compusi organici

21
Liceul Teoretic “Ion Creanga” Teza de curs: Chimia organica in creatia liceenilor La tema: Diversitatea compusilor organici

Upload: vitalienour

Post on 09-Aug-2015

3.568 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: compusi organici

Liceul Teoretic “Ion Creanga”

Teza de curs:Chimia organica in creatia liceenilor

La tema:

Diversitatea compusilor organici

Elev : Popa Gheorghe

Professor : Pascal Galina

Page 2: compusi organici

Zirnesti 2012

LEGĂTURA GENETICĂ DINTRE CLASELE DE COMPUŞI ORGANICI

     Între clasele de compuşi organici: hidrocarburi, compuşi halogenaţi, compuşi oxigenaţi şi alte clase de compuşi organici există o legătură genetică indisolubilă, la baza căreea se află posibilitatea transformării prin diverse reacţii chimice a compuşilor organici.

     Astfel, în temele anterioare au fost precăutate:

      - legătura genetică între clasele de hidrocarburi;

      - legătura genetică între clasele de compuşii oxigenaţi.

     În aceste teme pe baza reacţiilor chimice specifice a fost demonstrată posibilitatea transformării unor compuşi organici în alţi compuşi în cadrul aceleeaşi clase (hidrocarburi sau compuşi oxigenaţi).

   Desigur, că există o legătură indisolubilă între toţi compuşii organici. Prin reacţii specifice din hidrocarburi pot fi obţinuţi: derivaţi halogenaţi, alcooli, aldehide amine, etc. La fel, din derivaţi halogenaţi pot fi obţinuţi alcooli, amine, hidrocarburi, etc. Din alcooli pot fi obţinuţi aldehide, cetone, acizi, eteri, esteri, derivaţi halogenaţi, hidrocarburi, etc. La fel şi aminele, aldehidele, acizii organici. Prin diverse reacţii chimice orice compus organic pot fi transformat în reprezentanţii altor clase de compuşi organici.

   Mai jos vom prezenta schemele posibilelor transformări a compuşilor organici:

Page 3: compusi organici

    Prin schemele de sinteză prezentate mai jos vom ilustra legătura genetică, care poate apărea între diferite clase de compuşi organici.

(I)               De sintetizat din etan esterul etilacetic după următoarea schemă:

     1) Prin reacţia de halogenare din etan se obţine cloroetan:

                  CH3-CH3 + Cl2 CH3-CH2Cl  + HCl

     2) La tratare cu hidroxid de sodiu din cloroetan se obţine etanol:

                CH3-CH2Cl +  NaOH CH3-CH2OH + NaCl

     3) La tratarea alcoolului etilic  cu KMnO4 în prezenţa H2SO4 oxi-

        darea poate decurge p nă la acid acetic:

                                  

Page 4: compusi organici

            [O]               

                                   CH3-CH2OH                   CH3-COOH   +  H2O

    KMnO4,H2SO4         

                                                                              

     4) La interacţiunea alcoolului etilic cu acidul acetic în prezenţa acidului sulfuric concentrat se obţine esterul etilacetic:

     CH3-COOH   +  HO-CH2-CH3    CH3-COO-CH2-CH3         + H2O

                                                  (H2SO4)        

      Prin prezenta sinteză am demonstrat legătura genetică dintre hidrocarburile saturate, clorderivaţi, alcooli, acizi organici, esteri.

     (II) De sintetizat din alcool etilic anilină după următoarea schemă:

  CH3-CH2OH CH2=CH2 CH≡CH    C6H6  C6H5Cl  C6H5NH2

                        1                    2                  3               4                 5

     1) La tratarea alcoolului etilic cu acid sulfuric concentrat are loc         deshidratarea cu formare de etilenă:

                                     H2SO4,conc.

               CH3-CH2OH     CH2=CH2   +  H2O

     2) La temperaturi înalte în prezenţa catalizatorilor are loc reacţia de dehidrogenare cu formare de acetilenă:

t,0C,cat.

CH2=CH2               CH≡CH  + H2

     3) La trimerizarea acetilenei se obţine benzen:

      4) La tratarea benzenului cu Cl2 în prezenţa FeCl3 se obţine                           clorobenzen:

Page 5: compusi organici

      5) La tratare cu amoniac în prezenţa NaOH se obţine anilina:

    Prin prezenta sinteză am demonstrat legătura genetică dintre hidrocarburile saturate, hidrocarburile nesaturate, hidrocarburile aromatice, cloroderivaţi, amine.

