activitatea 1.1

182
Proiecte colaborative de cercetare aplicativă Domeniul 8: Spaţiu şi securitate Direcţia de cercetare 8.5. Sisteme şi infrastructura de securitate Tematica de cercetare 8.5.3. Sisteme pentru asigurarea unui management eficient al situaţiilor de criză şi al intervenţiilor în cazul dezastrelor, sisteme de detecţie, prevenire şi alertă. Aprobat: Ordinul MEN nr. 298/23.06.2014 Contract Nr. 298 SISTEM DE ALERTARE TIMPURIE SI ASISTARE COMPUTERIZATA A DECIZIILOR, BAZAT PE EVALUAREA ANTICIPATIVA A DINAMICII RAPIDE A VULNERABILITATILOR INDUSE IN TERITORIU DE OBIECTIVELE NUCLEARE N-WATCHDOG Raport tehnic #1 Decembrie, 2014

Upload: truongnhu

Post on 31-Dec-2016

250 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Activitatea 1.1

Proiecte colaborative de cercetare aplicativă

Domeniul 8: Spaţiu şi securitate

Direcţia de cercetare 8.5. Sisteme şi infrastructura de securitate Tematica de cercetare 8.5.3. Sisteme pentru asigurarea unui management eficient al situaţiilor de criză şi al intervenţiilor în

cazul dezastrelor, sisteme de detecţie, prevenire şi alertă. Aprobat: Ordinul MEN nr. 298/23.06.2014

Contract Nr. 298

SISTEM DE ALERTARE TIMPURIE SI ASISTARE COMPUTERIZATA A DECIZIILOR, BAZAT PE EVALUAREA ANTICIPATIVA A DINAMICII RAPIDE

A VULNERABILITATILOR INDUSE IN TERITORIU DE OBIECTIVELE NUCLEARE

N-WATCHDOG Raport tehnic #1 Decembrie, 2014

Page 2: Activitatea 1.1

Etapa 1 Proiectarea Demonstratorului funcţional de concept N-WATCHDOG

(PoC) Act 1.1 Documentarea cunostintelor de Fizica; a datelor si modelelor specifice,

adaptate proceselor PoC-executabile; si a bibliotecilor de date. Solutii de implementare IT.

Baza de cunoştinţe, modelele, cerinţele de date, soluţii de implementare IT

RAPORT TEHNIC #1

Dan V. Vamanu, Valentin T. Acasandrei Institutul National de Cercetare-Dezvoltare pentru Fizica si Inginerie Nucleara ‘Horia Hulubei',

IFIN-HH Bucuresti Departamentul de Fizica Vietii si Mediului

Page 3: Activitatea 1.1

Cuprins Pro Memoria: Planul de realizare, Etapa 1 ........................................................................ 1 1. Introducere ...................................................................................................................... 2

1.1. Conceptul N-WATCHDOG ...................................................................................... 2 1.2. Motivatia ................................................................................................................. 3 1.3. Termeni de referinţă ................................................................................................ 4 1.4. Cerinţe şi aşteptări, din perspectiva utilizatorului ................................................... 11

2. Termenul sursă al emisiilor atmosferice radioactive.................................................. 13 2.1. Definiţia ................................................................................................................. 13 2.2. Soluţii de evaluare................................................................................................. 13 2.3. Iniţiatorul: accidentul de referinţă ........................................................................... 16 2.4. Modelul ................................................................................................................. 17 2.5. Soluţia de implementare: arborii de eveniment ...................................................... 25

3. Dispersia atmosferică ................................................................................................... 34 3.1. Definiţia ................................................................................................................. 34 3.2. Soluţii de evaluare................................................................................................. 35 3.3. Soluţii IT ................................................................................................................ 51

4. Evaluarea radiologică a unei emisii atmosferice radioactive..................................... 64 4.1. Definiţie ................................................................................................................. 64 4.2. Mărimile fizice de bază ale dozimetriei radiaţiilor ionizante .................................... 64 4.3. Dozimetria accidentelor nucleare .......................................................................... 67

