amplificator de audiofrecventa cu amplificator operational si tranzistoare.doc

34
Universitatea Politehnica din București Facultatea de Transporturi Catedra Telecomenzi și Electronică în Transporturi Amplificator de audiofrecventă (cu amplificator operational si tranzistoare) Autor: Îndrumător: 1

Upload: georgealin

Post on 18-Dec-2015

100 views

Category:

Documents


11 download

TRANSCRIPT

Amplificator de Audiofrecventa cu Amplificator Operational si Tranzistoare

Universitatea Politehnica din Bucureti

Facultatea de Transporturi

Catedra Telecomenzi i Electronic n Transporturi

Amplificator de audiofrecvent

(cu amplificator operational si tranzistoare)

Autor:

ndrumtor:

Ovidiu Tomescu

Grupa: 8313CUPRINS

1. Prezentarea circuitului

denumirea circuitului;

schema electric;

cum functioneaz circuitul si unde se foloseste (caracteristici tehnice).

2. Schema electric a circuitului desenat n Orcad Capture, cu amplasarea nodurilor.

3. Schema intern a amplificatorului operational LM741.

4. Analiza de curent continuu:

a) Caracteristica de iesire a tranzistoarelor

b) Functia de transfer

c) Punctul static de functionare al amplificatorului

5. Analiza de curent alternativ :

a) Folosind analiza de curent alternativ sa se determine spectrul de frecvente al amplificatorului

b) Sa se determine rezistententele de intrare/iesire ale amplificatorului

6. Analiza in domeniul timp

a) La intrarea amplificatorului se va aplica un semnal sinusoidal. Frecventa semnalului de intrare va fi aleasa atat din interiorul, cat si din afara spectrului de frecvente. Cum se modifica aplitudinea semnalului de iesire in functie de frecventa?

b) Analiza parametrica

c) Analiza cu temperatura8. Cablajul circuitului.

9. Concluzii.

10. BibliografieCap.1 Prezentarea circuitului

Circuitul ce va fi prezentat este un amplificator de audiofrecven proiectat s functioneze n gama de frecvente 20Hz 20kHz. Este un aplificator de mica putere putnd sustine o sarcin de 50W la o impendant de 4.

Acest amplificator poate fi considerat hibrid deoarece foloseste att un amplificator operational de tip LM741, ct si un etaj cu dou tranzistoare complementare PNP cu NPN (2N6107, BC178, 2N5295, BC108).

Mai jos este prezentat schema electronic a montajului i valorile componentelor:

Acest montaj amplificator de mic putere poate fi utilizat pentru amplificarea frecventelor din gama 20 Hz 20 kHz. Avantejele acestor amplificatoare hibride sunt acelea ca au un consum foarte redus, au un randament ridicat i pot fi realizate la dimensiuni extrem de reduse, chiar de ordinul milimetrilor dac se folosesc componente SMD (Surface Mounted DeviceCap.2 Schema electronic realizat n Orcad Capture

Cap.3 Schema electronic intern a LM741

Am folosit acest amplificator operational deoarece amplificatoarele din gama 741 (UA741, LM741, A741) sunt utilizate n foarte multe circuite electronice, nu numai de amplificare, ci si de comparare, n montaje inversoare etc.

Mai jos este prezentat schema interna a capsulei lui LM741. Din aceasta imagine se deduce faptul c circuitul integrat cuprinde un singur amplificator operational conectat la pinii exteri ai capsulei dup cum urmeaz:

Pinul 1 Offest Nul

Pinul 8 nefolosit

Pinul 2 intrare inversoare

Pinul 7 Borna alimentare +

Pinul 3 intrare neinversoare Pinul 6 Ieire

Pinul 4 mas

Pinul 5 Offset Null

n continuare este prezentat schema electronic intern detaliat a amplificatorului operaional coninut de circuitul LM741:

