fiziologice și capacitatea reacțională a organismului este favorabilă, iar energia

radiantă are un efect predominant funcțional de reglare metabolică, prin activizarea,

stimularea trecătoare a metabolismului. Acesta se explică printr-o sporire, în anumite condiții,

a reacțiilor energetice care întrețin procesele de sinteză (crește activitatea unor sisteme

fermentative) și o dirijare a echilibrului metabolic în favoarea proceselor de sinteză.

A doua posibilitate apare în condițiile în care energia radiantă solicită substanța vie

până peste limita capacităților ei fiziologice, dereglând metabolismul către catabolism și

producând desfacerea și distrugerea moleculelor organice. Acest efect radiobiologic este

predominat morfologic și poate merge desigur până la moartea celulelor și chiar a întregului

organism. Descompunerea moleculelor și modificarea legăturilor macromoleculare duc la

depolimerizarea și degradarea substanțelor biologice complexe, iar acestea provoacă mai

6

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

departe modificarea permeabilității și a proprietății de absorbție a macromoleculelor, pe

seama cărora are loc sinteza și transformarea diferitelor substanțe biolgice. Modificarea

structurii formațiunilor intercelulare duce la perturbarea coordonării proceselor fermentative,

a sintezei proteinelor, nucleoproteinelor, glicoproteinelor, anticorpilor și hormonilor, cu toate

consecințele fiziologice și biologice respective.

Din lanțul modificărilor biologice de mai sus leziunile nucleoproteinelor joacă un rol

dintre cele mai importante, apreciat de unii cercetători chiar ca substratul de bază al acțiunii

radiațiilor ionizante, deoarece metabolismul acizilor nucleici reprezintă una din cele mai

importante etape ale metabolismului general. S-a stabilit că sub acțiunea radiaților ionizante

procesul de sinteză ADN este tulburat. El scade mult după o iradiere a organismului din a

cărui măduvă osoasă sau splină a fost extras. De asemenea, sub acțiunea radiațiilor ionizante

scade vâscozitatea soluțiilor de ADN; fragmentarea este accelerată de prezența ureei, care

distruge legăturilor hidrogenice dintre două lanțuri de ADN.

Diferitele părți ale celulei manifestă sensibilități diferite față de radiații și drept

urmare, funcțiile legate de aceste structuri sunt tulburate în mod inegal.

Radiosensibilitatea diferențiată a diferitelor structuri și componenți celulari este un

fenomen real care se explică și prin proprietatea morfo-funcțională specifică și determinată a

fiecărei structuri celulare, ce se manifestă variabil în cadrul integrității celulei și a unității ei

cu mediul.

Mecanismul biochimic de realizare a radiosensibiltății diferențiate, la nivelul celei mai

„simple” reflectări biologice, a reflectării celulare, este cel al acțiunii directe și mai ales al

celei indirecte, caracterul și intensitatea reacțiilor depinzând de compoziția chimică, de

ordinea și de ritmul determinat al proceselor biochimice proprii, fiecărei structuri, și mai ales

proprii noilor raporturi născute între reacțiile și procesele întregii celule.

La organismele pluricelulare și organismelor superioare există o radiosensibilitate

diferită chiar la celulele care alcătuiesc același țesut. Explicația este în principiu aceeași:

variabilitatea activității biologice și a stării funcționale a fiecărei celule în parte, tradusă prin

viteza și ritmul proceselor vitale.

Acțiunea radiaților produce modificări generale comune, dar și specifice, diferite la

nivelul fiecărei țesut, organ, sistem etc.,datorită structurii și rolului fiziologic diferit al

fiecăruia, în cadrul unității și integrității organismului.

Numeroși autori au studiat și stabilit radiosensibilitatea diferitelor țesuturi întocmind

tabele corespunzătoare, care în genere indică următoarea ordine descrescândă: ganglionii

7

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

limfatici și maduva osoasă hematogenă, glandele digestive, glande sexuale, pielea cu rădăcina

părului și glandele sudoripare, cristalinul, seroasele, plămânii, rinichii, glandele suprarenale,

ficatul, pancreasul, tiroida, mușchii, țesutul conjuctiv, vasele, țesutul osos și țesutul nervos.

Această ordine descrescândă a fost stabilită pe baza criteriului precocității și gravității

leziunilor degenerative după o aceeași iradiere, cu doze mari.

Fig.1.1 Efecte biologice ale radiaților în funcție de lungimea de undă

Factorii de mediu ca temperatura corpului, starea hidrofilă a țesuturilor, gradul de

irigație sanguină și limfatică înfluențează activitatea proceselor vitale la nivelul țesuturilor,

organelor, sistemelor, aparatelor etc. și adăugându-se factorilor intrinseci care condiționează

variabilitatea activității biologice (gradul de diferențiere a țesutului, de dezvoltare, de

activitate funcțională, intensitatea metabolismului local etc.), creează condițiile

radiosensibilității lor diferențiate. Organismele superioare posedă însă o capacitate de

reflectare complexă, manifestată prin reglarea neurohormonală, care asigură pe un plan

superior atât adaptarea cât și compensarea funcțiilor dereglate, refacerea țesuturilor (atât cât

este posibil) și regenerarea biologică a organismelor (în cazul iradierii în cadrul unor anumite

limite). Efectul radiațiilor asupra ansamblului nervos, este socotit azi, la organismele

superioare iradiate, de o importanță primordială, în stabilirea radiosensibilitații.

Sistemul nervos se dovedește a avea o ridicată sensibilitate funcțională față de energia

radiantă. Acest lucru reiese clar din cercetările reacțiilor primare directe, a reacțiilor reflexe

indirecte și a reacților biochimice.

La această acțiune nemijlocită a energiei radiante asupra sistemului nervos central,

vegetativ sau periferic se adaugă importanța pentru calea indirectă, calea excitării sistemului

8

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

receptor de către produși rezultați din acțiunea biochimică a radiațiilor ionizante asupra

mediului intern al organismului.

Sub influența acțiunii directe și indirecte a energiei radiante asupra sistemului nervos

și asupra tuturor sistemelor ce conduc funcțiile integratoare ale organismului, sub conducerea

sistemului nervos central se produc modificări ale activității de reglare neurohormonală, iar ca

urmare apar tulburări funcționale biochimice și biofizice, în tot organismul acestea se adaugă

la tulburările locale și generale provocate de substanțele biologice active produse local de

radiații ionizante.

În rândul sistemelor de integrare, sistemul endocrin participă activ în special prin

glanda hipofiză și glandele corticosuprarenale. Aceste glande, stimulate de doze mici de

iradiere sau inhibate de doze mari, vin să completeze tabloul reacțiilor generale la energia

radiantă, prin cantitatea și calitatea hormonilor secretați. Celelalte sisteme de integrare

(sistemul hematoformator, sistemul reticulohistuocitar etc.) influențate direct și indirect de

enegia radiantă, și în plus de starea sistemului nervos central, care le conduce, participă și ele

activ în complexul reacțiilor radiobiologice. Recentele completări aduse cunoașterii rolului

coordonator al formațiunii reticulare și descoperirea neurosecreției vin să îmbogățescă

întelegerea efectului radiobilogic general.

De aceea concepția radiobiologică bazată pe recunoșterea întregului complex de

reacții, directe și indirecte, locale și generale, primare și secundare, spontane și în timp etc.