5. Analiza de vulnerabilitate ............................................................................................. 73 5.1. Definiţie ................................................................................................................. 73

6. Datele în N-WATCHDOG: biblioteci şi gestiune .......................................................... 85 6.1. Relaţiile bibliotecilor de date cu modulele funcţionale ............................................ 85 6.2. Gestiunea librăriilor de date .................................................................................. 87

Referinţe ............................................................................................................................ 88 ANEXA 1 Datele radiologice .......................................................................................... A1.1 ANEXA 2 Datele meteorologice..................................................................................... A2.1 ANEXA 3 Datele geografice ........................................................................................... A3.1 ANEXA 4 Supliment bibliografic ................................................................................... A4.1

Page 4: Activitatea 1.1

1

Pro Memoria: Planul de realizare, Etapa 1

Page 5: Activitatea 1.1

2

1. Introducere

No problem can be solved

from the same level of consciousness that created it.

Albert Einstein

1.1. Conceptul N-WATCHDOG Proiectul N-WATCHDOG are ca obiectiv realizarea unui ansamblu multidisciplinar de soluţii practice, orientate spre nevoile utilizatorilor de monitorizare a vulnerabilităţilor induse de obiectivele nucleare în teritoriul înconjurător, starea populaţiei, mediu şi infrastructuri, având un pronunţat caracter preventiv bazat pe capacitate anticipativă şi de alertare timpurie. Ȋn esenţă, sistemul va prognoza non-stop, cu o frecvenţă reglabilă (orară etc.), pe intervale de timp anticipate de 8 sau mai multe ore, expunerea, impactul radiologic potenţial şi eventualele măsuri de reacţie necesare în zona apropiată de obiectiv (cca. 25 km) ca şi în zona depărtată (zeci sau sute kilometri), postulând emisii radioactive virtuale în atmosferă; apoi va agrega indicatorii obţinuţi în grade de expunere, impact si vulnerabilitate pe scale inteligibile pentru utilizatori si va oferi rapoartele de sinteza partilor interesate. Ȋn acest scop, vor fi articulate intr-o secventa logica de procese excutabile modele analitice de evaluare radiologica si modele conceptuale de analiza cantitativa a riscului si vulnerabilitatii, integrate cu resursele relevante de date fizice, geografice (GIS) si de documentie stiintifica. Sistemul se va alinia stadiului actual al solutiilor dezvoltate de consortii tehnice de referinta, propunand, totodata, abordari inovative în materie de (a) mentalitate: acceptarea sistematica a posibilitatii reale a unor accidente severe dincolo de ‘baza de proiect', de evaluarea probabilista a riscului si de registrele de securitate operationala; (b) ontologie: accent pe dinamica rapida a vulnerabilitatilor în sincronie cu meteorologia zonala si alte variabile; (c) acoperirea tematica: o masina radiologica acomodand diferite modele de dispersie în mediu a poluantilor; o masina geografica ce poate adresa ad-hoc orice locatie de pe Planeta; o masina meteorologica obtinand în timp real prognozele relevante din surse Internet publice; (d) o combinatie de moduri de operare 'standalone' si pe pagini-web ce confera sistemului siguranta operationala; si (e) o complexitate proiectata minimalist, cu observarea stricta a 'nivelului suficient de necesitate'. In deplina cunostinta de legile, reglementarile si misiunea institutiilor nationale creditate în domeniul pregatirii pentru situatii de urgenta si raspunsului la crize [1–4], sistemul propus va completa capacitatile curente cu noi abordari si solutii consonante cu termenii de referinta si bunele practici internationale, pe baze stiintifice valide asigurate de Fizica si Dinamica Fluidelor, Stiintele Mediului, Geografie, Stiintele Formale si Ingineria Informatica. Dedicat nevoilor si specificului tarii, sistemul va acorda, totodata, o deosebita atentie implicatiilor trans-frontiera ale proceselor analizate, cautand cai posibile de inter-operare cu platformele europene cu vocatie similara si urmarind consecvent consistenta cu politicile UE în materie (Directiva Consiliului, 96/29/EURATOM [5] cu deciziile si reglementarile ulterioare). In cadrul unui consortiu alcatuit dintr-un institut national de cercetare-dezvoltare, o importanta universitate politehnica si o proeminenta companie privata proiectul isi propune dezvoltarea unui model experimental software denumit N-WATCHDOG care, ulterior proiectului, poate evolua intr-un produs comercializabil capabil sa ofere unei varietati de utilizatori – entitati de guvernanta, ONG, foruri media - facilitati customizate interactive precum si/sau servicii analitice si de alertare timpurie. Prin calitatile educationale intrinseci, derivand din capacitatile sale avansate de simulare si vizualizare (‘serious gaming’), sistemul poate contribui si la cresterea nivelului de informare în materie al Societatii Civile, incurajand o viziune mai echilibrata asupra meritelor si riscurilor inerente ale Energiei Nucleare, în lumea de dupa Fukushima-2011.