Analiza de curent continuu:a) Caracteristica de iesire a tranzistoarelor

CIRCUIT DESCRIPTION

BC178A

I1 1 4 5uA

V1 4 0 12V

R1 2 1 0.001

R2 0 3 0.001m

Q5 4 2 3 BC178A

.LIB EBIPOLAR.LIB

.OP

.DC V1 0V 12V 1V I1 5uA 25uA 5uA

.PROBE

.ENDBJT MODEL PARAMETERS

BC178A

PNP

IS 336.700000E-15

BF 187

NF 1

VAF 44.61

IKF .2059

ISE 336.800000E-15

NE 1.459

BR 4.068

NR 1

IKR 10.05

ISC 1.121000E-09

NC 1.953

NK .5081

RC 1.86

CJE 33.000000E-12

VJE .5

MJE .3333

CJC 11.000000E-12

VJC .5

MJC .2223

TF 845.500000E-12

XTF 19.04

VTF 10

ITF 1.701

TR 10.000000E-09

XTB 1.5

CN 2.2

D .52

SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) -.5574 ( 2) -.5574 ( 3)-970.5E-12 ( 4) -12.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 -9.705E-04

TOTAL POWER DISSIPATION 1.16E-02 WATTSBIPOLAR JUNCTION TRANSISTORS

NAME Q1

MODEL BC178A

IB -5.00E-06

IC -9.65E-04

VBE -5.57E-01

VBC 1.14E+01

VCE -1.20E+01

BETADC 1.93E+02

GM 3.72E-02

RPI 5.47E+03

RX 0.00E+00

RO 5.81E+04

CBE 9.01E-11

CBC 5.43E-12

CJS 0.00E+00

BETAAC 2.03E+02

CBX/CBX2 0.00E+00

FT/FT2 6.20E+07

CIRCUIT DESCRIPTION2N6107

I1 1 4 5uA

V1 4 0 12V

R1 2 1 0.001

R2 0 3 0.001m

Q7 4 2 3 Q2N6107

.MODEL Q2N6107 PNP(Is=632.4f Xti=3 Eg=1.11 Vaf=100 Bf=112.1 Ise=962.8f

+ Ne=1.373 Ikf=2.187 Nk=.6196 Xtb=2.1 Br=66.4 Isc=974.4f Nc=1.207

+ Ikr=125.8 Rc=.2066 Cjc=508.9p Mjc=.4847 Vjc=.75 Fc=.5

+ Cje=379.8p Mje=.4937 Vje=.75 Tr=89.17n Tf=17.41n Itf=5.921

+ Xtf=1.062 Vtf=10 Rb=.1

.OP

.DC V1 0V 12V 1V I1 5uA 25uA 5uA

.PROBE

.END

BJT MODEL PARAMETERS

Q2N6107

PNP

IS 632.400000E-15

BF 112.1

NF 1

VAF 100

IKF 2.187

ISE 962.800000E-15

NE 1.373

BR 66.4

NR 1

IKR 125.8

ISC 974.400000E-15

NC 1.207

NK .6196

RB .1

RC .2066

CJE 379.800000E-12

MJE .4937

CJC 508.900000E-12

MJC .4847

TF 17.410000E-09

XTF 1.062

VTF 10

ITF 5.921

TR 89.170000E-09

XTB 2.1

CN 2.2

D .52 SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) -.5186 ( 2) -.5186 ( 3)-365.0E-12 ( 4) -12.0000OPERATING POINT INFORMATION TEMPERATURE = 27.000 DEG C VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 -3.650E-04

TOTAL POWER DISSIPATION 4.38E-03 WATTS BIPOLAR JUNCTION TRANSISTORS

NAME Q1

MODEL Q2N6107

IB -5.00E-06

IC -3.60E-04

VBE -5.19E-01

VBC 1.15E+01

VCE -1.20E+01

BETADC 7.20E+01

GM 1.39E-02

RPI 5.85E+03

RX 1.00E-01

RO 3.10E+05

CBE 8.78E-10

CBC 1.32E-10

CJS 0.00E+00

BETAAC 8.13E+01

CBX/CBX2 0.00E+00

FT/FT2 2.19E+06

CIRCUIT DESCRIPTION

BC108 I1 0 1 5uA

V1 4 0 12V

R1 1 2 0.001

R2 3 4 0.001m

Q8 3 2 0 BC108A

.LIB EBIPOLAR.LIB

.OP

.DC V1 0V 12V 1V I1 5uA 25uA 5uA

.PROBE

.END BJT MODEL PARAMETERS BC108A

NPN

IS 7.049000E-15

BF 375.5

NF 1

VAF 116.3

IKF 4.589

ISE 7.049000E-15

NE 1.281

BR 2.611

NR 1

IKR 5.313

ISC 121.700000E-12

NC 1.865

RC 1.464

CJE 11.500000E-12

VJE .5

MJE .2717

CJC 5.380000E-12

VJC .6218

MJC .329

TF 451.000000E-12

XTF 17.43

VTF 10

ITF 6.194

TR 10.000000E-09

XTB 1.5

CN 2.42

D .87 SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) .6576 ( 2) .6576 ( 3) 12.0000 ( 4) 12.0000 VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 -8.511E-04