  (III) De sintetizat din metan polimerul fenolformaldehida conform                       următoarei scheme:

  CH4 CH≡CH      C6H6  C6H5Cl C6H5OH     fenolformaldehidă

          1                    2                3                 4                    8

                                                                                

    CH4      CH3Cl        CH3OH             H2C=O    fenolformaldehidă

             5                    6                           7               

    1)  Prin descompunerea catalitică a metanului în industria chimică se obţine acetilenă:

                                       cat.

                            2CH4 CH≡CH  +  3H2

    2) La trimerizarea acetilenei se obţine benzen (vezi reacţia mai sus)

    3) La tratarea benzenului cu Cl2  în prezenţa FeCl3 se obţine clorobenzen (vezi reacţia mai sus)

    4) La tratarea clorobenzenului cu hidroxid de sodiu se obţine fenol:

Page 6: compusi organici

    5) Între metan şi clor sub acţiunea luminii are loc o reacţie de substituţie cu formare de clorometan:

                    CH4 + Cl2 CH3Cl  +  HCl

    6) La tratarea clorometanului cu NaOH se obţine metanol:

                    CH3Cl + NaOH CH3OH + NaCl

    7) La trecerea vaporilor de metanol asupra oxidului de cupru (II) se obţine aldehida formică:

                                                                                                                

                  CH3OH  + CuO   H2C=O   + Cu + H2O

                                                       

8)  Fenolul şi aldehida formică participă într-o reacţie de polimerizare-policondensare cu formarea unui polimer fenolformaldehida:

                                                                  fenolformaldehidă

     Prin sinteza dată am demonstrat legătura genetică ce există  între hidrocarburile saturate, hidrocarburile nesaturate, hidrocarburile aromatice, cloroderivaţi, alcooli, fenoli, aldehide, substanţe polimerice,  Necăt nd la diversitatea enormă a compuşilor organici (c teva milioane de compuşi) fiecare dintre ei aparte poate fi transformat prin anumite reacţii chimice în alţi compuşi. Din compuşi organici destul de simpli (hidrocarburi pot fi obţinuţi (sintetizaţi) compuşi cu o structură complicată, cu o mulţime de grupe funţionale, etc.).

    Legătura genetică dintre compuşii organici indică posibilitatea transformării compuşilor organici între ei prin anumite reacţii chimice.

Page 7: compusi organici

IZOMERIA     COMPUŞILOR    ORGANICI

     Identitatea  şi proprietăţile compuşilor organici depind nu numai din  ce  fel  de  atomi este constituit acest compus ci şi de modul de legare  a  acestor  atomi între ei, de tipul legăturilor formate între atomi, de tipul şi locul grupelor funcţionale în acest compus. Astfel, compusul C2H6O poate fi redat prin două formule de structură:

  Unul din aceşti compuşi este un alcool (I), iar celălalt - un eter (II). Aceşti compuşi sunt izomeri între ei.

    Se numesc izomeri compuşii care au aceeaşi compoziţie chimică dar structură chimică şi proprietăţi diferite.

    Izomeria compuşilor organici este foarte variată. Astfel, la nivelul cursului de chimie organică liceal întîlnim:

    1) izomeria prin ramificarea catenei;

    2) izomeria prin poziţia diferită a legăturii multiple în catenă;

    3) izomeria prin poziţia reciprocă diferită a cîtorva legăruri multiple;

    4) izomeria geometrică (stereoizomeria sau izomeria cis-trans);

    5) izomeria după poziţia diferită a grupei funcţionale în catenă;

    6) izomeria după poziţia reciprocă a cîtorva grupe funcţionale;

    7) izomeria cetono-enolică;

    8) tautomeria;

    9) iomeria optică.