Page 6: Activitatea 1.1

3

1.2. Motivatia Una din constatarile semnificative cu privire la asa-numitele 'evenimente nucleare anormale' (abnormal nuclear events), incluzand catastrofele, inregistrate în ultima jumatate de secol - de la Windscale (1957) la Three Mile Island (1979), la Cernobal (1986) si, recent, la Fukushima (2011) - semnaleaza insuficienta recurenta a starii de pregatire pentru managementul adecvat al situatiilor de urgenta, incapacitatea de raspuns prompt si, în special, lipsa unor abordari pro-active din partea actorilor implicati fata de evolutiile violente dincolo de 'accidentul baza de proiect', considerate 'inimaginabile' sau, cu o metafora curenta 'lebede negre' (black swans).

La originea acestei stari de lucruri se poate identifica o combinatie de factori motivanti, incluzand subevaluarea riscurilor de accident sever în consecinte în temeiul presupusei lor probabilitati neglijabile - o postura ancorata în mentalitatea academica instaurata în urma Raportului Rasmussen [6] din anii '70 - în pofida schimbarilor decurgand, intre timp, din imbatranirea fizica si morala a tehnologiilor si instalatiilor, fapt ce ar pretinde o atitudine mult mai precauta; la aceasta adaugandu-se foamea imperativa de energie a societatilor dezvoltate, energo-intensive, ca si exigentele puterilor economice emergente si ale regiunilor cu demografie scapata de sub control - fapt ce pune în ocultatie considerentele de risc si tinde sa mentina la nivel scazut cheltuielile de prevenire a consecintelor unor politici precare în materie de siguranta tehnica si securitate energetica.

Se apreciaza ca un factor subiacent al neajunsurilor mentionate ar putea fi o perceptie depasita a Riscului si atitudinea fata de dezastre ce decurge din aceasta (Figura 1). Este, intr-adevar, un fapt indubitabil ca, pe parcursul celor peste 6 decenii de existenta a industriei nucleare, managementul Securitatii Nucleare a cunoscut o alunecare graduala, tacita dar irezistibila de la o filosofie sedativa, intemeiata pe presupusa valoare de referinta a 'accidentului baza de proiect', inspre revelatia incomoda, dar sprijinita de fapte, ca 'accidentul de probabilitate scazuta dar severitate ridicata' domina de facto tot mai mult considerentele de risc nuclear si ar merita, în consecinta, o prioritate mai inalta în politicile si planificarea managementului urgentelor de profil.