TOTAL POWER DISSIPATION 1.02E-02 WATTS BIPOLAR JUNCTION TRANSISTORS NAME Q1

MODEL BC108A

IB 5.00E-06

IC 8.51E-04

VBE 6.58E-01

VBC -1.13E+01

VCE 1.20E+01

BETADC 1.70E+02

GM 3.29E-02

RPI 5.94E+03

RX 0.00E+00

RO 1.50E+05

CBE 3.49E-11

CBC 2.03E-12

CJS 0.00E+00

BETAAC 1.95E+02

CBX/CBX2 0.00E+00 FT/FT2 1.42E+08

CIRCUIT DESCRIPTION 2N5294I1 0 1 5uA

V1 4 0 12V

R1 1 2 0.001

R2 3 4 0.001m

Q1 3 2 0 Q2N5294

.MODEL Q2N5294 NPN(Is=1.129p Xti=3 Eg=1.11 Vaf=100 Bf=161 Ise=31.17p Ne=1.557

+ Ikf=1.948 Nk=.648 Xtb=2 Br=1 Isc=23.5p Nc=1.489 Ikr=31.34m

+ Rc=.1682 Cjc=251.5p Mjc=.5045 Vjc=.75 Fc=.5 Cje=286.3p

+ Mje=.4961 Vje=.75 Tr=810n Tf=23.64n Itf=10.92 Xtf=.3795 Vtf=10

+ Rb=.1)

.OP

.DC V1 0V 12V 1V I1 5uA 25uA 5uA

.PROBE

.END BJT MODEL PARAMETERS Q2N5294

NPN

IS 1.129000E-12

BF 161

NF 1

VAF 100

IKF 1.948

ISE 31.170000E-12

NE 1.557

BR 1

NR 1

IKR .03134

ISC 23.500000E-12

NC 1.489

NK .648

RB .1

RC .1682

CJE 286.300000E-12

MJE .4961

CJC 251.500000E-12

MJC .5045

TF 23.640000E-09

XTF .3795

VTF 10

ITF 10.92

TR 810.000000E-09

XTB 2

CN 2.42

D .87 SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) .4765 ( 2) .4765 ( 3) 12.0000 ( 4) 12.0000 VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 -1.265E-04

TOTAL POWER DISSIPATION 1.52E-03 WATTS BIPOLAR JUNCTION TRANSISTORSNAME Q1

MODEL Q2N5294

IB 5.00E-06

IC 1.26E-04

VBE 4.77E-01

VBC -1.15E+01

VCE 1.20E+01

BETADC 2.53E+01

GM 4.89E-03

RPI 7.47E+03

RX 1.00E-01

RO 8.82E+05

CBE 5.74E-10

CBC 6.14E-11

CJS 0.00E+00

BETAAC 3.65E+01

CBX/CBX2 0.00E+00

FT/FT2 1.23E+06

b) Functia de transferproiect_PAC

V1 1 0 SIN(0 0.5 1K)

V2 6 0 12V

V3 11 0 -12V

R1 1 2 10K

R2 0 8 4.7K

R3 2 3 270K

R4 4 6 1K

R5 9 11 1K

R6 0 7 47

R7 0 3 4C1 2 3 50p

C2 7 3 0.01u

Q1 3 4 5 BC178A

.LIB EBIPOLAR.LIB

Q2 3 5 6 Q2N6107

.MODEL Q2N6107 PNP(Is=632.4f Xti=3 Eg=1.11 Vaf=100 Bf=112.1 Ise=962.8f

+ Ne=1.373 Ikf=2.187 Nk=.6196 Xtb=2.1 Br=66.4 Isc=974.4f Nc=1.207

+ Ikr=125.8 Rc=.2066 Cjc=508.9p Mjc=.4847 Vjc=.75 Fc=.5

+ Cje=379.8p Mje=.4937 Vje=.75 Tr=89.17n Tf=17.41n Itf=5.921

+ Xtf=1.062 Vtf=10 Rb=.1)

