nanomaterialenanomaterialemembranaremembranare a.2.1... · • rotaxanes with a calix[6]arene wheel...

Post on 15-Sep-2019

11 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

NanomaterialeNanomaterialeNanomaterialeNanomateriale membranaremembranaremembranaremembranare

Prof. Dr. Ing. Gheorghe NECHIFOR

• Membranologia domeniu prioritar in nanostiinte – Membranele elemente pentru nanoseparari

– Procesele membranare si separarea nanospeciilor

– Locul membranologiei in cadrul nanostiintelor• Nanomateriale membranare

– Importanta nanomaterialelor membranare

– Clasificare si caracteristici generale

– Aplicatii

• Nanomateriale magnetice pentru separari avansate – Nanoparticule magnetice– Nanofluide si ferofluide

– Aplicatii in separatologie

• Nanostructuri polimerice– Polimeri pentru membrane

– Designul si realizarea nanostructurilor– Nanocompozite polimerice pentru membrane

– Aplicatii in domeniul biomedical

• Nanosisteme chimice– Microemulsii si sisteme ultramicrodisperse– Segregarea sistemelor de separat

– Aplicatii in tehnologii de mediu

• Tehnologii ecologice si de ecologizare

Complexitate

DiversitateJ. Rodrıguez-Hernandez et al. Prog. Polym. Sci. 30 (2005) 691–724

Nanostructuri bloc-copolimer

nanostructuri autoansamblate bloc-copolimer amfifilic

• Molecular Machine-Based NEMSComprehensive Microsystems, 2008, Chapter 3.20, Pages 635-656Tony Jun Huang

• Molecular devices and machinesNano Today, Volume 2, Issue 2, April 2007, Pages 18-25Vincenzo Balzani, Alberto Credi, Margherita Venturi

• Molecular and nanoscale materials and devices in electronicsAdvances in Colloid and Interface Science, Volume 111, Issue 3, 13 December 2004, Pages 133-157Lei Fu, Lingchao Cao, Yunqi Liu, Daoben Zhu

• A universe for molecular modeling of self-replicationBiosystems, Volume 20, Issue 4, 1987, Pages 329-340W. T. Jedruch, J. R. Sampson

• Transition metal-complexed catenanes and rotaxanes in motion: Towards molecular machinesInorganic Chemistry Communications, Volume 8, Issue 12, December 2005, Pages 1063-1074Jean-Paul Collin, Valérie Heitz, Sylvestre Bonnet, Jean-Pierre Sauvage

• Theory of molecular machines. I. Channel capacity of molecular machinesJournal of Theoretical Biology, Volume 148, Issue 1, 7 January 1991, Pages 83-123Thomas D. Schneider

• Theory of molecular machines. II. Energy dissipation from molecular machinesJournal of Theoretical Biology, Volume 148, Issue 1, 7 January 1991, Pages 125-137Thomas D. Schneider

• Some alternative reproductive strategies in artificial molecular machinesJournal of Theoretical Biology, Volume 54, Issue 1, 1975, Pages 63-84Richard Laing

• Photoactive pseudorotaxanes and rotaxanes as artificial molecular machinesSynthetic Metals, Volume 139, Issue 3, 9 October 2003, Pages 773-777Miguel Clemente-León, Filippo Marchioni, Serena Silvi, Alberto Credi

BIBLIOGRAFIE

• A hybrid molecular machineTetrahedron, Volume 64, Issue 36, 1 September 2008, Pages 8318-8323Valeria Amendola, Corrado Dallacosta, Luigi Fabbrizzi, Enrico Monzani

• Self-Assembly of a Viral Molecular Machine from Purified Protein and RNA ConstituentsMolecular Cell, Volume 7, Issue 4, April 2001, Pages 845-854Minna M Poranen, Anja O Paatero, Roman Tuma, Dennis H Bamford

• Atomic Structure of the KEOPS Complex: An Ancient Protein Kinase-Containing Molecular MachineMolecular Cell, Volume 32, Issue 2, 24 October 2008, Pages 259-275Daniel Y.L. Mao, Dante Neculai, Michael Downey, Stephen Orlicky, Yosr Z. Haffani, Derek F. Ceccarelli, Jenny S.L. Ho, Rachel K. Szilard, Wei Zhang, Cynthia S. Ho, Leo Wan, Christophe Fares, Sigrun Rumpel, Igor Kurinov, Cheryl H. Arrowsmith, Daniel Durocher, Frank Sicheri