Odata acceptata, aceasta constatare atrage o revizuire pe trei paliere a atitudinii formatorilor de politici si planificatorilor: (a) în mentalitate: de la aversiunea traditionala fata de eventualitatea 'dezastrelor', la acceptarea posibilitatii reale a acestora vazuta ca o mai austera dar necesara disciplina a mintii, ca stimulent si oportunitate de ridicare a nivelului de vigilenta si a capacitatii de raspuns la crize; (b) în metoda: de la solutii reactive la solutii pro-active, anticipative, de tipul 'CE anume s-ar intampla daca, INTR-ADEVAR, s-ar intampla?'; si (c) în alegerea tintei

Fig. 1. Pregatirea pentru dezastre –

o paradigma în evolutie

Page 7: Activitatea 1.1

4

preocuparilor: de la riscuri, la vulnerabilitati1. Analistii inclinati sa vada în acest demers o transgresiune ideologica de natura sa conduca la o 'cultura a fricii', care ar putea agrava perceptiile gresite asupra 'Nuclearului' punand si mai mult în chestiune viitorul acestuia sunt invitati sa ia nota de contextul mai larg al problemei, bine ilustrat de rezultatele anchetei academice independente solicitata de U.S. National Intelligence Council în pregatirea raportului 'Global Trends 2030: Alternative Worlds' [7]. Din toate documentele acestei serii de referinta, evaluatorii au recomandat atentie deosebita 'aprecierilor categorice privind o frecvenţă asteptata ridicata a unor socuri si discontinuitati' în deceniile ce urmeaza, propunand dezvoltarea si asumarea unui 'cadru metodologic superior pentru o intelegere autentica a raporturilor dintre tendinte, discontinuitati si crize', precum si 'mai multa intelegere pentru consecintele secundare si tertiare', în incercarea de 'a identifica dezechilibrele ce se profileaza, prin exercitii intensive de simulare si 'jocuri de razboi' (war games), pentru surprinderea dinamicii faptelor în momente indicative cruciale'. Pastrand proportiile, proiectul pe care il propunem profeseaza convingerea ca 'un cadru metodologic superior pentru o intelegere autentica a raporturilor dintre tendinte, discontinuitati si crize' în evolutia Nuclearului (i) va trebui sa adreseze în mod necesar si prioritar chestiunea Securitatii Nucleare ca factor cardinal în echilibrarea perceptiei sociale a domeniului; (ii) va trebui sa imbratiseze o atitudine anticipativa, realista si precautionara fata de eventualitatea evenimentelor grave; (iii) va trebui sa considere toate eventualitatile ca 'imaginabile', inainte de a le respinge din principiu sau prejudecata; si (iv) este potrivit sa initieze, în sensurile aratate, solutii concrete la nivelul nevoilor de baza, ca pasi mici dar semnificativi, în pregatirea unor eventuale evolutii reformatoare majore. Fata de acestea, Partenerii proiectului considera că relevanta practica a proiectului rezida în materializarea, la un nivel de utilitate convingator, a recomandarilor de actiune implicite în analizele evocate, ale surselor de recunoscuta autoritate în materie: pregatiti-va pentru iminenta 'inimaginabilului'; priviti inainte, incercand sa determinati în mod fundamentat 'CE anume s-ar intampla daca, INTR-ADEVAR, s-ar intampla'; concepeti instrumentele de asistare a deciziei ca resurse de lucru ante factum, mai mult decat post factum; asigurati-va ca rezultate inteligibile ajung la indemana agentilor politici si sociali responsabili cu protejarea oamenilor, proprietatii, infrastructurilor si a Societatii în ansamblu. In vederea acestor obiective, cadrul tematic al proiectului va articula intr-o secventa logica de procese excutabile modele analitice de evaluare radiologica si modele conceptuale de analiza cantitativa a riscului si vulnerabilitatii integrate cu resursele relevante de date fizice, geografice (GIS) si documentatie stiintifica de profil. In acest scop vor fi mobilizate intr-un efort convergent elemente de cunoastere si metoda din Fizica si Dinamica Fluidelor, Stiintele Mediului, Geografie, Stiintele Formale si Ingineria Informatica, ce vor asigura intregii initiative o baza stiintifica adecvata. 1.3. Termeni de referinţă Domeniul Asistarii analizei si deciziei în pregatirea pentru managementul urgentelor nucleare a aparut ca o extensie a unei ramuri formale a Fizicii – Radioprotectia si Securitatea Nucleara, constituita odata cu aplicatiile Fizicii Nucleare în anii consecutivi ultimului Razboi Mondial. Dezvoltarea domeniului a fost stimulata de o serie de incidente operationale la prima generatie de centrale nuclearo-electrice, culminand cu primul accident nuclear de larga notorietate, la Windscale (Marea Britanie), în 1957 – an în care s-a constituit si organizatia Atoms for Peace a Natiunilor Unite, cunoscuta ulterior ca Agentia Internationala pentru Energia Atomica (IAEA).