Q3 3 9 10 BC108A

.LIB EBIPOLAR.LIB

Q4 3 10 11 Q2N5294

.MODEL Q2N5294 NPN(Is=1.129p Xti=3 Eg=1.11 Vaf=100 Bf=161 Ise=31.17p Ne=1.557

+ Ikf=1.948 Nk=.648 Xtb=2 Br=1 Isc=23.5p Nc=1.489 Ikr=31.34m

+ Rc=.1682 Cjc=251.5p Mjc=.5045 Vjc=.75 Fc=.5 Cje=286.3p

+ Mje=.4961 Vje=.75 Tr=810n Tf=23.64n Itf=10.92 Xtf=.3795 Vtf=10

+ Rb=.1)

X1 8 2 4 9 7 LM741

.LIB OPAMP.LIB

.OP

.TF V(3) V1

.ENDSMALL-SIGNAL CHARACTERISTICSV(3)/V1 = 1.858E-04

C) Punctul static de functionare al amplificatorului

Punctul static de functionare al amplificatorului, in curent continuu, este dat de : I= 6.127mA si U= 24,51mV

Analiza de curent alternativa) Folosind analiza de curent alternativ sa se determine spectrul de frecvente al amplificatorului

proiect_PAC

V1 1 0 AC 0.1V

V2 6 0 12V

V3 11 0 -12V

R1 1 2 10K

R2 0 8 4.7K

R3 2 3 270K

R4 4 6 1K

R5 9 11 1K

R6 0 7 47

R7 0 3 4C1 2 3 50p

C2 7 3 0.01u

Q1 3 4 5 BC178A

.LIB EBIPOLAR.LIB

Q2 3 5 6 Q2N6107

.MODEL Q2N6107 PNP(Is=632.4f Xti=3 Eg=1.11 Vaf=100 Bf=112.1 Ise=962.8f

+ Ne=1.373 Ikf=2.187 Nk=.6196 Xtb=2.1 Br=66.4 Isc=974.4f Nc=1.207

+ Ikr=125.8 Rc=.2066 Cjc=508.9p Mjc=.4847 Vjc=.75 Fc=.5

+ Cje=379.8p Mje=.4937 Vje=.75 Tr=89.17n Tf=17.41n Itf=5.921

+ Xtf=1.062 Vtf=10 Rb=.1)

Q3 3 9 10 BC108A

.LIB EBIPOLAR.LIB

Q4 3 10 11 Q2N5294

.MODEL Q2N5294 NPN(Is=1.129p Xti=3 Eg=1.11 Vaf=100 Bf=161 Ise=31.17p Ne=1.557

+ Ikf=1.948 Nk=.648 Xtb=2 Br=1 Isc=23.5p Nc=1.489 Ikr=31.34m

+ Rc=.1682 Cjc=251.5p Mjc=.5045 Vjc=.75 Fc=.5 Cje=286.3p

+ Mje=.4961 Vje=.75 Tr=810n Tf=23.64n Itf=10.92 Xtf=.3795 Vtf=10

+ Rb=.1)

X1 8 2 4 9 7 LM741

.LIB OPAMP.LIB

.AC DEC 10 1K 100MEG.PROBE

.END

Pentru a afla spectrul de frecvente trebuie sa aflam, mai intai, valoarea tensiunii pentru frecventa critica:

U= Umax * 0,707 U= 120*10 *0.707= 84 mV

Astfel, spectrul de frecvente al amplificatorului este 80kHz 700khz

b) Sa se determine rezistententele de intrare/iesire ale amplificatoruluiproiect_PAC

V1 1 0 AC 0.1V

V2 6 0 12V

V3 11 0 -12V

R1 1 2 10K

R2 0 8 4.7K

R3 2 3 270K

R4 4 6 1K

R5 9 11 1K

R6 0 7 47

R7 0 3 4

C1 2 3 50p

C2 7 3 0.01u

Q1 3 4 5 BC178A

.LIB EBIPOLAR.LIB

Q2 3 5 6 Q2N6107

.MODEL Q2N6107 PNP(Is=632.4f Xti=3 Eg=1.11 Vaf=100 Bf=112.1 Ise=962.8f

+ Ne=1.373 Ikf=2.187 Nk=.6196 Xtb=2.1 Br=66.4 Isc=974.4f Nc=1.207

+ Ikr=125.8 Rc=.2066 Cjc=508.9p Mjc=.4847 Vjc=.75 Fc=.5

+ Cje=379.8p Mje=.4937 Vje=.75 Tr=89.17n Tf=17.41n Itf=5.921

+ Xtf=1.062 Vtf=10 Rb=.1)