• The loose coupling mechanism in molecular machines of living cellsAdvances in Biophysics, Volume 22, 1986, Pages 151-183Fumio Oosawa, Shigeru Hayashi

• Review of Blumenfeld and Tikhonov, Biophysical Thermodynamics of Intracellular Processes: MolecularMachines of the Living CellBiophysical Journal, Volume 68, Issue 4, April 1995, Page 1634Robert A. Alberty

• Rotaxanes with a calix[6]arene wheel and axles of different length. Synthesis, characterization, and photophysical and electrochemical propertiesTetrahedron, Volume 64, Issue 36, 1 September 2008, Pages 8279-8286Arturo Arduini, Rocco Bussolati, Alberto Credi, Andrea Pochini, Andrea Secchi, Serena Silvi, Margherita Venturi

• Synthesis of a nanocar with organometallic wheelsTetrahedron Letters, Volume 50, Issue 13, 1 April 2009, Pages 1427-1430Guillaume Vives, James M. Tour

BIBLIOGRAFIE

F1-ATPase rotor molecular

Elastina

Gramicidina, dimer

Haipirina

Masini moleculare biologice

Masini artificiale

Rotoare moleculare

Masini artificiale

Masini artificiale

Masini artificiale functionale

Masini moleculare artificiale

Translatorul, sania moleculara

Masini moleculare artificiale

Synthesis of a nanocar with organometallic wheelsGuillaume Vives, James M. Tour,Tetrahedron Letters, Volume 50, Issue 13, 1 April 2009, Pages 1427-1430

Bibliografie de referinta• 1. Molecular Machine-Based NEMS

Comprehensive Microsystems, 2008, Chapter 3.20, Pages 635-656Tony Jun Huang

• 2. Molecular devices and machinesNano Today, Volume 2, Issue 2, April 2007, Pages 18-25Vincenzo Balzani, Alberto Credi, Margherita Venturi

• 3. Molecular and nanoscale materials and devices in electronicsAdvances in Colloid and Interface Science, Volume 111, Issue 3, 13 December 2004, Pages 133-157Lei Fu, Lingchao Cao, Yunqi Liu, Daoben Zhu

• 3. A universe for molecular modeling of self-replicationBiosystems, Volume 20, Issue 4, 1987, Pages 329-340W. T. Jedruch, J. R. Sampson

• 4. Transition metal-complexed catenanes and rotaxanes in motion: Towards molecular machinesInorganic Chemistry Communications, Volume 8, Issue 12, December 2005, Pages 1063-1074Jean-Paul Collin, Valérie Heitz, Sylvestre Bonnet, Jean-Pierre Sauvage

• 5. Rotaxanes with a calix[6]arene wheel and axles of different length. Synthesis, characterization, and photophysical and electrochemical propertiesTetrahedron, Volume 64, Issue 36, 1 September 2008, Pages 8279-8286Arturo Arduini, Rocco Bussolati, Alberto Credi, Andrea Pochini, Andrea Secchi, Serena Silvi, MargheritaVenturi

Schema proceselor de separare (Porter)

Structuri nanometrice:

• Nanoparticule

• Nanotuburi

• Nanofibre

• Nanopori

• Filme

Materialele nanostructurate mai mici de 100 nm şi cu cel puŃin două dimensiuni, pot avea diverse forme şi structuri (sferice, aciculare, tuburi, lamele, etc.).

CompoziŃia chimică este un alt parametru important ce caracterizează nanoparticulele (metale/oxizi metalici, polimeri, biomolecule).

În condiŃii normale, nanoparticulele tind să formeze aglomerate şi agregate. Acestea au diverse forme, de la structuri dendritice la lanŃuri şi structuri sferice de dimensiuni micrometrice.

ProprietăŃile nanoparticulelor pot fi modificate semnificativ prin derivatizarea suprafeŃelor.

ProprietăŃile fizice şi chimice ale nanomaterialelor (absorbŃie optică şi fluorescenŃă, punct de fierbere, activitate catalitică, magnetism, conductivitate electrică şi termică, etc.) diferă în mod semnificativ decele ale materialelor în vrac.