     Cei mai simpli compuşi organici, hidrocarburile, formează diverşi izomeri. De  exemplu,  hidrocarburile  saturate, alcanii, începînd cu

C4H10 formează izomeri prin ramificarea catenei:

Page 8: compusi organici

     Cu  cît  lanţul  hidrocarburii saturate este mai lung, cu atît mai mulţi izomeri poate avea acest compus. De exemplu, hexanul are deacum 5 izomeri:

 

     Pentru  hidrocarburile nesaturate (etilenice) sunt caracteristice mai  multe  tipuri de izomerie: prin ramificarea catenei, prin poziţia legăturii duble sau triple şi stereoizomeria. De exemplu, C4H8 are mai mulţi izomeri:

 a) prin ramificarea catenei:

CH3-CH=CH-CH3

2-butenă

2-metil-1-propenă

 b) prin poziţia legăturii duble:

                    CH3-CH=CH-CH3          CH2=CH-CH2-CH3

2-butenă                                 1-butenă

 c) Stereoizomeria:

Page 9: compusi organici

                                         cis-2-butenă            trans-2-butenă

    La hidrocarburile nesaturate de tip dienic se întîlneşte izomeria

prin poziţia reciprocă a legăturilor duble. De exemplu, butadiena

poate fi întîlnită sub formă de 2 izomeri:

          CH2=CH-CH=CH2       şi          CH2=C=CH-CH3

            1,3-butadienă                             1,2-butadienă

     La compuşii organici ce conţin grupe funcţionale (alcooli, amine, acizi,  etc.) apare izomeria după poziţia acestei grupe funcţionale în catenă, sau atunci cînd sunt mai multe grupe funcţionale - şi izomeria după poziţia reciprocă a acestor grupe funcţionale în catenă. De exemplu, alcoolul propilic există sub formă de 2 izomeri:

CH3-CH2-CH2-OH

1-propanol

2-propanol

   Diclorura de propan poate exista sub formă de 4 izomeri:    

                                                               

Cl-CH2-CH2-CH2-Cl

1,3-dicloropropan   

                   1,2-dicloropropan     1,1-dicloropropan      2,2-dicloropropan

    Celelalte tipuri de izomerie se întîlnesc mai rar, numai la anumite grupe de substanţe şi vor fi precăutate împreună cu aceste substante.

Page 10: compusi organici

LEGĂTURA CHIMICĂ ÎN COMPUŞII ORGANICI

     Toţi  compuşii  organici sunt poliatomici, adică sunt formaţi din cel puţin 2 atomi diferiţi:

CH4;  C2H5Cl;   CH3COOH;     CH3NH2  şi a.

     În  moleculele  compuşilor organici toţi atomii sunt legaţi prin legături  chimice,  care asigură acestui compus stabilitate relativă în timp şi spaţiu.

     În  compuşii  organici  se  întîlneşte cel mai des legătura covalentă  şi  mult  mai  rar legătura ionică. Celelalte tipuri de legătură  chimică se întîlnesc numai în anumite tipuri de compuşi şi vor fi studiate împreună cu aceşti compuşi.

    1. Legătura covalentă în compuşii organici

     Legătura  covalentă  se  formează  la  interacţiunea  orbitalilor atomici  de  valenţă  cu  formarea  orbitalilor  moleculari. Legătura covalentă  reprezintă un cuplu din 2 electroni de valenţă comun pentru ambii atomi între care s-a format legătura chimică

( C : C    ;      H : H    ;     O :: O  ;       H : O : H  )

   Există două posibilităţi de formare a legăturii covalente.

a) ambii atomi participă cu orbitali monoelectronici;

H.  + .H    H:H  ;

O:  + :O  O::O ;

     b)  un  atom  participă  cu un orbital bielectronic, iar al doilea atom  are  un  orbital  liber - de fapt are posibilitatea de a forma un  orbital  electronic pe nivelul energetic existent. În acest caz un astfel de mecanism de formare a legăturii covalente se numeşte

DONOR-ACCEPTOR:

     Deoarece  compuşii  organici  sunt  în fond formaţi din carbon şi hidrogen  vom  precăuta  pentru început formarea legăturii covalente între  atomii  de carbon şi hidrogen.

Page 11: compusi organici

TEORIA STRUCTURII COMPUŞILOR CHIMICI

     Chimia  organică  este  chimia  compuşilor  carbonului,  sau  mai corect:     este   chimia   hidrocarburilor   şi  a  derivaţilor  lor.

Hidrocarburile  sunt constituite numai din atomi de carbon şi hidrogen şi  reprezintă  molecule  liniare,  ramificate  sau  ciclice extrem de variate:

 Prin substituirea atomilor de hidrogen se obţin alţi derivaţi:

    etc.

       alcooli            cloroderivaţi                   amine                             acizi

     Substituienţii  atomilor de hidrogen se numesc grupe funcţionale.

Grupele  funcţionale  pot  fi  simple, formate dintr-un atom (-Cl; -F; -I, etc.) sau compuse (-NH3; -OH; -CHO; -COOH, etc.). Deseori compuşii organici includ  diferiţi atomi chiar în catenă:

     etc.