1 Vulnerability: characteristic of design, location, security posture, operation, or any combination thereof, that

renders an entity, asset, system, network or geographic area susceptible to disruption, destruction or exploitation. Vulnerability degree: qualitative or quantitative expression of the level to which an entity, asset, system, network or geographic is susceptible to harm when it experiences a hazard (DHS Risk Lexicon 2010 Edition, U.S. Dept. Of Homeland Security).

Page 8: Activitatea 1.1

5

Necesitatea unei activitati cu o identitate proprie dedicata situatiilor de urgenta s-a consolidat dupa accidentul nuclear de la Three Mile Island (SUA), în 1979 si a capatat dimensiuni dramatice dupa accidentul de la Cernobal (URSS/Ucraina), din 1986 – retinut drept cel mai sever din istoria energeticii nucleare în termenii consecintelor de mediu si sanitare. Seria evenimentelor improbabile dar de mare severitate a continuat cu accidentul de la centrala Fukushima-Daiichi (Japonia, 2011), ce tinde a fi notat drept cel mai sever prin urmarile sale asupra politicilor nucleare din intreaga lume – fara a ignora, desigur, tributul în victime, destructurari ale vietii oamenilor si pierderi de valori materiale.

N-WATCHDOG în contextul Emergency Preparedness (EP)

Initial, activitatea în domeniu s-a concentrat pe elaborarea de concepte disciplinare, metodologie si proceduri – ce au format substanta reglementarilor nationale si a recomandarilor si ghidurilor de conduita la nivel international (v. Nuclear Safety Series si seria documentelor tehnice – TECDOC ale IAEA). De importanta centrala în aceasta etapa a fost conceptul Emergency Preparedness – Pregatirea pentru situatii de urgenta. Urmatorul extras rezuma modul curent de formalizare conceptuala a acestuia.

Modern Emergency Management principles originate in the U.S. where, in 1979 the NGA came up with the Comprehensive Emergency Management document [8] as a first systematic attempt to formalize the concepts, components and processes of EM. The NGA document describes the EM as a four (overlapping) phase process. Despite various adaptations and even alternative approaches taken ever since, there seems to be, over the last 30 years, a consensus within the EM community regarding this aspect, the four-phases becoming somehow standard (see Figure 2). [9, 10].

In short, the four phases of EM are:

Phase 1: Mitigation – comprises the effort to reduce loss of life and property by lessening the impact of disasters. This phase implies (yet is not limited to) actions like identifying hazards and threats, analyzing risks, eliminating and/or reducing risk, identifying the residual risk.

Mitigation-oriented activities should be considered long before an emergency occurs.

Fig. 2. The Emergency Management cycle.

The standard, 'Four-Phase' approach [11].

Phase 2: Preparedness – following mitigation, preparedness basically implies getting ready to handle the residual risks. The practical expression consists of a variety of activities to minimize the consequences of a disrupting event on humans, property and environment. Emergency preparedness (EP) is one of the core components of the overall process of emergency management. In a nutshell, emergency preparedness is a continuous cycle of planning, managing, organizing, training, equipping, exercising, creating, monitoring, evaluating and improving activities (Figure 3) so as to guarantee effective coordination and enhanced capabilities to prevent, protect against, respond to, recover from, and mitigate the effects of any kind of disasters [11].

Page 9: Activitatea 1.1

6

As with the mitigation, preparedness-oriented activities should be performed long before the event

occurrence.