Este singura capabilă să răspundă variatelor aspecte pe care le poate prezenta efectului

radiobiologic.

1.3 Interacția particulelor încărcate electric cu materia

Particulele încărcate electric interacționează cu materia la fel, specificitatea interacției

fiecărui tip de particule fiind dată de masa particulei. Procesul fizic de bază al interacției

acestor particule cu materia este ciocnirea. Ciocnirile pot fi de două tipuri:

ciocniri elastice

ciocniri inelastice

Dacă suma energiilor cinetice a particulei ciocnite și a particului ciocnitoare înainte și

după sunt egale, atunci ciocnirea este elastică și nu există transfer între energia cinetică și

energia potențială. Dacă, din contră, cele două sume diferă, dacă avem transfer între energia

cinetică și energia potențială ciocnirea este inelastică. Particulele încărcate electric

9

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

interacționează cu materia prin ciocniri elastice și prin ciocniri inelastice. Particula

ciocnitoare, încărcată electric și foarte energică, va interacționa cu sarcinile electrice care

formează atomul, ciocnirile inelastice cele mai eficace fiind cu electronii care având masă

mică sunt mai ușor îndepărtați în timpul ciocnirii. Această ciocnire între particula ciocnitoare

și electronii materialului țintă se realizează prin intermediul forțelor coulombiene. O altă

posibilitate de ciocnire inelastică, însă mult mai puțin frecventă, este cu nucleul materialului

țintă, și un caz particular al acestui tip de ciocnire intervine atunci când particula încărcată

este o particulă grea și între ea și nucleul țintă apar forțe de interacțiune nucleare. Acest caz se

realizează când parametrul de cionire dintre cele două particule este mai mic decât distanța

maximă de acțiune a forțelor nucleare. Dar cea mai frecventă ciocnire între particulele

încărcate grele și nucleele materialului țintă este ciocnirea elastică, ciocnire efectuată prin

intermediul forțelor electrostatice de tip coulombian.

Cea mai frecventă ciocnire inelastică are loc între particula incidentă și electronii

materialului țintă. Această ciocnire conduce la „suflarea” electronilor materialului țintă de pe

nivelele electronice fundamentale pe nivele excitate sau chiar ionizează atomii materialului

țintă. Acest tip de ciocnire este inelastic pentru că se cedează electronului energia de tranziție

între nivele, obținându-se deci o tranziție între două nivele de energie potențială diferită. Al

doilea tip de ciocnire inelastică este cu nucleele materialului țintă și se întâlnește doar atunci

când particula incidentă este grea. Electronii nu dau ciocniri inelastice cu nucleele. Dacă

distanța minimă dintre particula grea incidentă și nucleul ciocnit (parametrul de ciocnire) este

mai mică decât distanța maximă de acțiune a forțelor nucleare, în timpul ciocnirii intervin și

acestea și conduc la reacții nucleare. Ele sunt mai puțin frecvente din cauza probabilității

scăzute a unei ciocniri centrate între particula grea incidentă și nucleul țintă. Particulele

încărcate grele care dau astfel de ciocniri inelastice sunt protonii, helionii și nucleele grele

accelerate în acceleratori nucleari.

Ciocnirile elastice a particulelor încărcate se efectuează pe nucleele materialului țintă.

În acest caz cedarea maximă de energie în timpul ciocnirii are loc la ciocnirea cu nucleele

care au masa comparabilă cu a particulei incidente. Datorită acestui motiv ciocnirile elastice

ale electronilor pe nucleele materialului țintă sunt neglijabile. Pentru protoni și pentru

particule alfa ciocnirile cele mai eficace, care duc la cea mai mare pierdere de energie a

particulei incidente, se fac pe nuclee ușoare ale materialului țintă: în mediu biologic care este

puternic hidrogenat aceste ciocniri sunt cu nucleele de hidrogen, obținându-se protoni de

recul.

10

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

Particula încărcată electric, prin ciocniri elastice și inelastice pierde continuu energia

sa până ajunge la o energie cinetică comparabilă cu cea a particulelor existente în materialul

țintă (energia medie de agitație termică). În acest moment particula încărcată se neutralizează,

încetându-și existența de particulă încărcată. Distanța la care particulele încărcate își încetează

existența și se neutralizeaza poartă numele de parcurs liniar. Acest parcurs liniar depinde de

masa particulei, de sarcina ei, precum și de materialul străbătut: cu cât materialul este mai

dens (mai compact) ciocnirile vor fi mai frecvente, energia particulei se va pierde mai repede

și parcursul liniar va fi mai mic. Analog cu cazul radiațiilor electromagnetice se definește un

parcurs masic definit ca produsul dintre parcursul liniar și densitatea mediului străbătut de

particulă. Pentru un material dat parcursul masic nu depinde de densitatea mediului cu care

interacționează particulele încărcate (de starea de compactare a materialului țintă).

Electronii care au masa cea mai mică vor produce în unitatea de lungime parcursă un

număr de ioni mai mic decât protonii, care la rândul lor vor produce pe unitatea de lungime

parcursă un număr de ioni mai mic decât particulele alfa. Deci ionizarea liniară produsă de

electroni este inferioară ionizării liniare produse de protoni, care la rândul ei este inferioară

ionizării liniare produsă de radiația alfa. Calitativ, putem spune că distrugerile provocate de

electroni pe unitatea de lungime parcursă vor fi inferioare distrugerilor provocate de protoni

pe unitatea de lungime parcursă, care la rândul lor vor fi inferioare celor provocate de helioni.

Electronii mai au un mecanism specific de interacție cu substanța – obținerea radiației

X de frânare. Electronul de energie cinetică mare impactând un material compact nu

interacționează doar cu electronii unui singur atom din material. El este respins de un câmp

electric intens produs al intregului material cu care interacționează. În aceste condiții

electronul este violent frânat și astfel el poate să „scape” de energia cinetică prin emisia unui

foton sau a mai multor fotoni X. Acești fotoni au energia cuprinsă între zero și energia

maximă a electronilor care le-au dat naștere. Randamentul de convertire în energie a

radiațiilor X a energiei electronilor (η), este dat de relația empirică:

η = (1.3)

unde: w este energia electronilor exprimată în MeV; Z – numărul de ordine din tabelul lui

Mendeleev a atomilor materialului țintă. Dacă materialul țintă nu este omogen se ia o valoare

11

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

medie a lui Z. Ținând seama că valoarea pentru organismul viu este mică, randamentul de

convertire a energiei fluxurilor de electroni în radiații X, în materia vie, este mic.

De asemenea putem neglija, la iradierea materiei vii cu protoni sau cu helioni, reacțiile

nucleare produse de aceștia: reacțiile de tip (p, n) și (p, γ) produse de protoni și reacțiile de tip

(α, p) și (α, n) produse de particulele α. Aceste reacții sunt foarte puțin frecvente.

1.4 Interacția neutronilor cu materia

Neutronii sunt caracterizați prin existența unei mase de repaos absolut comparabilă cu

a protonilor și de inexistența sarcinii electrice. Astfel, mecanismul de interacție caracteristic

neutronilor diferă de mecanismul de interacțiune a particulelor încărcate cît și de cel al

radiațiilor electromagnetice de mare energie.

