sustainable carbon materials from biomass ... - 2016organic-inorganic photovoltaics 16.00-16.30 c....

Post on 05-Aug-2020

6 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Sustainable Carbon Materials from Biomass

Hydrothermal Processes

Magda Titirici Queen Mary University of London

Materials Research Institute

Conferinţa  „D i a spora  în  Ce rcetarea  Ştiinţifică  şi  Învăţământul  Superior  din  Ro mâ nia  

- Diaspora  şi  prietenii  săi” 2016

Workshop: Perspective  în  sinteza,  investigarea  şi  ap l ica ţiile  materialelor

Locaţie: Universitatea Politehnica Timisoara Biblioteca Centrala UPT, Bd.Vasile Parvan nr.2b, Sala K1

Marţi, 26 aprilie 2016

8.45-9.00 Inregistrarea participantilor la Workshop

Chairman: Prof. Vasile I. Parvulescu 9.00-9.30 Narcis Avarvari, Chiral molecular electroactive precursors and

conductors 9.30-10.00 Cristian Silvestru, Orgnometallic Compounds as Building Blocks

for Supramolecular Arhitectures

10.00-10.30 Floriana Tuna, Molecular Nanomaterials for quantum

information technologies 10.30-11.00 Niculina Hadade, A short journey through the geometrical and

thermodynamical space of Supramolecular and Dynamic

Adaptive Chemistry

11.00 –11.30 PAUZA DE CAFEA 11.30-12.00 Lucian Pintilie, Polar Materials from Physical Phenomena to

Applications

12.00-12.30 Valeria Harabagiu, Complex supramolecular architectures

12.30-13.00 Ionut Enculescu, Functional nanostructures

13.00-15.00 PAUZA DE PRANZ (Complexul Studentesc - Restaurant Universitar,

Aleea FC Ripesnia Nr.3)

Chairman: Dr. Lucian Pintilie

15.00-15.30 Isabela Man, Density functional theory with application in

catalysis for renewable energy production

15.30-16.00 Mihai  A.  Gîrțu, Molecular modeling of materials used in hybrid

organic-inorganic photovoltaics

16.00-16.30 C.  Balogh,  F.  Riobé,  L.  Veyre,  C.  Thieuleux,  O.  Maury, New luminescent

materials based on lanthanide complexes

16.30-17.00 PAUZA DE CAFEA

17.00-17.30 Loredana Protesescu, Nanocristale de perovskit CsPbX3:

structura, proprietati si aplicatii

28 April 2016, Timisoara

My Scientific Journey

1995-1999 Bucharest, Romania: Organic Chemistry

2001-2005 Mainz & Dortmund, Germany: Imprinted Polymers

2005-2006 Berlin Germany: Discover Hydrothermal Carbonization

2006-2013 Berlin Germany: Consolidate Hydrothermal Carbonization

BSc

Research Stage

PhD

PostDoc

Group Leader

Assistant Professor

Full Professor

1999-2001: INFIM Magurele & Rostock, Germany: Sol-Gel Ferroelectrics

2013-2014 London: Reader in Materials Science

2014-now London, Full Professor in Sustainable Materials Chemistry

Queen Mary University of London

20,000 students and over 4,000 staff

Three faculties:

Humanities and Social Sciences

Medicine and Dentistry

Science and Engineering

25% international students – 151 nationalities

£300 million of infrastructure

investment in past 5 years

Ranked 6 in the UK for general engineering

(REF2014)

QMUL Location

World Energy Consumption: 500 EJ/year

• Making materials & chemicals consumes about 35% of the global energy

• Materials & chemicals today are derived from fossil fuels

• Energy today is from fossil fuels

• To build renewable energy we need materials & chemicals

Materials & Chemicals

Energy

Conflict: Energy vs Materials

Critical Materials

http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm

Economic Importance

Su

pp

ly R

isk

Critical Materials: Geographical Distribution

http://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical/index_en.htm

Renewable Energy and Critical Materials

http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf

Materials and Chemicals from Biomass

Liquid: Chemicals

Solid: Carbon

Basic chemicals Liquid fuels Green Solvents Polymers

Functional materials Catalysts Electrode materials Adsorbents Solid fuels

HMF

LA

FA

HTC

Titirici et al, Chem. Soc. Rev., 2015, 44, 250-29 Titirici et al, Sustainable Carbon Materials via Hydrothermal processes, Wiley, 2013 Titirici et al, Energy and Environmental Science, 2012, 5, 6796