Fig. 3. Typical Emergency Preparedness activities cycle

Phase 3: Response – also called the ‘golden 72 hours’; this component consists in putting into practice and applying all the expertise and knowledge prepared in the two phases before. Response phase includes the mobilization and coordination of the necessary emergency services and first responders and the actual intervention. In view of assessing the EM efficiency, response is the crucial indicator. Acting coherently, promptly, responsible, safely, and professionally in front of an actual emergency is the paramount objective of the entire EM process. In close relationship with the event timing, response occurs during or immediately following an event. Phase 4: Recovery – is a systematic attempt to restore the affected area to its previous, or otherwise better, state. Recovery activities can be short-term or long-term. Actions selection and prioritization is also a result of preparedness. Recovery is a process that starts after the event is consummated (all the danger is gone and the situation is totally under control). Sursa: Vamanu B.I., Acasandrei V.T.(2014). Terms of Reference for Assessing Nuclear and Chemical Emergencies in view of preparedness and response. – An outlook. Romanian Journal of Physiscs, in print.

In raport cu acest cadru de referinta,

N-WATCHDOG addressess Preparedness...

By anticipating (forecasting) Exposure from, and Impact of virtual, possible

Events, in consideration of target (communities) Vulnerabilities – including

target Mitigative capability,...

That all drive Response...

And prefigure Recovery

N-WATCHDOG is a tool addressing Planning,

aiming however to asserting itself as a leading actor serving all the other

Preparedness cycle components.

Page 10: Activitatea 1.1

7

N-WATCHDOG în contextul Decision Support Dystems (DSS) Sub presiunea evenimentelor, etapa academica a fost rapid surclasata si, totodata, complicata inaintea unor clarificari definitive, de deplasarea rapida a interesului spre instrumente de evaluare computerizata, acomodate sub sintagma Decision Support Systems – Sisteme de Asistare a Deciziei – o miscare evident stimulata de progresul stiintei si tehnologiei informatice.

In prezent, puternice consortii de cercetare-dezvoltare ale puterilor nucleare majore si alte tari dezvoltate incluzand Statele Unite, Germania, Franta, Marea Britanie, tarile scandinave, Japonia si – mai discreta ca vizibilitate dar, fara indoiala, eficienta – Federatia Rusa dezvolta si promoveaza puternice pachete software ce stabilesc nivelul superior de referinta al domeniului. Tabelul 1 prezinta o selectie sumara de produse larg citate la nivel international, consonante cu contextul proiectului.

Ca rezultat tangibil al proiectului, N-WATCHDOG imparte cu sistemele IT de referinta o serie

de insusiri. Intre asemanari se recunosc:

Capacitatea de a fi utilizat atat ca instrument asistare a raspunsului la crize, cat si ca instrument de planificare în asigurarea starii de pregatire.

Capacitati diagnostice si prognostice.

Conformarea cu cea mai raspandita si recomandata disciplina metodologica în modelarea proceselor de mediu – modelele gaussiene.

Utilizarea dozelor echivalente de radiatie ca indicatori ai contramasurilor necesare si ai efectelor sanitare posibile ale expunerilor la radiatii ( nu a Nivelelor Derivate de Interventie)

Particularitatile N-WATCHDOG impun atentiei, pe de alta parte, cateva aspecte distinctive:

Profilul In contrast cu referintele citate si în incercarea de a contribui complementar, pe

aspecte mai putin, sau deloc acoperite de acestea în raport cu abordarea descrisa, N-WATCHDOG va oferi utilizatorilor:

O concentrare a misiunii pe monitorizarea anticipativa, practic continua (regim ‘24/7’) a efectelor potentiale ale unor emisii radioactive virtuale în atmosfera transporate în mediu conform prognozelor meteorologice actualizate orar, sau mai frecvent, pe intervale de 8 sau mai multe ore (de exemple, 72 ore).