În interacția particulelor încărcate cu materia cedarea de energie se face prin interacții

electrostatice (coulombiene) între sarcini. La neutroni interacțiile coulombiene nu se

manifestă, neutronii find neutrii din punct de vedere electric. Singurul câmp de forțe care-și

face pregnant simțită prezența este câmpul de forțe nuclear. Datorită acestui fapt, unicul mod

de interacțiune a neutronilor cu materia este ciocnirea cu nucleele din care este format

materialul țintă.

Ciocnirile neutronilor cu nucleele materialului țintă sunt de două categorii: ciocniri

elastice și ciocniri inelastice. În primul caz între neutronul incident și nucleul țintă are loc un

schimb de energie cinetică, astfel ca suma energiilor cinetice a particulelor participante la

ciocnire, înainte de ciocnire, să fie egală cu suma energiilor cinetice după ciocnire. Cu alte

cuvinte în timpul ciocnirii să nu existe transfer de energie cinetică în energie potențială care să

ducă la restructurarea materialului nuclear a materialului țintă. În cazul ciocnirii inelastice

suma energiilor cinetice înainte și după ciocnire diferă, avem teransfer de eneregie cinetică

spre energie potențială, care duce la reorganizarea materialului nuclear al țintei. Un caz

particular de ciocnire inelastică este captura neutronului incident de către nucleele țintă,

neutronul captat intră în structura nucleului ciocnit cedându-i complet energia sa cinetică. În

urma reacției de captură se formează, în general, un nucleu intermediar metastabil (cu timp de

viată foarte scurt), care se dezexcită emițând fotonii γ.

Ca măsură a probabilității de apariție a ciocnirii elastice sau inelastice și a cazului

particular de captură se folosește secțiunea eficace (σ), care poate fi interpretată ca mărimea

suprafeței centrate pe nucleul țintă prin care dacă trece un neutron produce o ciocnire elastică

12

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

respectiv o ciocnire inelastică, cu cazul său particular de captură. În ciocnirea elastică

neutronul este deviat de la direcția inițială, în ciocnirea inelastică el dispare ca entitate, deci

prin oricare din aceste fenomene de ciocnire.

Probabilitatea de ciocnire inelastică crește cu scăderea energiei neutronului incident.

Pentru un element dat, secțiunea eficace de ciocnire inelastică este mică la energii mari ale

neutronului (de ordinului milibarn-ului), apoi cu scăderea energiei neutronilor incidenți ea

crește continuu. În domeniul de energii 100 eV – 10keV valoarea secțiunii eficace de ciocnire

inelastică are variații foarte pronunțate de amplitudine (nivele de rezonanță), pentru ca la

valori foarte mici a energiei neutronilor incidenți valoarea secțiunii eficace de ciocnire

inelastică să fie mare. Cea mai mare secțiune eficace de ciocnire inelastică se atinge, in

general, când neutronii incidenți au energia cinetică de același ordin de mărime cu energia

cinetică de agitație termică (neutronii termici) la temperatura respectivă (cca. 0,025eV).

Astfel, pentru a absorbi un flux de neutroni, energia fluxului trebuie mai întâi scăzută

pană când neutronii vor ajunge la energii foarte mici, la care captura devine foarte probabilă.

Deci, pentru a absorbi neutronii prin reacții de captură trebuie, mai întâi, să termalizăm acești

neutroni, să-i ducem la o energie cinetică comparabilă ca mărime cu cea de agitație termică.

Cantitatea de energie cedată de neutron la o ciocnire elastică (fenomenul de tremalizare are la

bază ciocnirile elastice) este cu atât mai mare cu cât raportul dintre masa neutronului și masa

nucleului ciocnit elastic este mai aproape de unitate. Nucleele țintă grele (de exemplu de

plumb) vor incetini foarte greu fluxul de neutroni. În cazul nucleelor țintă ușoare (hidrogen,

deuteriu, heliu) energia pierdută de neutron la o ciocnire este suficient de mare, termalizarea

este rapidă și eficientă. Nucleul ciocnit elestic primește energia cinetică pierdută de neutronul

incident. Acest transfer de energie la nucleele țintă ușoare este considerabil și generează

nuclee de recul energice, și pot excita și ioniza materialul țintă ca o particulă încărcată

electric. Materialele care termalizează cel mai ușor fluxul de neutroni (materiale moderatoare)

sunt materialele bogate în hidrogenate, ca apa, parafina, acizii grași etc.. Dar izotopul obișnuit

al hidrogenului poate capta neutronul incident dând nucleul de deuteriu sau deuteronul. Dacă

dorim doar termalizarea neutronilor fără absorbția lor se utilizează aceleași materiale

moderatoare ca mai sus, numai că hidrogenul obișnuit este înlocuit cu deuteriu: apă grea,

parafină grea, acizi grași grei etc..

În foarte multe cazuri în urma capturii neutronului incident ia naștere un nucleu

radioactiv artificial, deci o nouă specie nucleară care va emite ea însăși, eșalonat în timp,

radiații nucleare. De exemplu, dintre elementele frecvent întâlnite în materia vie

13

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

captează neutroni termici și se transformă în * care este un radionuclid artificial. Prin

iradiere cu neutroni termici materia vie devine radioactivă prin activarea unor nuclizi ai

următoarelor elemente: potasiu, calciu, magneziu, cobalt, cupru, fier, zinc, nichel etc.. În

general, se activează toate oligoelementele. Această activare este în măsură mai mică sau mai

mare în funcție de mărimea secțiunii eficace de captură a neutronilor termici de nuclee țintă.

În materia vie însă câteva elemente de bază nu dau reacție de captură a neutronilor

termici. Astfel, carbonul, oxigenul, fosforul și sulful nu captează neutroni termici, nu se

activează în momentul iradierii cu neutroni termici. Dacă energia neutronilor incidenți este

mare se vor activa și aceste elemente în urma capturării neutronilor rapizi.

În concluzie, putea preciza că prin iradierea materialului biologic cu neutroni obținem

următoarele efecte:

cedare de energie ținte prin ciocniri elastice;

obținerea în țintă prin ciocniri inelastice (reacții de captură) a unor specii

nucleare radioactive, care activează ținta și care prin dezintegrarea lor vor ceda din nou

energie țintei;

cea mai periculoasă reacție de captură a neutronilor, care afectează direct

patrimoniul genetic este reacția de captură dată de azot, reacție prin care se explică efectele

genetice deosebit de intense produse de iradierea cu neutroni.

14

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

CAPITOLUL 2

ACȚIUNEA IONIZANTĂ A RADIAȚIILOR IONIZANTE

Prin acțiunea radiațiilor Roentgen, electronii slab legați de nucleul atomic pot fi aduși

în stare de oscilație sau îndepărtați din atom. In primul caz are loc excitarea atomului, în al

doilea caz se produce ionizarea atomilor substanței străbătute de radiații Rontgen.

La trecerea prin substanță a unei particule încărcate electric (în cazul nostru un

electron) aceasta interacționază cu atomii substanței, întâlniți pe parcurs și produce smulgerea

unui electron din atomul respectiv. Atomul devineun ion pozitiv (prin pierdere unei sarcini

negative) și împreună cu electronul smuls formează o pereche de ioni.