200-300 C

self-generated

pressure

• RENEWABLE • CHEAP • LOW ENERGY IMPUT • NO CO2 EMISSIONS

6

The Carbon Biorefinery Concept

Abundant Resources

Materials Design

Characterisation

Modelling

Processing

Reactivity

Structure-Function

Nanoscale

Assessment

Energy Storage

PEM Electrocatalysis

Carbon Capture

Carbon Quantum Dots

Biomass to Chemicals

Metals Recovery

Abundant Resources

Energy Storage

PEM Electrocatalysis

Carbon Capture

Carbon Quantum Dots

Biomass to Chemicals

Platinum Recovery

Hydrothermal Carbonisation

Outline

2h 4h

8h 12h

2h 4h

8h 12h

Carbohydrates: Glucose

10%wt Glucose, HTC @180°C

2h

20h

2h

20h

GC-MS of the residual liquid

glucose -3H2O

HMF

glucose solutionpolymerisation/

nucleation

HTC formation/

growth

glucose solutionpolymerisation/

nucleation

HTC formation/

growth

Time

2µm

4h-solid fraction

2µm 12h

12h-solid fraction

Carbohydrates: Glucose

Glucose Solution 10%wt, 180°C

Carbohydrates: Glucose

Concentration

Glucose 5% wt

Glucose 3% wt

Problem: Low Carbon Yield

180°C, 12h

13C-Solid State NMR

CHx C=C-C C=C-O

COOH C=O

• INEPT • 1H-13C CP experiments • 1H-13C IRCP experiments • 13C homonuclear DQ-SQ

HTC Structure

J. Phys. Chem. C, 2010, 2009, 113, 9644

cross-linked

furanic species

connections with

functional groups

HTC Structure

HTC Structure

Chemical Analysis 69% C - 4.5% H - 26.5% O

Glucose, 180°C

-3H2O + 2H2O

Glucose dehydration

HMF levulinic acid formic acid

HTC Chemistry

HMF polymerization-aromatisation

Diels–Alder

HMF

HRTEM

HTC 180°C

HTC 550°C

0 20 40 60 80 100

(110)

HTC-G-950

HTC-G-750

HTC-G-550

HTC-G-350

Inte

nsi

ty

2

HTC-G

(002)

(100)

a)

0 20 40 60 80 100

HTC-Su-950

HTC-Su-750

HTC-Su-550

HTC-Su-350

Inte

nsi

ty

2

HTC-Su

(110)

(002)

(100)

b)

0 20 40 60 80 100

HTC-St-750

HTC-St-950

HTC-St-550

HTC-St-350

Inte

nsi

ty

2

HTC-St

(110)

(002)

(100)

c)

0 20 40 60 80 100

HTC-X-950

HTC-X-750

HTC-X-550

HTC-X-350

Inte

nsi

ty

2

HTC-X

(110)

(002)

(100)

d)

XRD

13 C- Solid State NMR

Langmuir, 2011, 27, 14460

Heat Treatment

HTC 950°C

Graphitization

+ FeCl2

Fe2+

Fe2+

Fe2+

Fe3C@Graphitic Carbon

HCl

Fe2+

Fe2+

Fe2+

Fe2+

Fe2+

Fe2+

Graphitic Carbon

1000°C

XRD

Raman

RAMAN

D

G D+G

Exfoliation to Graphene

2D

G

200 nm 500 nm

either transform into the final spherical carbon particles or

they can be used for nanocoating of other structures.21,19

Transmission electron micrographs of the resulting materi-

als reveal the perfect replication of the hexagonal order of the

silica pores into the resulting carbonaceous material (Fig. 1). I t

can be clearly observed that the Comp-OHC-25 material has a

much higher remaining porosity than the completely filled

composite, although some pores can still be detected in Comp-

OHC-100. This is in good agreement with nitrogen sorption

experiments which also show some remaining pores (see

Fig. 3a, later). Nevertheless, in both cases, the filling is

sufficiently uniform to provide a stable carbon replica.