O extensie a evaluarilor dozimetrice de impact conventionale (‘relatie doza-efect’) – practicate si de codurile de referinta – la evaluari bazate pe agregarea variabilelor dozimetrice cu datele GIS – demografie, infrastructuri, capacitati de productie si servicii, indicatori de relevanta sociala si strategica pentru comunitatile virtual expuse, în indicatori de vulnerabilitate inteligibili pentru utilizatorii profani în materie, incurajati a mentine o stare de vigilenta informata fata de situatii deosebite.

Tabelul 1. Coduri de referinţă

Origin Code acronym

ComplexityH-high

M-medium L-low

European consortium RODOS [12] H

European consortium COSYMA [13] M

Scandinavian consortium ARGOS [14] H

France CERES [15] H

U.S.A. ARAC/NARAC [16] H

U.S.A. RASCAL [17] M

U.S.A. HOTSPOT [18] L

U.S.A. GENII [19] M

U.S.A. MACCS [20] H

Japan SPEEDI [21] H

Page 11: Activitatea 1.1

8

Fig. 4. N-WATCHDOG – ontologia.

Page 12: Activitatea 1.1

9

Fig. 5. N-WATCHDOG – Fluxul procedural

O aplicare sistematica a principiului minimei complexitati necesare (‘the point of diminishing return’) [22] în modelarea emisiilor radioactive, migratiei lor în mediu si a consecintelor sanitare, ceea ce califica N-WATCHDOG drept o solutie practica minimalista.

Page 13: Activitatea 1.1

10

O adresabilitate a produsului dominata de un continut si un format ce tintesc direct spre managerii si operatorii raspunsului la urgente, în ceea ce se desemneaza drept ‘Faza timpurie’ (Early Phase) a unui eveniment nuclear anormal – ceea ce consolideaza calitatea N-WATCHDOG de sistem de detectare a amenintarilor si alertare timpurie, (‘watchdog ‘= caine de paza’) în ordinea de idei a Temei 8.5.3. a competitiei PN-II-PT-PCCA-2013-4.

Ontologia

‘Dincolo de stadiul actual’ – în opinia autorilor propunerii – se situeaza si o calitate speciala a N-WATCHDOG, constand în capacitatea sistemului de a opera: (a) în mod ‘evaluare completa’ (full-assessment), implicand postularea de termeni-sursa si amstecuri de radionuclizi determinate de cod conform modelelor de referinta utilizate; sau (b) independent de radionuclizi, utilizand în acest caz drept indicator al expunerii o metrica adecvata, aplicata Factorului de Dilutie (1/m2 sau s/m3, în functie de model) – un derivat de prima evidenta al dispersiei atmosferice a poluantilor ce nu necesita postularea unor termeni-sursa. Aceasta abordare, ce tine seama de traditionala susceptibilitate a operatorilor de centrale nucleare fata de aprecieri postulative privind radioactivitatea evacuata în mediu, venite din afara propriului sistem, mentinand, în acelasi timp, o capacitate credibila de a evalua expuneri si vulnerabilitati a fost remarcata cu interes de Centrul de incidente si urgente (Incident and Emergency Centre) al IAEA, cu prilejul unei recente reuniuni de consultanta privind solutii de imbunatatire a metodologiei curente [23]. O schema indicativa a ontologiei intentionate în dezvoltarea N-WATCHDOG se prezinta în Figura 4.

Fluxul procedural Se intentioneaza ca fluxul procedural al N-WATCHDOG sa reflecte ontologia propusa. Noutatea solutiei este insa accentuata de capacitatea codului de a functiona (a) în Mod automat, ciclând secventa de analiza în maniera ‘24/7’ fara asistenta utilizatorului (‘unattended sessions’) cu timpi de actualizare ajustabili (tipic – o ora), consistent cu ritmul adoptat de cele mai multe site-uri de date meteo public-disponibile; sau (b) în Mod analitic, în sesiuni asistate de utilizator, compartimentate de cereri de input si mesaje explicative. In timp ce Modul automat va fi, probabil, preferat de utilizatorii familiarizati cu sistemul, Modul analitic va servi mai cu seama fazele de initiere si antrenament si va oferi, totodata, dezvoltatorilor platforma de intretinere si upgrade a codului. O versiune simplificata a fluxului procedural al N-WATCHDOG se prezinta în Figura 5.