Întrucât ciocnirea electronului cu un atom afectează numai o mică parte din energia

lui, dea- lungul traiectoriei sale el are încă suficientă energie ca să mai interacționeze și cu alți

atomi, prin urmare pe traectoria sa produce un mare număr de perechi de ioni. În felul acesta

are loc ionizarea.

Daca într-un gaz ionizat se creează un câmp electric, atunci, sub acțiunea cîmpului

electric particulele încărcate se pun în mișcare, iar gazul devine un bun conducător de

electricitate. Valoarea acestui curent depinde de numărul de ioni și de tensiunea electrică

aplicată pentru crearea câmpului electric. Pe fenomenul ionizării gazului sub acțiunea

radiațiilor Roentgen se bazează funcționarea camerelor de ionizare și a contoarelor de

particule pentru evidențierea prezenței radiațiilor Roentgen și pentru măsurarea intensității și

energiei lor.

2.1 Efecte patogene ale energiei radiațiilor ionizante

Aceste efecte depind de doza și debitul dozei de iradiere, de volumul de corp iradiat la

care se mai adaugă reactivitatea organismului și radiosensibilitatea specifică a țesuturilor

organelor, sistemelor irradiate etc. Acești factori pot fi comuni tuturor felurilor de radiații

ionizante care dau în esență aceleași tulburări în raport cu cantitatea de energie radiantă

absorbită.

15

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

Prin efectul lor biologic complex, radiațiile ionizante duc la tulburări în activitatea

vitală a organismului, totalitatea simptomelor ce reflectă aceste tulburări poartă în medicină

numele de boală de iradiere (sau boală de raze, de radiație, boală actinică etc.).

Boala de iradiere fiind o boală a întregului organism prezintă tulburări aproape în toate

sistemele principale, în primul rând în sistemul nervos și în cel hematopoetic (reprezentat de

măduva osoasă roșie, splină și ganglionii limfatici). Modificările constatabile în sângele

periferic, deși au o mare importanță, pot lipsi sau pot fi neînsemnate sau instabile mai ales în

perioada de început a bolii cronice de iradiere. De aceea în diagnosticul ei se ține seama și de

tulburările altor sisteme. În afară de aceasta, modificările sanguine pot avea și alte cauze

(bunăoară un alt toxic), ceea ce face ca diagnosticul să fie pus numai comparând semnele

clinice cu cele de laborator în condițiile confirmării dozimetrice îndelungate că s-a lucrat în

condiții de iradiere excesivă.

În faza de început a bolii de iradiere cronică apar semne de dereglare nervoasă,

tulburări nervoase caracterizate prin fenomene de astenie (oboseală) și labilitate vegetativă la

nivelul organelor și al vaselor, semne de modificări instabile ale sângelui, hipotensiune,

scăderea secreției gastrice și tulburări metabolice. Toate aceste modificări sunt funcționale,

instabile și reversibile, dacă subiectul este scos din mediul radiant și se îngrjește.

Starea de astenie apare treptat și se manifestă prin moleșeală, iritabilitate, tulburări ale

somnului, slăbirea memoriei și a puterii de lucru. Uneori la această stare se adaugă amețeli și

grețuri cu slăbirea poftei de mâncare și migrene rebele.

Când aceste semne de astenie se asociază cu unele semne de labilitate vegetativă și

vasculară (joc al pulsului, transpirație, dermografism, tremur al pleoapelor și al degetelor

întinse, variații de tensiune cu predominanța hipotensiunii etc.) medicii vorbesc de existența

unui sindrom astenovegetativ.

Tot în faza de început a bolii cronice de iradiere pot apărea modificări ale pielii,

manifestate prin scăderea elasticității ei, apariția „pielii de gâscă“, dermatitelor și

modificărilor la unghii, care crapă și se rup ușor.

În faza a doua a bolii are loc o accentuare a sindromului astenonegativ, însoțită de

tulburări endocrine, de sângerări și de scăderea mai pronunțată a funcției aparatului

hematoformator (se constată o leucopenie pronunțată), cu neutropenie absolută, limfonie cu

caracter stabil și trombocitopenie.

De asemenea, sub influența radiațiilor Roentgen, rezistența naturală a organismului

față de infecții scade atunci când iradierea este excesivă și afectează mecanismul celular și

16

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

humoral de apărare a organismului, deoarece scade reacția de apărare a organismului,

deoarece scade reacția de apărare a organismului, deoarece scade reacția de apărare

leucocitară și este tulburată activitatea sistemului nervos. Astfel poate apărea bacteriemia

postradiantă, o septicemie gravă, produsă prin autoinfecția organismului iradiat excesiv, cu

microbi proveniți din microflora proprie intestinală, faringiană etc., care în condiții de

imunitate biologică normală nu sunt vătămători.

Din aceleași cauze, infecțiile latente se reaprind și se constată o receptivitate mai mare

față de infecțiile latente se reaprind și se constată o receptivitate mai mare față de infecțiile

dinafară, de exemplu, ale căilor respiratorii (pneumonii), infecții intestinale latent reacutizate

(dezinterie, enterocolite),infecții reacutizate ale căilor biliare etc.

Dacă și în faza a doua de boală bolnavul continuă să se iradieze și nu se tratează, apar

tulburări grave ireversibile, cu pierdere totală a capacității de regenerare a țesuturilor, cu

procese distrofice profunde la nivelul organelor și sistemelor și cu afectarea gravă a sistemului

hematoformator, caracteristice pentru faza a 3-a a bolii. Acum starea generală este foarte

proastă: slăbiciunea este puternică, adinamia și hipotonia sunt marcante și stabile. Întreaga

simptomatologie descrisă mai sus este mai pronunțată și pronosticul mai grav.

Pe fondul bolii de iradiere cronice sau ca rezultat al trecerii peste forma acută, pot

apărea, după un timp variabil, consecințe îndepărtate ale bolii de iradiere: tulburări metabolice

tardive sau modificări tardive ale diferitelor sisteme și organe, cataracta de iradiere, procese

cu caracter neoplazic (tumori, leucemii), tulburări în dezvoltarea fătului și a eredității (efectul

genetic).

În rândul consecințelor îndepartate ale tulburărilor metabolice se numără scăderea

duratei de viață a organismului cu îmbatrânirea lui pretimpurie, istovirea general, tulburarea

metabolismului, slăbirea capacității imunobiologice cu scăderea puterii de apărare față de

agenții infecțioși, slăbirea hematopoezei, a activității cardiovasculare, nervoase, sexual și a

altor sisteme.

17

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

Influența radiațiilor Roentgen asupra dezvoltării fătului (prin iradierea mamei) și

asupra eredității (prin iradierea părinților) sunt consecințele îndepartate ale iradierii posibile,

dar care astăzi se întâlnesc din ce în ce mai rar, datorită măsurilor de protecție și evitării

abuzurilor iradierii posibile a persoanelor tinere.

Organismul matern, care face o boală de iradiere, chiar ușoară, în perioada gravidității

poate cauza fătului o serie de tulburări de dezvoltare, mai periculoase în prima perioadă a

sarcinii, când are loc organogeneza.

Dacă gravida face o formă gravă de boală de iradiere poate surveni moartea fătului,

nașterea prematură sau nașterea cu anomalii congenitale (anencefalia, microcefalia, diverse

hipoplazii, în special ale extremităților). Mama la rândul ei poate avea din aceeași pricină o

naștere mai grea și prelungită.