The hexagonal order in the silica, composites and resulting

carbon materials was also determined by SAXS. The SAXS

curves are shown in Fig. 2. The typical three Bragg reflections

(100), (110) and (200) for a 2D hexagonal arrangement are

present in the SAXS patterns of the templated carbons as well

as in their corresponding composites. Independent of the

method, complete (OHC-100) or just partial pore filling

(OHC-25), the higher order reflections can still be observed

in the composites proving a good replication of the silica

template. Both resulting ordered carbon materials exhibit

patterns similar to that of the SBA-15 template; their unit cell

parameters ao are presented in Table 1.

Fig. 1 TEM micrographs of A, D: SBA-15 silica template, B: composite obtained by total pore filling with furfural (Comp-OHC-100), C: carbon

replica obtained by silica removal from B (OHC-100), E: composite obtained by filling 25% of the SBA-15 pores (Comp-OHC-25), F: carbon

replica obtained by dissolut ion of silica from E (OHC-25).

Table 1 Physical properties of the obtained materials

M aterial %C %N a/nma SBETb/m2 g2 1 Vmic

c/mL g2 1 Vtotd/mL g2 1 Pd/nme

SBA-15 — — 11 793 0.04 1.02 7.0Comp-OHC-25 22.42 — 9.7 404 0.03 0.73 5.9Comp-OHC-100 42.35 — 9.8 130 0.01 0.15 3.5OHC-25 68.06 — 9.8 577 0.07 1.55 6.8OHC-100 69.05 — 9.9 350 0.02 1.03 4.5OHC-25-NH2 65.14 4.6 9.7 405 0.03 1.40 6.8OHC-100-NH2 67.17 4.4 9.8 275 0.04 0.98 4.5a Lattice parameters calculated from d100 spacing in SAXS patterns. b Surface areas calculated with BET method. c M icroporous volumecalculated by DFT model. d Total pore volume calculated at p/po = 0.99. e Pore sizes obtained from nitrogen adsorption isotherms at maximaof PSDs.

Fig. 2 SAXS patterns of the silica template, corresponding compo-

sites and ordered hydrothermal carbon materials.

3414 | J. Mater. Chem., 2007, 17, 3412–3418 This journal is ß The Royal Society of Chemistry 2007

A B

C D

E F

A- Mesoporous Carbon Spheres: Adv. Funct.

Mater, 2007, 17, 1010

B- Ordered Mesoporous Carbon: J. Mater.

Chem, 2007, 17, 3412

C- Hierarchically Porous Carbon Monoliths-

Carbon, 2013, 61, 245

D- Carbon Nanotubes: Chem. Mater, 2010, 2,

6590

E- Inverse Opal-like Carbons, Chem Mater,

2013,

F -Carbon Hollow Spheres: JACS, 2010, 132,

17360

Hard Templating

Pluroinic Block-Copolymers (F127)

Chem. Mater, 2011, 23, 4882

Soft Templating

Hard & Soft Templating

Chemistry of Materials, 2013 vol. 25, (23) 4781

Hard & Soft Templating

Macropores

Mesopores Micropores

SAXS

Hg-intrusion

N2 Adsorption CO2 Adsorption

Carbon-Inorganic Hybrids

200nm

2µm

A B

C D

E F

A: Pt/C-catalysts for selective

hydrogenation of phenol to cyclohexanone

(Chem. Commun. 2008, 999–1001)

B: Yolk-like Au@C particles-catalysts for

CO oxidation

C: LiFePO4/C-cathode in Li Ion batteries

(Small, 2011, 1,1127)

D: Si/C-anode ín Li ion batteires (Angew.

Chem. Int. Ed, 2008, 47, 1645 –1649)

E: TiO2/C- visible light photocatalyst (Adv.

Mater, 2010, 22, 3317–3321)

F: SnO2/C- anode in Li Ion Batteries-

(Chem. Mater, 2008, 20, 1227–1229)

Abundant Resources

Energy Storage

PEM Electrocatalysis

Carbon Capture

Carbon Quantum Dots

Biomass to Chemicals

Platinum Recovery

Hydrothermal Carbonisation

Outline

Na Ion Batteries

US$/t

Increase in the price of Li2CO3

Li around the globe

Glucose HTC

180°C Δ

Δ = 1000°C; 1300°C and 1600°C

Glucose HTC 1600°C

Glucose HTC 1600°C

200 nm

Figure S2. TEM image of S-1100 material.

Figure S3. TEM image of S-1400 material

5 nm

2 nm

Treatment@ High Temperature

1300°C

Figure S4. TEM image of S-1600 material.