Q3 3 9 10 BC108A

.LIB EBIPOLAR.LIB

Q4 3 10 11 Q2N5294

.MODEL Q2N5294 NPN(Is=1.129p Xti=3 Eg=1.11 Vaf=100 Bf=161 Ise=31.17p Ne=1.557

+ Ikf=1.948 Nk=.648 Xtb=2 Br=1 Isc=23.5p Nc=1.489 Ikr=31.34m

+ Rc=.1682 Cjc=251.5p Mjc=.5045 Vjc=.75 Fc=.5 Cje=286.3p

+ Mje=.4961 Vje=.75 Tr=810n Tf=23.64n Itf=10.92 Xtf=.3795 Vtf=10

+ Rb=.1)

X1 8 2 4 9 7 LM741

.LIB OPAMP.LIB

.AC DEC 10 1K 100MEG

.TF V(3) V1

.PROBE

.ENDSMALL-SIGNAL CHARACTERISTICS

INPUT RESISTANCE AT V1 = 2.229E+05

OUTPUT RESISTANCE AT V(3) = 3.978E+00Analiza in domeniul timp

a) La intrarea amplificatorului se va aplica un semnal sinusoidal. Frecventa semnalului de intrare va fi aleasa atat din interiorul, cat si din afara spectrului de frecvente. Cum se modifica aplitudinea semnalului de iesire in functie de frecventa?proiect_PAC

V1 1 0 SIN(0 0.1 110K)

V2 6 0 12V

V3 11 0 -12V

R1 1 2 10K

R2 0 8 4.7K

R3 2 3 270K

R4 4 6 1K

R5 9 11 1K

R6 7 0 47

R7 3 0 4

C1 2 3 50p

C2 7 3 0.01u

Q1 3 4 5 BC178A

.LIB EBIPOLAR.LIB

Q2 3 5 6 Q2N6107

.MODEL Q2N6107 PNP(Is=632.4f Xti=3 Eg=1.11 Vaf=100 Bf=112.1 Ise=962.8f

+ Ne=1.373 Ikf=2.187 Nk=.6196 Xtb=2.1 Br=66.4 Isc=974.4f Nc=1.207

+ Ikr=125.8 Rc=.2066 Cjc=508.9p Mjc=.4847 Vjc=.75 Fc=.5

+ Cje=379.8p Mje=.4937 Vje=.75 Tr=89.17n Tf=17.41n Itf=5.921

+ Xtf=1.062 Vtf=10 Rb=.1)

Q3 3 9 10 BC108A

.LIB EBIPOLAR.LIB

Q4 3 10 11 Q2N5294

.MODEL Q2N5294 NPN(Is=1.129p Xti=3 Eg=1.11 Vaf=100 Bf=161 Ise=31.17p Ne=1.557

+ Ikf=1.948 Nk=.648 Xtb=2 Br=1 Isc=23.5p Nc=1.489 Ikr=31.34m

+ Rc=.1682 Cjc=251.5p Mjc=.5045 Vjc=.75 Fc=.5 Cje=286.3p

+ Mje=.4961 Vje=.75 Tr=810n Tf=23.64n Itf=10.92 Xtf=.3795 Vtf=10

+ Rb=.1)

X1 8 2 4 9 7 LM741

.LIB OPAMP.LIB

.TRAN 1nS 0.2mS

.PROBE

.END

proiect_PAC

V1 1 0 SIN(0 0.1 15K)