Efectul genetic al radiațiilor ionizante este cercetat de mult timp cu multă asiduitate

atât pentru protecția umană cât și aplicațiile practice agro-zootehnice și microbiologice.

Capacitatea mutagenă a energiei radiante a fost dovedită atât prin evidențierea

anomaliilor cromozomiale cât și prin practica radiogeneticienilor. Mecanismul efectului

mutagen nu a fost încă elucidate pe deplin.

Faptul că se consideră stabilit că radiomutațile sunt în general recesive și că

modificările genetice par a fi ireversibile, a dus la legiferarea unor măsuri de protecție umană

și la imperativul evitării iradierilor inutile.

2.2 Doza, unitați de măsură a dozelor [ 17, 18 ]

Ceea ce contează în primul rând la realizarea intensității efectului radiobiologic este

transferul de energie dintre câmpul de radiații și materia vie. Dacă această energie transferată

va fi mai mare, se vor forma mai mulți radicali liberi radioinduși, vor fi blocate mai multe

catene active ale macromoleculelor de interes biologic care vor fi inactivate și amplitudinea

efectului radiobiologic va fi mai mare, fie că este vorba de efecte somatice, fie că este vorba

de efecte genetice. Rezultă că amplitudinea efectului radiobiologic se corelează cu cantitatea

de energie (W) absorbită de către materia vie de la câmpul de radiații. Dacă aceeași energie va

18

Fig.2.1 Bolile profesionale prin radiații ionizante pe ani.

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

fi absorbită de către două mase diferite, efectul radiobiologic va fi mai intens la corpul

biologic de masă mai mică, acolo unde densitatea leziunilor radioinduse va fi mai mare; cu

alte cuvinte, efectul radiobiologic se corelează cu energia absorbită de unitatea de masă a

corpului biologic de la câmpul de radiații nucleare. Energia absorbită de unitatea de masă de

materie vie sau moartă de la câmpul de radiații poartă numele de doză absorbită de radiații

(D). În concluzie putem afirma că intensitatea efectului radiobiologic se corelează cu doza

absorbită de radiații.

Sistemul de unități radiobiologic. Având în vedere corelarea directă dintre doza

absorbită de radiații și intensitatea efectului radiobiologic, sistemul de unitați radiobiologic

pornește de la măsurarea dozei de radiații absorbită. Se definește doza de radiații absorbită

(D) drept cantitatea de energie (W) absorbită de unitatea de masă de materie vie (m) de la

câmpul de radiații nucleare sau ionizante:

D=W/m (2.1)

Unitatea în sistemul internațional (SI) de doză absorbită de radiații este gray-ul (Gy)

definit ca doza absorbită de radiații în care masa de materie vie de un kilogram absoarbe în

mod uniform de la câmpul de radiații ionizante o energie de un joule: 1Gy = 1J/Kg. Această

unitate de măsură este mare și din acest motiv se utilizează în mod curent o unitate de măsură

tolerată – radul (r). Un rad se definește ca doza absorbită de radiații în care 1 kilogram de

materie vie absoarbe în mod uniform o energie de 0,01 joule de la câmpul de radiații

ionizante; ceea ce este tot una că un gram materie vie absoarbe de la câmpul de radiații

ionizante o energie de 100 ergi:

1r = 10-2 J/Kg sau 1r = 100 ergi/g

1Gy = 100r

Doza absorbită de radiații, căreia în mod curent i se mai spune și doză fizică de

radiații, nu este specifică materiei vii. Un corp oarecare, cu structură chimică și densitate

identice cu materia vie absoarbe radiații ionizante la fel cu materia vie. Astfel, noțiunea de

doză absorbită de radiații se poate aplica în egală măsură atât materiei vii, cât și celei

neînsuflețite. În definirea gray-ului cât și a radului se pune condiția de unitate de masă de corp

viu pentru că în cadrul radiobiologiei ne referim la corpul viu.

Amplitudinea efectului radiobiologic nu depinde numai de doza de radiații absorbite

de către materia vie, ci și de ritmul de absorbție a acestei doze.

19

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

Unitatea de măsură a debitului dozei de radiații absorbite în sistemul internațional este

gray-ul pe secundă (Gy/s) definit ca debitul dozei absorbite de radiații în care se

administrează o doză absorbită de radiații de un Gy, în mod continuu și constant în fiecare

secundă.

Intensitatea și calitatea efectului radiobiologic nu depinde doar de doza de radiații

absorbită și de debitul ei, ci și de calitățile fluxului de radiații absorbit. Nu se obține același

efect iradiind o plantă cu o doză dată de radiații X sau cu aceeași doză de neutroni rapizi chiar

dacă debitul dozei de iradiere va fi identic. Diferitele radiații ionizante utilizate în practică

interacționează diferit cu materia vie, efectul biologic produs de ele diferă prin calitate și

intensitate. Astfel, iradiind boabe de porumb în condiții identice de debit al dozei, de

umiditate și de temperatură (ultimii doi sunt factori determinanți în stabilitatea intensității

efectului radiobiologic) cu doza de 100Gy: un prim lot cu radiații X, iar un al doilea cu

neutroni rapizi constatăm că efectul radiobiologic la primul lot este mai redus decât la cel de-

al doilea. Deci la doze absorbite identice, de radiații în codiții de debit identic intensitatea și

calitatea efectului radiobiologic depinde de natura și energia fluxului de radiații incident.

Pentru a caracteriza capacitatea de a produce efect radiobiologic a diferitelor tipuri de radiații

ionizante se introduce o nouă mărime în radiobiologie: factorul de calitate al radiației (Q). Cu

zece ani în urmă această mărime se numea eficacitate biologică relativă și se nota cu η.

Factorul de calitate al radiației (Q) se definește ca raportul dintre o doză de radiații standard și

doza de radiații luată în discuție care administrate materiei vii produc efecte biologice

identice. Ca radiații standard (de referință) se iau radiațiile X produse de o tensiune

acceleratoare de 200kV, filtrate cu un strat de Cu de 0,5 mm grosime. Factorul de calitate al

radiațiilor standard este deci unitar. În general, pentru toate radiațiile X și gama, indiferent de

energia lor, factorul de calitate al radiației este unitar.

Domeniul de valori pe care poate să-l ia factorul de calitate al radiației – Q – este

cuprins între valori ușor subunitare, întâlnite pentru efectele somatice în iradierea cu particule

încărcate de mare energie (peste 100 MeV) obținute cu ajutorul acceleratoarelor de particule,

și valoarea de 50 întâlnită în iradierea cu neutroni rapizi (14,7 MeV) a semințelor de orez în

prezența oxigenului (factor ajutător în creșterea efectului radiobiologic) atunci când se

urmăresc efectele genetice ale iradierii.