Nanoparticule de TiO2 - “Synthesis

and Characterization of Porous and

Nonporous Monodisperse Colloidal TiO2 Particles” S. Eiden-Assmann,

J. Widoniak, and G. Maret, Chem.

Mater. 2004, 16, 6-11

Particule de Eu2O3 - “Functionalized

Europium Oxide Nanoparticles Used

as a Fluorescent Label in an Immunoassay for Atrazine”, Jun

Feng, Guomin Shan, Angel

Maquieira, Marja E. Koivunen, Bing

Guo, Bruce D. Hammock, Ian M.

Kennedy, Anal. Chem., 2003, 75, 5282-5286

Nanofibre de carbon tratate în

plasmă- ”Analysis of functional groups on the surface of plasma-treated carbon nanofibers“Stephan Haiber · Xingtao Ai ·

Henning Bubert ·Gabriela

Marginean, Anal Bioanal Chem, 2003, 375, 875–883

Nanomateriale membranare pe baza de polimeri conductivi si nanotuburi de carbon functionalizate

Material suport Polimeri conductivi Nanotuburi de carbon functionalizate

Membrana polimerica

Silice

Particule magnetice

Bioxid de titan

Conductivitate ionica

Posibilitati de functionalizare si

derivatizare

Conductivitate electronica

Posibilitati de functionalizare si

derivatizare pentru inducere de

proprietati dirijate

Aplicatii (functie de materialul suport)

Membrana polimerica – pile de combustie, senzori, procese separative, cataliza, reactoare membranare

Silice – procese separative-recuperative

Particule magnetice – procese separative-recuperative in camp magnetic, cataliza

Bioxid de titan – procese sepaartive, cataliza

Membrana compozita sPEEK-Ppy

OO

O

SO3H+n

OO

O

SO3Hn

N

H

N

H

N

H

N

H

n

Cl-

Cl-

a b

c d Spectrele FT-IR pentru membrana sPEEK

(a), sPEEK cu pirol in pori (b) sis PEEK-Ppy

(c)

Microscopie SEM a membranei sPEEK – suprafata (a) si sectiune (b) si a membranei compozite

sPEEK-Ppy – suprafata (c) si sectiune (d)

Membrana compozita sPEEK-PANI

N

N

N-

N

H

Hx 1-x

OO

O

SO3H+n

OO

O

SO3Hn

a b

c d

Spectrul FT-IR pentru membrana PEEK-PANI

Microscopie SEM a membranei sPEEK – suprafata (a) si sectiune (b) si a membranei compozite

sPEEK-PANI – suprafata (c) si sectiune (d)

Compozite silice-polipirol

Elutie de pirol in porii silicei depusa

pe suport de aluminiu (placuta

cromatografica);

Polimerizarea pirolului din pori prin

imersarea placutei in solutie apoasa de

clorura ferica.

Microscopie optica (x200)

Microscopie SEM a particulelor de silice (x10k) si a compozitelor silice-Ppy (x50k)

• Procese de separare prin membrane sunt mai eficace, mai economice în timp şi în energie şi ocupă un loc central în dezvoltarea tehnologiilor ecologice

• Avantaje:– Selectivitatea mare– Capacitatea de separare a compusilor termolabili– Investitii reduse– Separari fara transformare de faza– Reducerea sau eliminarea reactivilor chimici– Reducerea consumului de energie– Versatilitatea

Membrana este o barieră selectivă care participă activ sau pasiv la transferul de masă între fazele pe care le separă

ParticularităŃile proceselor membranare

Valorificarea proprietăŃilor chimice ce pot diferenŃia speciile chimice de separat:

• Difuzia

• Sarcina ionica

• Solubilitatea

• Volatilitattea

• Tensiunea superficială

Membranele:

• Micro şi macro poroase

• Simetrice

• Asimetrice

• Compozite

• Lichide

• Capacitate de schimb ionic

ForŃa motrice pentru procesele membranare

• DiferenŃa de presiune -procese de baromembrana

• Gradientul de concentraŃie

• Câmpul electric

• Capacitatea de udare

• Presiunea de vapori

Tipuri de membrane lichide

Membrane lichide propri-zise

Membrane lichide suportate

Membrane emulsie

Detaliu - Membrana Lichida Suportată

Membrane tip fibre tubulare

Membrane in module spiralate

top related