V2 6 0 12V

V3 11 0 -12V

R1 1 2 10K

R2 0 8 4.7K

R3 2 3 270K

R4 4 6 1K

R5 9 11 1K

R6 7 0 47

R7 3 0 4

C1 2 3 50p

C2 7 3 0.01u

Q1 3 4 5 BC178A

.LIB EBIPOLAR.LIB

Q2 3 5 6 Q2N6107

.MODEL Q2N6107 PNP(Is=632.4f Xti=3 Eg=1.11 Vaf=100 Bf=112.1 Ise=962.8f

+ Ne=1.373 Ikf=2.187 Nk=.6196 Xtb=2.1 Br=66.4 Isc=974.4f Nc=1.207

+ Ikr=125.8 Rc=.2066 Cjc=508.9p Mjc=.4847 Vjc=.75 Fc=.5

+ Cje=379.8p Mje=.4937 Vje=.75 Tr=89.17n Tf=17.41n Itf=5.921

+ Xtf=1.062 Vtf=10 Rb=.1)

Q3 3 9 10 BC108A

.LIB EBIPOLAR.LIB

Q4 3 10 11 Q2N5294

.MODEL Q2N5294 NPN(Is=1.129p Xti=3 Eg=1.11 Vaf=100 Bf=161 Ise=31.17p Ne=1.557

+ Ikf=1.948 Nk=.648 Xtb=2 Br=1 Isc=23.5p Nc=1.489 Ikr=31.34m

+ Rc=.1682 Cjc=251.5p Mjc=.5045 Vjc=.75 Fc=.5 Cje=286.3p

+ Mje=.4961 Vje=.75 Tr=810n Tf=23.64n Itf=10.92 Xtf=.3795 Vtf=10

+ Rb=.1)

X1 8 2 4 9 7 LM741

.LIB OPAMP.LIB

.TRAN 1nS 0.2mS

.PROBE

.END

b) Analiza parametricaproiect_PAC

V1 1 0 SIN(0 0.1 110K)

V2 6 0 12V

V3 11 0 -12V

R1 1 2 10K

R2 0 8 4.7K

R3 2 3 270K

R4 4 6 1K

R5 9 11 1K

R6 7 0 47

R7 3 0 {R}

C1 2 3 50p

C2 7 3 0.01u

Q1 3 4 5 BC178A

.LIB EBIPOLAR.LIB

Q2 3 5 6 Q2N6107

.MODEL Q2N6107 PNP(Is=632.4f Xti=3 Eg=1.11 Vaf=100 Bf=112.1 Ise=962.8f

+ Ne=1.373 Ikf=2.187 Nk=.6196 Xtb=2.1 Br=66.4 Isc=974.4f Nc=1.207

+ Ikr=125.8 Rc=.2066 Cjc=508.9p Mjc=.4847 Vjc=.75 Fc=.5

+ Cje=379.8p Mje=.4937 Vje=.75 Tr=89.17n Tf=17.41n Itf=5.921

+ Xtf=1.062 Vtf=10 Rb=.1)

Q3 3 9 10 BC108A

.LIB EBIPOLAR.LIB

Q4 3 10 11 Q2N5294

.MODEL Q2N5294 NPN(Is=1.129p Xti=3 Eg=1.11 Vaf=100 Bf=161 Ise=31.17p Ne=1.557

+ Ikf=1.948 Nk=.648 Xtb=2 Br=1 Isc=23.5p Nc=1.489 Ikr=31.34m

+ Rc=.1682 Cjc=251.5p Mjc=.5045 Vjc=.75 Fc=.5 Cje=286.3p

+ Mje=.4961 Vje=.75 Tr=810n Tf=23.64n Itf=10.92 Xtf=.3795 Vtf=10

+ Rb=.1)

X1 8 2 4 9 7 LM741

.LIB OPAMP.LIB

.TRAN 1nS 0.1mS

.PARAM R=4

.STEP PARAM R LIST 4 50 4K

.PROBE

.END

c) Analiza cu temperatura

proiect_PAC

V1 1 0 SIN(0 0.1 110K)

V2 6 0 12V

V3 11 0 -12V

R1 1 2 10K

R2 0 8 4.7K

R3 2 3 270K

R4 4 6 1K

R5 9 11 1K

R6 7 0 47

R7 3 0 4

C1 2 3 50p

C2 7 3 0.01u

Q1 3 4 5 BC178A

.LIB EBIPOLAR.LIB

Q2 3 5 6 Q2N6107

.MODEL Q2N6107 PNP(Is=632.4f Xti=3 Eg=1.11 Vaf=100 Bf=112.1 Ise=962.8f

+ Ne=1.373 Ikf=2.187 Nk=.6196 Xtb=2.1 Br=66.4 Isc=974.4f Nc=1.207

+ Ikr=125.8 Rc=.2066 Cjc=508.9p Mjc=.4847 Vjc=.75 Fc=.5

+ Cje=379.8p Mje=.4937 Vje=.75 Tr=89.17n Tf=17.41n Itf=5.921

+ Xtf=1.062 Vtf=10 Rb=.1)