Interesează și comportarea omului în câmp de radiații ionizante pentru a cunoaște

măsurile de protecție necesare în lucrul experimentatorului cu radiațiile ionizante. La om cele

mai mari valori ale factorului de calitate al radiațiilor Q le întâlmin în cazul luării în

20

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

considerare a efectelor genetice produse de iradierea cu neutroni rapizi (energie mai mare de 7

MeV), valoarea factorului de calitate Q fiind în acest caz de cca 103. Pentru un tip de radiații

dat, în general factorul de calitate Q este mai mic dacă luăm în cosiderare doar efectele

somatice și mai mare dacă luăm în considerare efectele genetice. Datorită acestui fapt în

calculele de protecție împotriva radiațiilor nucleare se iau în mod acoperitor cele mai mari

valori ale factorului de calitate Q a radiațiilor, valori pe care le întâlmin atunci când luăm în

cosiderare efecte genetice produse de către radiațiile ionizante. În tabelul (2.1) sunt prezentate

valorile factorului de calitate al radiațiilor – Q, care se iau în calculele de protecție a

personalului care lucrează în câmp de radiații nucleare. Pentru a arăta că aceste valori

prezentate în tabel sunt acoperitoare, trebuie precizat că la om, în iradierea cu neutroni rapizi,

pentru efecte somatice factorul de calitate al radiațiilor nu depășește valoarea de 3, dar în

calculele de protecție se ia valoare de 10, care este o valoare mult mai apropiată de factorul de

calitate al neutronilor rapizi pentru efecte genetice.

Tipul radiației Q

Radiații X și γ

Radiații β- și β+

Neutroni termici

Protoni acceleranți

Neutroni rapizi

Radiații α

1

1

5

10

10

20

Tabelul 2.1 Valorile factorului de calitate al diferitelor tipuri de radiații

Pentru a caracteriza amploarea efectului radiobiologic se introduce o nouă mărime

radiobiologică: echivalentul dozei (H). Definirea acestei mărimi se face perfect analog cu

celelalte mărimi biofizice cunoscute: din fotometrie, eritrometrie etc. Intensitatea efectului

radiobiologic este o mărime biofizică: este dependentă de o serie de mărimi pur fizice, ca tipul

radiațiilor ionizante care au produs efectul radiobiologic, energia lor, doza de radiații

absorbită, debitul dezei administrate etc., dar și o serie de parametrii biologici ai materialului

iradiat, ca: specia iradiată, vârsta indivizilor iradiați, temperatura de iradiere, perioada de

vegetație în care au fost iradiați indivizii, nivelul general al metabolismului indivizilor iradiați

în timpul iradierii și în perioada post iradiare, prezența unor factori potanțatori ai efectului

radiobiologic (factori radiosesnibilizatori), sau a unor factori inhibatori ai efectului

21

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

radiobiologic (factori radioprotectori). Intesitatea efectului radiobiologic depinde atât de seria

parametrilor fizici ai iradierii, parametrii care caracterizează radiația incidentă și interacția ei

cu materialul țintă, cât și de parametrii biologici care caracterizează răspunsul materiei vii la

agresiunea radiantă. De această complexă serie de parametrii depinde intensitatea efectului

radiobiologic, efect care este măsurat cu ajutorul mărimii echivalent doză (H). Definirea

echivalentului dozei H ca un produs dintre o mărime pur fizică – doza de radiații absorbită

(D) și o mărime pur biologică – factorul de calitate al radiațiilor (Q) care caracterizează

răspunsul materiei vii la agresiunea radiantă în condițiile utilizării radiațiilor respective:

H = Q·D (2.2)

Ținând cont de definiția dată factorului de calitate al radiațiilor Q putem trece la

definirea unității de echivalent al dozei: unitatea SI a echivalentului dozei este sievert-ul (Sv),

definit ca echivalentul dozei dată de iradiarea cu o doză absorbită de 1 Gy cu o radiație

ionizantă cu un factor de calitate unitar (radiație standard). Releția de introducere a unității

este:

1 Sv = Q·1 Gy; Q = 1 (2.3)

Trebuie remarcat faptul că pentru a obține un anumit efect biologic precizat

echivalentul dozei este egal pentru toate radiațiile ionizante cu care se obține efectul. Condiția

suplimentară este ca etalonarea dozei în timp (debitul dozei absorbite) să fie identic.

Ca și gray-ul, ca unitate sievert-ul este o unitate mare. Din această cauză se utilizează

frecvent un submultiplu: remul (prescurtare de la röntgen equivalent man) definit ca a suta

parte din sievert, sau ca doza echivalentă dată de o doză absorbită de un rad de la o radiație

ionizantă cu un factor de calitate unitar.

Analog cu debitul dozei absorbite se definește debitul dozei echivalent (h):

h = H/t = Q·d (2.4)

ca debitul echivalentului doză administrat în mod uniform în unitatea de timp. Unitatea de

măsură este sievert-ul pe secundă (Sv/s), iarăși o unitate de măsură mare și din acest motiv se

utilizează în mod curent submultiplii rem/s până la miliremi/an care se utilizează frecvent în

calculele de radioprotecție. Relațiile de trecere între aceste unități sunt:

1 Sv/s = 100 rem/s (2.5)

22

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

1 rem/an = 10-2 Sv/an (2.6)

Iradierea internă. Pornind de la criteriul poziției relative a sursei de iradiere față de

organismul viu iradiat, iradierea poate fi de două feluri: iradiere externă și iradiere internă. În

primul caz sursa de radiații cu care iradiem corpul viu este exterioară materialului iradiat, iar

în al doilea caz sursa de radiații cu care este iradiat corpul viu este incorporată în materialul

biologic (este metabolizată de către corpul biologic).

La prima vedere s-ar părea că iradierea internă în lumea vegetală are o importanță

secundară. O analiză mai profundă a fenomenului radiobiologic spulberă însă acestă iluzie.

Iradierea cu neutroni termici, larg utilizată astăzi în cercetarea biologică și agricolă, produce

prin radiații nucleare în corpul iradiat izotopi radioactivi artificiali care la rândul lor provoacă

iradierea internă. Sunt cazuri de iradiere cu neutroni termici în care doza de radiații absorbită

din iradierea internă depășește net doza absorbită în iradierea internă.

În cazul căderilor radioactive (fallout) consecutive accidentelor nucleare majore sau

exploziilor nucleare valoarea dozei absorbite în iradierea externă depașește valoarea dozei

absorbite în iradierea externă și în plus iradierea internă este etalată într-un timp mai mare

decât iradierea externă. Un exemplu în acest sens îl constituie vegetația actuală din atolul

Bikini unde în perioada 1946 – 1952 au fost efectuate explozii nucleare și termonucleare în

atmosferă. Vegetația din atol și din atolii vecini au suferit mutații importante în urma iradierii

suferite. Aceste mutații sunt datorate în cea mai mare parte iradierii interne a plantelor prin

izotopi radioactivi proveniți din căderi și metabolizați de vegetație. Contaminarea radioactivă

a acestor atoli este încă foarte mare, făcând atolul să fie nelocuibil și astăzi. În plus, iradierea

internă cu radiocarbon și titriu augmentează efectele genetice prin metabolizarea celor doi

radionuclizi direct în materialul genetic (ADN).

Dacă determinarea dozei de radiații absorbită în iradierea externă este o sarcină

dificilă, determinarea dozei absorbite în iradierea internă este o sarcină și mai dificilă, pentru

a cărei rezolvare sunt cerute cunoștințe aprofundate de detecția radiațiilor ionizante,

cunoașterea unor tehnici de lucru de mare finețe și posedarea unui aparataj matematic relativ

complex. În aceste condiții se impune colaborarea biologului cu biofizicianul specializat în

probleme de radiobiologie, pe profil de dozimetrie.