2 nm

1600°C

D = ~0.5 nm

CO2 adsorption: HTC from pure carbohydrates is non-porous

HTC Porosity

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0

10

20

30

40

50

60

70

80

VC

O2

ad

s / c

m3 g

-1 S

TP

Relertive pressure, P/P0

G180

G350

G550

G750

G950

1600°C 0.216 cm3/g

1000°C-0.190 cm3/g

550°C- 0.146 cm3/g

300°C-0.068 cm3/g 180°C- 0.066 cm3/g

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

dV

(D)

/ cm

3 n

m-1 g

-1

Pore width / nm

G180

G350

G550

G750

G950

XRD

002

100

1000°C

1300°C 1600°C

∼0.375 nm

∼0.371 nm

∼0.370 nm

Raman

D-band G-band

1000°C 1300°C

1600°C

1.44

1.84

2.09

ID/IG

• Coin cells

• Active material and PVDF binder in N-methyl-2- pyrrolidone (NMP) at a

weight ratio of 9.5 : 0.5

• Loading mass of hard carbon electrode between 1.5–2.5 mg/cm2.

• 1 M NaClO4 in ethylene (EC) and diethyl carbonate (DEC) (1 : 1)

• Sodium foil counter electrode

• Glass fiber separator

Na Ion Batteries

Electrochemical testing conditions:

1st, 2nd and 10th discharge–charge profiles at 0.1 C (30 mA/g).

1000°C 1300°C

1600°C

Anodes in Na Ion Batteries

Anodes in Na Ion Batteries

1000°C 1300°C

1600°C

Cycling performance at 0.1 C (30 mA/g) for 100 cycles

Figure S2. Discharge and charge curves for the 1st cycle of HCS1000 without soft carbon coating.

Figure S3. Rate performance of HCS electrodes.

Anodes in Na Ion Batteries

Rate Performance

Anodes in Na Ion Batteries

1600°C

Asymmetric current rate test: discharging (Na insertion) at a constant current rate

of 0.1 C and charging (Na extraction) at different rates.

20 C (3 min charge), a reversible charge capacity of 270 mA h/g was achieved

Na extraction is quite fast while Na insertion into hard carbon is the limiting step

Perspectives

Materials Design-Advanced Characterization-Electrochemical Performance

N

N N

N N N

N

N

N

N

v

20 nm

200nm

Sn/Sb

200nm

Sodiation-Desodiation in Hard Carbons

Alloys/Carbon Synergies

Abundant Resources

Energy Storage

PEM Electrocatalysis

Carbon Capture

Carbon Quantum Dots

Biomass to Chemicals

Platinum Recovery

Hydrothermal Carbonisation

Outline

PEM FUEL CELL

H2 → 2H+ + 2e- ½O2 + 2H+ + 2e- → H2O

Cathode

O2 + 4H+ + 4e- 2H2O

O2 + 4H+ + 2e- H2O2

H2O2 + 2H+ + 2e- 2H2O

Oxygen Reduction Reaction

O2 + 4H+ + 4e- 2H2O

Pt particles supported on Carbon

slow ORR kinetic

low durability/stability

low availability and high cost

Oxygen Reduction Reaction

Platinum Availability

Platinum Availability

Pt

DEPLETION

Platinum Availability

H2O

180 oC

Ovalbumin (Alb)

+

t = 5.5 h

D-Glucose

2o Biomass (i.e. Glycoprotein)

Maillard chemistry

Surface stabilising agent(s)

ScCO2

SBET > 250 m2g-1

3D Pore System

Vpore > 0.4 cm3g-1

Green.Chem, 2011, 13, 2428

51

N-doped Carbogels

Calcination@1000°C, Conductivity ≈ 80 S/m

50 nm 5 nm

N-doped Carbogels

N-doped Carbogels

XRD

RAMAN

N-doped Carbogels

Tp, oC

SBET,

m2g-1

Vtotal,

cm3g-1

Vmeso,

cm3g-1

PD,

nm

%C

(EA/XPS)

%N

(EA/XPS)

180 276 0.49 0.41 3.2 57.6 / 72.3 7.5 / 6.8

350 247 0.42 0.40 3.1 65.0 / 78.4 8.0 / 7.3

550 476 0.57 0.40 3.4 79.6 / 90.4 7.3 / 5.4

750 300 0.73 0.62 3.3 83.8 / 92.4 6.0 / 5.3

900 308 0.68 0.65 3.2 84.8 / 93.2 6/ 6.11

• Large Vmeso !!!