Q3 3 9 10 BC108A

.LIB EBIPOLAR.LIB

Q4 3 10 11 Q2N5294

.MODEL Q2N5294 NPN(Is=1.129p Xti=3 Eg=1.11 Vaf=100 Bf=161 Ise=31.17p Ne=1.557

+ Ikf=1.948 Nk=.648 Xtb=2 Br=1 Isc=23.5p Nc=1.489 Ikr=31.34m

+ Rc=.1682 Cjc=251.5p Mjc=.5045 Vjc=.75 Fc=.5 Cje=286.3p

+ Mje=.4961 Vje=.75 Tr=810n Tf=23.64n Itf=10.92 Xtf=.3795 Vtf=10

+ Rb=.1)

X1 8 2 4 9 7 LM741

.LIB OPAMP.LIB

.TRAN 1nS 0.2mS

.TEMP 2 30 100

.PROBE

.END

Analiza Fourier

proiect_PAC

V1 1 0 SIN(0 0.1 110K)

V2 6 0 12V

V3 11 0 -12V

R1 1 2 10K

R2 0 8 4.7K

R3 2 3 270K

R4 4 6 1K

R5 9 11 1K

R6 7 0 47

R7 3 0 4

C1 2 3 50p

C2 7 3 0.01u

Q1 3 4 5 BC178A

.LIB EBIPOLAR.LIB

Q2 3 5 6 Q2N6107

.MODEL Q2N6107 PNP(Is=632.4f Xti=3 Eg=1.11 Vaf=100 Bf=112.1 Ise=962.8f

+ Ne=1.373 Ikf=2.187 Nk=.6196 Xtb=2.1 Br=66.4 Isc=974.4f Nc=1.207

+ Ikr=125.8 Rc=.2066 Cjc=508.9p Mjc=.4847 Vjc=.75 Fc=.5

+ Cje=379.8p Mje=.4937 Vje=.75 Tr=89.17n Tf=17.41n Itf=5.921

+ Xtf=1.062 Vtf=10 Rb=.1)

Q3 3 9 10 BC108A

.LIB EBIPOLAR.LIB

Q4 3 10 11 Q2N5294

.MODEL Q2N5294 NPN(Is=1.129p Xti=3 Eg=1.11 Vaf=100 Bf=161 Ise=31.17p Ne=1.557

+ Ikf=1.948 Nk=.648 Xtb=2 Br=1 Isc=23.5p Nc=1.489 Ikr=31.34m

+ Rc=.1682 Cjc=251.5p Mjc=.5045 Vjc=.75 Fc=.5 Cje=286.3p

+ Mje=.4961 Vje=.75 Tr=810n Tf=23.64n Itf=10.92 Xtf=.3795 Vtf=10

+ Rb=.1)

X1 8 2 4 9 7 LM741

.LIB OPAMP.LIB

.TRAN 1nS 0.1mS

.FOUR V(3) 100K

.PROBE

.END

Cablajul in Layout al circuitului

ConcluziiDupa cum se observa in graficul modificarii temperaturii, la cresterea valorii acesteia, amplitudinea semnalului creste.

Cablajul circuitului, realizat in OrCAD Layout, se poate aplica si in practica, fiind unul in dublu strat.

Folosirea transformatei Fourier ne-a ajutat la vizualizarea raspunsului circuitului in functie de frecventa.

Caracteristica de iesire a tranzistoarelor prezinta intrarea acestora in conductivitate, prezentand caracteristicile pentru diferiti curenti din baza tranzistorului. Dreapta crescatoare reprezinta zona de deschidere, iar partea aproximativ plana reprezinta regiunea de lucru. In grafic se prezinta curentul de colector fata de tensiunea colector-emitor.

Bibliografiehttp://www.electronicecircuits.com/electronic-circuits/12w-amplifier-using-741-op-amp6