Pentru un corp omogen și infinit, în care este uniform distribuit un radioemițător

oarecare, doza de radiații absorbită în iradierea internă este egală cu energia emisă de

radionuclidul încorporat în unitatea de masă de corp, corpul fiind omogen și infinit, iar

23

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

distribuția radionuclidului omogenă, contribuția reciprocă a două puncte din corp la doză este

egală. Nu același lucru se poate afirma în cazul neomogenității corpului sau a distribuției

neuniforme. Dar trebuie precizat că în cazul radiațiilor cu parcurs (particule încărcate)

afirmația de reciprocitate de mai sus este valabilă pentru corpuri care au dimensiunile mult

mai mari decât parcursul radiației, sau altfel spus pentru toate punctele care se găsesc în

interiorul corpului la o distanță de margine mai mare decât parcursul.

La baza calculelor dozei de radiații absorbite stă ideea corpului de dimensiuni finite în

care radionuclidul emițător este distribuit uniform. În funcție de forma corpului și de

dimensiunile lui, de tipul radiației emise de către radionuclizii încorporați și de energia

acestor radiații, se calculează partea din energia emisă care se disipează în mediul

înconjurător. Din partea din energia emisă care se absoarbe în corp se determină doza de

radiații absorbită în iradierea internă. Acest procentaj din energia emisă care este absorbit în

corpul în care este înglobat emițătorul este intabulat în funcție de forma corpului,

dimensiunile corpului, tipul radiațiilor emise și energia lor. Calculul este extrem de laborios și

pentru realizarea lui s-a utilizat tehnica de calcul electronică.

2.3 Prevenirea și protecția contra radiațiilor

În afara radiațiilor ionizante din fondul natural de radiații, organismul nostru este

supus și acțiunii ionizante a radiațiilor produse de surse artificiale (iradierea profesională în

câmpuri de radiații, iradierea datorită examenelor și tratamentelor radiologice, iradierea

datorită explozilor atomice și termonucleare etc.).

Din aceste considerente s-a născut necesitatea stabilirii dozei maxime de radiații pe

care omul adult o poate primi zilnic, timp de multi ani, fără ca în acest răstimp să se producă

în organism modificări ireversibile constatabile medical.

În țara noastră, doza maximă admisibilă este de 0,03 rem pe săptămână – pentru un

organism sub 45 ani (mai mică de zece ori decât cea internațională) și de 0,06 rem pe

săptămână pentru persoanele peste 45 de ani. Doza maximă admisibilă anuală este și ea mai

mică – 1,3 respectiv 2.5 rem pentru iradierea întregului organism sau a organelor mai

sensibile.

În examenele radiologice, organismul primește următoarele doze: în radiografia

toraco-pulmonară 0,56 rem, în cea gastrică 0,76 rem, renală 6,14 rem, cranială 1,55 rem, a

umărului 0,50 rem, în cazul unei microradiofotografii 0,6 rem. etc.

24

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

Pentru un examen radioscopic care durează mai mult, dozele primite de organism sunt

mai mari. Astfel, într-o radioscopie pulmonară organismul primește, într-un minut de

examinrae 3,4-7,6 rem, în radioscopia stomacului, în medie între 4,8 și 10,3 rem pe minut.

Având în vedere că examenele radiologice se practică destul de rar periodic – în cadrul

controlului sănătății, sau acazional, pentru a lămuri un diagnostic clinic neconcludent, dozele

iradierii din cauza examenelor sunt neînsemnate. De aici urmează concluzia că utilizarea

rațională a examenelor radiologice nu poate fi socotită periculoasă, foloasele examenelor utile

depășind cu mult efectul nedorit al radiațiilor.

În utilizarea radiațiilor Roentgen în scop diagnostic și curative se cere un sever

discernământ, căci radiologia medicală este și va rămâne încă multă vreme principala sursă

de radiații artificiale. Unele statistici arată bunăoară că “fiecare cetățean primește numai din

cauza radiologiei medicale (inclusive celei dentare) o doză biologică de 3-4 rem/gonade în

decurs de 30 de ani”.

În cazurile de abuzuri, cea mai mică cantitate de radiație poate fi doza nocivă, sub

aspectul modificărilor genetice, deci nu se poate vorbi de un prag inferior sub care să avem

certitudinea că nu s-ar produce astfel de modificări.

De asemenea, nu trebuie să uităm că absorbția energiei radiante produce leziuni care

afectează nu numai individul, ci și fondul biologic al speciei, ceea ce face ca abuzul de

iradiere să fie de două ori condamnabil.

În această privință trebuie să menționăm recomandarea internațională a Comisiei

stiințifice însărcinate de adunarea generală a O.N.U să studieze protecția radiologică (1957),

în care se spune că „nici o persoană până la vârsta de 30 de ani nu va primi asupra gonadelor

o doză totală mai mare de 50 rem și nici până la vârsta de 60 de ani o doză somatică mai mare

de 200 rem”.

Tot ca o măsură de protecție, în țara noastră a luat o largă dezvoltare rețeaua de

microradiofotografie pentru persoanele ce fac periodic controlul sănătății, întrucât prin această

metodă doza de radiații este mai mică decât în radioscopie.

În rândul măsurilor de protecție contra radiațiilor ionizante menționăm că în ultimul

timp se schițează perspective de apărare a organismului uman supus roentgenterapiei

antitumorale și de prevenire a bolii de iradiere cu ajutorul unor compuși chimici speciali

(cisteină, metionină, cistină, triptamină etc).

Însă acțiunile acestor compuși încă nu sunt suficient studiate, baza radioprotecției

rămânând tot complexul de măsuri profilactice și terapeutice cunoscute.

25

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

În ceea ce privește radioprotecția personalului care mânuiește sursele de radiații

Roentgen , dată fiind gravitatea leziunilor radiologice și contactul zilnic, se cer unele măsuri

speciale ce privesc organizarea localului, condițiile de muncă și de viață și controlul periodic

al sănătății.

Primul aspect important în organizarea locului de muncă este delimitarea în jurul

fiecărei surse de radiații Roentgen a celor două zone corespunzătoare celor doua feluri de

iradiere la care poate fi supus cineva în câmpul da radiație al instalației Roentgen. În prima

zonă , asa numită zonă supravegheată, iradierea profesională este controlată și înregistrată

corespunzător de un personal competent și cu aparatură adecvată. Zona limitrofă cu zona

supravegheată constituie zona nesupravegheată, deoarece în limitele ei controlul iradierii nu

se mai execută. Întrucât limitele zonei nesupravegheate se situează acolo unde iradierea are un

nivel de zece ori mai mic decât nivelul de iradiere maxim permis în zona supravegheată,

expunerea neprofesională, accidentală trebuie să fie de zece ori mai mică decât expunerea

profesională.

Problema principală în apărarea contra radiațiilor Roentgen constă deci în

determinarea debitului dozelor existente în regiunea în care trebuie protejată în vederea

stabilirii condițiilor în care să nu fie depășită doza maximă permisă.

Debitele dozelor date de o instalație Roentgen, atât în zona supravegheată , cât și în

cea nesupravegheată, pot fi măsurate cu un dozimetru oarecare, etalonat în prealabil, sau

poate fi calculată în funcție de parametri de lucru ai aparatului și de distanțele la care se

lucrează.