     În   compuşii   organici  legăturile  chimice  între  atomi  sunt preponderent  covalente. Legăturile ionice se întîlnesc rar şi nu sunt caracteristice. Pentru a înţelege mai bine chimia organică reţineţi:

     1.   În  compuşii  organici  atomii  de  carbon  întotdeauna manifestă valenţa IV, adică formează 4 legături chimice;

     2.   Varietatea  compuşilor  organici  în   general  se datorează formării legăturilor carbon-carbon: −C−C−; −C=C−; −C≡C−; etc.

Page 12: compusi organici

     Pentru  a  opera  eficient în multitudinea compuşilor organici pe larg se utilizează diferite clasificări  (după compoziţie, după provinienţă,  după  proprietăţi, după grupe funcţionale, etc.). Mai des  este  utilizată  clasificarea  după  compoziţie. Astfel, compuşii organici sunt divizaţi în:

1) hidrocarburi (compuşi organici constituiţi numai din atomi de carbon şi hidrogen);

2) compuşi oxigenaţi; constituiţi din atomi de carbon, hidrogen şi oxigen;

3) compuşi organici, ce conţin carbon, hidrogen şi azot;

4) compuşi halogenaţi constituiţi din atomi de carbon, hidrogen şi atomi ai nemetalelor din grupa a VII (F;Cl; Br; I);

5) compuşi organici ce conţin fosfor... sulf .... şi alte elemente.

6) heterocompuşi (compuşi organici ce conţin atomi ai mai multor elemente: carbon, hidrogen, oxigen, halogeni sau carbon, hidrogen, azot, oxigen,etc.

     În  chimia  organică  pentru  a  reda  structura  unui  compus se utilizează mai multe tipuri de formule chimice:

 1.  Formula  empirică (se indică simbolurile atomilor elementelor şi  numărul  lor  respectînd  următoarea  ordine:

    - la început se scrie simbolul  atomului  de  carbon,  apoi urmează  simbolul  atomului  de hidrogen  şi numai după aceea se scriu simbolurile celorlalte elemente: C3H7Cl; CH2O; C2H7N, etc.);

 2. Formula semiempirică (este utilizată în mai multe variante:

    - se evidenţiază grupele funcţionale specifice C3H7COOH, C6H5NH2,  etc.);

    - atomii de hidrogen şi grupele funcţionale se grupează la fiecare atom de carbon:  CH3COOH; CH3CH(OH)CH3; (CH3)3CNH2; CH3CH(CH3)CH2CH3,etc.);

 3. Formula semistructurală (molecula compusului organic este văzută ca fiind constituită numai din grupe funcţionale: CH3-; -CH2-; -OH; -COOH; -NH2, etc., legate prin liniuţe - legături chimice:

CH3-CH2-CH2-CH3;                        CH3-CH2-OH;

Page 13: compusi organici

 4. Formule de structură, în care se indică toţi atomii şi modul de legare a lor:

 5. Formule electronice de structură, în care legăturile chimice sunt     redate prin cupluri de electroni (legături covalente) sau atracţia sarcinilor ionice:

                       H:C:::C:H;   H:C:::N:  Na+Cl¯;  etc.

 6. Deseori, pentru a reda structura compuşilor organici se utilizează formule de structură cu utilizarea superpunctului '•'. Superpunctul reprezintă o grupă funcţională a unei hidrocarburi.

    Astfel formula  CH3-CH2-CH=CH2 poate fi redată ca:

•─•─•─•

    În programele de calculator 'superpunctul' este ataşat la tasta (~) în regim de legătură chimică (F8).

     Cel  mai des pentru descrierea formulelor şi a reacţiilor chimice se utilizează   formulele   semiempirice,  semistructurale şi prin utilizarea superpunctulul. Formulele empirice sunt puţin informative şi deaceea se utilizează rar, iar formulele de structură şi electronice sunt foarte greu de scris.

     Mai jos vom arăta modul de scriere a formulelor chimice utilizînd aceste formule de structură.