• Broad PSD – nature of continuous network

• Variation – system condensation??

• Scope for increasing N content.

N-doped Carbogels

1000 800 600 400 200 0

396 398 400 402 404

N-ON-Q

Inte

nsity (

a.u

.)

Binding Energy (eV)

N-6

C1s: 89.16 %

O1s: 4.73 %

N1s: 6.11 %

O1s N1s

C1s

Inte

nsity (

a.u

.)

Binding Energy (eV)

• 398.6 eV-pyridinic-N (N-6, 40.4%)

• 400.9 eV-quaternary-N (N-Q; 53.7%)

• 402.7 eV-pyridine-N-oxides (N-O; 5.9

%)

XPS

N-doped Carbogels

-0.8 -0.6 -0.4 -0.2 0.0 0.2-5

-4

-3

-2

-1

0

Curr

ent

(mA

cm

-2)

Potential (V vs. Ag/AgCl)

N-CC

Pt/C

-0.2 0.0 0.2 0.4 0.6 0.8-4

-3

-2

-1

0

Curr

ent

(mA

cm

-2)

Potential (V vs. Ag/AgCl)

N-CC

Pt/C

RDE, LSV 1600 rmp

0.1 M KOH 0.5 M H2SO4

ORR Performance

0.2 V to -1 V 1 V to -0.2 V

scan rate of 10 mV s-1

-0.2 0.0 0.2 0.42

3

4

Potential (V vs. Ag/AgCl)

(n) Pt/C

(n) N-CC

(%) H2O

2 Pt/C

(%) H2O

2 N-CC

num

ber

of

ele

ctr

ons t

ransfe

rred (

n)

0

5

10

15

20

Hydro

gen p

ero

xid

e y

ield

(%

)

-1.0 -0.8 -0.6 -0.4 -0.22

3

4

Potential (V vs. Ag/AgCl)

(n) Pt/C

(n) N-CC

(%) H2O

2 Pt/C

(%) H2O

2 N-CC

num

ber

of

ele

ctr

ons t

ransfe

rred (

n)

0

10

20

30

40

Hydro

gen p

ero

xid

e y

ield

(%

)

Number of electrons transferred and peroxide yield

ORR Performance

RRDE 0.1 M KOH 0.5 M H2SO4

0 200 400 600 800 10000

20

40

60

80

100

Rela

tive c

urr

ent

(%)

time (s)

N-CC

Pt/C

a) b)

c) d)

-0.9 -0.6 -0.3 0.0

-5

-4

-3

-2

-1

0

Curr

ent

(mA

cm

-2)

Potential (V vs. Ag/AgCl)

Pt/C

Pt/C (after 3500 cycles)

N-CC

N-CC (after 3500 cycles)

0.0 0.3 0.6 0.9-4

-3

-2

-1

0

Curr

ent

(mA

cm

-2)

Potential (V vs. Ag/AgCl)

Pt/C

Pt/C (after 3500 cycles)

N-CC

N-CC (after 3500 cycles)

0.0 0.3 0.6 0.9

-3

-2

-1

0

Curr

ent

(mA

cm

-2)

Potential (V vs. Ag/AgCl)

0.5 H2SO

4

0.5 H2SO

4+2 M CH

3OH

LSV 1600 rmp

Chronoamperometric

response

Polarization Curves

0.1 M KOH 0.5 M H2SO4

Perspectives

Understand the individual role of:

• Amount of N-doping

• Type of N sites (i.e. pyridinic, quaternary)

• Surface Area

• Pore Size

• Structural Order

• Electrical Conductivity

From Waste to Wealth via Advanced Materials

Acknowledgements

MATERIALS RESEARCH INSITUTE

China

Prof. Qiang Zhang-Tsinghua, Beijing

Prof. Yong Sheng Hu-CAS, Beijing

Prof. Dangsheng Su-Dalian

Prof. Shu Hong Yu

Cheng Tang

Dr Yuesheng Wang

UCL

Prof Dan Brett

Prof Xiao Guo

Money:

Collaborators: Spain

Dr. Marta Sevilla

Guilermo Alvarez

Germany

Dr Robin White

Production of materials or the properties or applications of

materials related to energy storage and conversion,

sustainability or living.

IF= 7.5

top related