După determinarea dozei maxime permise, o problemă foarte importantă a

complexului mijloacelor de protecție, căreia trebuie să i se caorde toată atenția, este aceea de

ecranare a surselor de radiații pentru a apăra personalul care lucrează cu ele.

De aceea, ecranarea, respectiv ecranele, se calculează astfel încât doza primită în afara

ecranului să fie redusă sub valoarea dozei maxime admise. La alegerea materialelor pentru

ecranare se urmărește nu numai atenuarea maximă a radiațiilor Roentgen, ci și absorbția lor

maximă, adică, dintre două materiale cu același coeficient de atenuare pentru radiațiile

Roentgen se alege materialul cu coeficientul de absorbție al materialului reprezintă

coeficientul de absorbție cel mai mare. Acest lucru este important, întrucât diferența dintre

coeficientul de atenuare și coeficientul de absorbție al materialului reprezintă coeficientul de

împrăștiere și cu cît acest coeficient este mai mic, cu atît se obține o împrăștiere mai mică,

ceea ce este foarte important în cazul radiațiilor Roentgen.

26

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

Întrucât absorbția radiațiilor Roentgen este cu atât mai puternică cu cât numărul

atomic al materialului absorbant este mai mare, materialul cel mai indicat, practic, pentru

protecția împotriva radiațiilor Roentgen este plumbul.

În calculele elementare de protecție, respectiv în calculele ecranelor, se folosește ca

mărime principală de calcul grosimea de înjumătățire, adică acea grosime a stratului de

absorbant, care poate reduce la jumătate intensitatea fasciculului de radiații Roentgen, iar

calculul protecției se reduce la determinarea numărului de straturi, adică a grosimii totale

dintr-un material absorbant oarecare, necesar pentru a reduce doza de radiații la valoarea

dozei maxime admisibile.

Evident, pentru ca măsurile de protecție prin ecranare să fie cât mai simple, trebuie

redusă la minimum însăși posibilitatea interacțiunii dintre radiațiile Roentgen și personalul din

jur, adică să fie luate în prealabil toate măsurile ca până și radiațiile Roentgen secundare să fie

reduse la minimum.

Aceste măsuri elementare sunt astăzi realiste prin faptul că se folosesc tuburi Roentgen

special protejate, iar la aparatele pentru radiografii, microradiografii, în roentgenterapie etc. se

iau și măsuri de protecție speciale.

Unele dintre aceste măsuri privesc amenajarea corespunzătoare a încăperilor destinate

instalațiilor Roentgen, în funcție de natura lor și tensiunile de lucru. Alte măsuri speciale

privesc protecția împotriva tensiunilor înalte și foarte înalte (1-2 MV), ca în radioscopia

pieselor metalice și cercetări speciale, și măsuri de protecție (ventilație) împotriva gazelor

nocive (ozon, combinații oxigenate ale azotului etc.) rezultate din interacțiunea radiațiilor

Roentgen cu aerul înconjurător.

27

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

CONCLUZII

În concluzie radiațiile ionizante sunt acele forme de radiații care produc ionizarea

atomilor din materialul iradiat. Această definiție ține seama de efect și nu de natura radiațiilor

și așa se face ca în categoria radiațiilor ionizante intra și radiațiile gamma (de natură

“nucleară” –produse la nivelul nucleului atomilor) și radiațiile X (de natură “atomică”). Pe

lângă radiațiile electromagnetice gamma și X, tot în categoria radiațiilor ionizante sunt incluse

și fascicule de electroni accelerați, însă nu sunt incluse radiațiile UV. De fapt, termenul

“radiații ionizante” are o semnificație tehnică și atunci când vorbim de “tratament cu radiații

ionizante” (sau “iradiere tehnologică”), în această categorie rămân acele radiații care au ca

efect principal ionizarea, au o capacitate de penetrare mare și foarte important nu produc

reacții nucleare în materialul iradiat.

28

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

Radiațiile ionizante din nucleul atomic sunt îngrijorătoare. Ele apar în două forme:

raze și particule la frecvențe înalte. Radiațiile ionizante produc particule încărcate electric

numite ioni în materialele pe care le lovesc. Acest proces se numește ionizare. În moleculele

mari din care sunt alcătuite organismele vii, schimbările biologice cauzate pot fi importante.

Cantitatea de radiații ionizante sau „doza” primită de o persoană este măsurată în funcție de

energia absorbită de țesut și este exprimată în gray. Un gray (Gy) reprezintă un joule depozitat

pe kilogramul de masă. Expunerea egală la diferite tipuri de radiații nu produce în mod

necesar efecte biologice identice. Un Gy de radiații α va avea un efect mai mare decât un Gy

de radiații β. Când vorbim despre efectul radiațiilor atunci exprimăm radiația ca doză efectivă,

într-o unitate numită sievert (Sv). Raportat la tipul de radiație un Sv de radiație produce

același efect biologic. Cantitățile se exprimă în milisievert sau microsievert. Se utilizează, în

mod frecvent mSv.

Se stie de mai mulți ani că doze mari de radiații ionizante, mult mai mari decât

radiațiile de fundal pot cauza cancer și leucemie la mai mulți ani de la expunere.

Efectul biocid al radiațiilor ionizante a fost pus în evidență foarte curând după descoperirea

acestora. Moartea organismelor vii survine într-un termen scurt ulterior iradierii, după mai

mult timp (“boala de radiații”) se manifestă asupra generațiilor ulterioare (mutații genetice).

S-a constatat că primul efect semnificativ care apare este scindarea moleculei de ADN.

Aceasta este o moleculă complexă și la iradiere suferă scindări și recombinări. În cazul

particular al moleculei de ADN, la reîntregirea acesteia contribuie și procesele enzimatice din

celula vie.

Mecanismele enzimatice ale celulei pot reîntregi molecula de ADN într-o formă care

la multiplicarea celulei păstrează informația genetică necesară și avem de a face cu rezistența

la radiații.

În cazul în care reîntregirea moleculei de ADN se face incorect din punct de vedere

genetic sau nu se poate face în timp util înainte de declanșarea mecanismului de multiplicare,

celula din urmatoarea generație nu este viabilă. În funcție de numărul de celule afectate și de

complexitatea organismului, această situație conduce la moartea biologică a acestuia.

În aplicațiile care vizează efectul biocid al radiațiilor ionizante nu este necesară uciderea

(micro) organismelor ca atare ci este suficientă distrugerea capacității de reproducere a

acestora.

Nivelul efectelor cauzate de radiații depind de mai mulți factori: doza, frecvența dozării, tipul

29

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

radiației, organul expus, vârsta și sănătatea. De exemplu, embrionul uman este deosebit de

sensibil la radiații.

BIBLIOGRAFIE

1. ONCESCU, MIRCEA C., Fizica protecției contra radiațiilor, editura Academiei R.P.R, anul 1958, pag. 5-9.

2. IGOR IVANOV, VSEVOLOD IVANOV, Radiațiile Roentgen, editura Științifică, anul 1966, pag. 33-59, 63-74.

3. www.sfatulmedicului.ro/arhiva_medicala/radiatii-ionizante

30

EFECTE BIOLOGICE ALE RADIA IILOR IONIZANTEȚ

31