                             Butan;        Alcool etilic;      Acid acetic;

Formulele empirice:           C4H10           C2H6O             C3H4O2

Formulele semiempirice:    CH3CH2CH2CH3      CH3CH2OH           CH3CH2COOH

Formulele semistructurale: CH3-CH2-CH2-CH3   CH3-CH2-OH         CH3-CH2-COOH

Formulele de structură

Page 14: compusi organici

     Atomul de carbon are 4 electroni de  valenţă, care în stare staţionară  formeaz   orbitalul  2s  (2 electroni) şi doi orbitali 2p cu cîte un electron. Formula electronică a  electronilor  de valenţă a atomului de carbon în stare staţionară este:

2s22p2 .

     În  această  stare  atomul  de  carbon  poate  forma  2  legături covalente  prin  cuplarea  electronilor  şi una de tip donor-acceptor. Carbonul  este  un  element  cu o activitate chimică redusă. În reacţiile  chimice  participă  în  stare  excitată, cînd un electron de pe orbitalul 2s formează un nou orbital 2p. Aceasta duce la formarea a

4 orbitali monoatomici de valenţă. Formula electronică  va fi:

2s12p3

   În aşa stare atomul de carbon poate forma 4 legături covalente.

   Atomul de hidrogen are un electron, care formează un orbital monoatomic. Formula electronică a acestui electron va fi:      1s1. În toţi compuşii săi hidrogenul este monovalent.

     Atomul  de oxigen are doi orbitali monoelectronici şi în compuşii organici  formează  numai 2 legături covalente. Atomii halogenilor (F, Cl, Br, I) în compuşii organici formeză o singură legatură covalentă.

   În dependenţă de felul cum se formează legătura covalentă şi atomii între care se formează legătura covalentă deosebim:

1) Legături sigma şi legături pi:

   - legătura sigma se formează între orbitali dea lungul aceleeaşi axe (ea este mai trainică şi mai preferabilă);

   - legătura pi se formează între orbitali bilobari, de tip halteră (p), dispuşi paralel unul faţă de altul. Legătura pi este mai puţin preferabilă şi se formează între atomi după ce s-a format deja între ei legătura sigma;

Page 15: compusi organici

2) Legături omogene şi heterogene:

   - legături omogene - între atomi identici (C-C ; H-H; N-N; O-O);

   - legături heterogene - între atomi diferiţi (C-H; C-Cl; C-N);

3) Legături simple, duble, triple:

   - legătura simplă reprezintă o singură legătură covalentă între doi atomi şi este de tip sigma (C-C ; H-H; C-O;  C-Br);

   - legătura dublă este formată dintr-o legătură sigma şi o legătură pi (O=O; C=O; -N=N-);

   - legătura triplă este formată dintr-o legătură sigma şi două legături pi (-C≡C-;  N≡N;  -C≡N).

             2. Legătura ionică în compuşii organici

    Legătura ionică se întîlneşte în compuşii organici unde a avut loc o

puternică ionizare a legăturii covalente polare şi anume:

  - în acetiluri:                  Na+ -C≡C- Na+   ;  Ag+-C≡C-Ag+;

  - în alcoolaţi:                  CH3-CH2-O- Na+  ;   C6H5-O- Na+;

  - sărurile acizilor carboxilici: CH3-COO- Na+    ;  C6H5COO- Na+;

  - săruri ale aminelor:           CH3-CH2-NH3+Cl-; (CH3)3N+OH-;

  - alţi compuşi (acizi nucleici, compuşi sulfonici ş.a.).

    O caracteristică importantă a compuşilor organici este formarea ca-

tenelor din atomi de carbon (doi şi mai mulţi atomi de carbon uniţi prin

legături covalente  -C-C-C-C-) sau din atomi diferiţi (-C-O-C-).

    Aici întîlnim:

      Catene de atomi de carbon:

    - catene liniare  -C-C-C-C-C- ;  -C=C- ;

                                  

-         catene ramificate

Page 16: compusi organici

-         catene ciclice simple şi cu catenă laterală:    

   În toate aceste cazuri avem de a face cu legături covalente.

 Pentru compuşii preponderent cu legături covalente pentru caracteristica numărului de legături formate este convenabil de folosit noţiunea de valenţă. Astfel în compuşii organici:

 - carbonul este tetravalent (formează 4 legături chimice);

 - hidrogenul este monovalent (formează o legătură chimică);

 - oxigenul este bivalent (formează 2 legături chimice);

 - halogenii (F; Cl; Br; I) sunt monovalenţi (formează o legătură chimică);

 - azotul este preponderent trivalent şi numai în nitrocompuşi este tetravalent;

 - sulful este bivalent şi numai în compuşi sulfonici este hexavalent.