Arhitectura produsului final In versiune finala, N-WATCHDOG se intentioneaza a fi o platforma operationala ce va utiliza un model tip n-tier, web-enabled, cu un nucleu de modelare, simulare si vizualizare (MS&V) integrat cu librarii GIS de date fizice si de cunostinte specializate. Platforma N-WATCHDOG-beta avuta în vedere ca produs livrabil al proiectului va dispune de o functionalitate moderna, avand ca trasaturi esentiale:

Organizarea: implicand functiuni extinse de modelare; o masina versatila de simulare; si capacitati adecvate de achizitie, pre-procesare si actualizare a resurselor de date.

Capacitatea de vizualizare: generatoare de vizualizare analitica a datelor si reprezentari grafice pe desktop si exportabile-web.

Masina de interogare – adresand si datele spatiale.

Integrarea: acoperind date numerice si spatiale, precum si configuratii diagnostice.

Masina de analiza a datelor: o facilitate esentiala acomodand algoritmi si standarde de management al datelor.

Capacitate predictiva si interactivitate avansata – calitati ce evidentiaza elemente de originalitate în conjugarea de interogari punctuale cu raportari sinoptice.

Sistemul va fi interactiv cu utilizatorul pe parcursul tuturor secventelor de modelare. Utilizatorul va putea interveni la momente determinate, reluand procesul de modelare pe seturi de noi ipoteze, consistent cu disciplina de lucru de tip ‘what if’ scenarios. Sistemul va fi, de asemenea, capabil sa alerteze utilizatorul asupra unor erori, sau inadvertente în input.

Page 14: Activitatea 1.1

11

Utilizatorul va putea modifica date fizice statice, sau chiar fisiere intregi de date-default de o anumita complexitate, astfel incat sistemul sa reflecte convingerile sale experte si preferintele fata de anumite date intr-o maniera amicala (‘friendly code behaviour’). Operand intensiv cu date spatiale, sistemul va prezenta o ergonomie de tip ‘on-click’ ori de cate ori posibil. 1.4. Cerinţe şi aşteptări, din perspectiva utilizatorului Faţă de cele de mai sus, s-a apreciat ca N-WATCHDOG trebuie sa satisfaca urmatoarele cerinte cu valoare identitara pentru statutul de solutie originala si inovativa în domeniul sau – managementul urgentelor nucleare:

Sa constitue o trusa de instrumente minimalista, capabila insa de o acoperire cuprinzatoare a nevoilor unei analize extinse dincolo de limitele conventionale ale Evaluarii radiologice (Radiological Assessment), la evaluarea anticipativa a vulnerabilitatilor induse în populatie, comunitati si valori materiale, sociale, strategice.

Sa prezinte o functionalitate orientata spre anticipare, oferind prognoze de 'situatie' în mod '24/7' pe diferite durate, în mod orar sau mai frecvent.

Sa articuleze intr-o singura structura coerenta termeni-sursa – amestecuri de nuclizi si parametri de emisie, cu modele de dispersie în 'Vecinatatea apropiata' ca si în 'Vecinatatea indepartata' (Near/Far-Field) a surselor de emisie radioactiva, utilizand modele adecvate (plumes, puff trails).

Sa poata adresa, practic, orice sursa fixa sau incidentala de emisie radioactiva de pe Glob, asigurand generarea expeditiva, ad-hoc de harti topografice din resurse digitale (DEM) asimilate si date GIS rezidente, eliminand nevoia stocarii masive si, inerent, incomplete, de harti ante-preparate.

Sa poata procura prompt, în mod off-line browsing, prognozele meteorologice necesare modelelor de advectie-difuzie atmosferica, de pe site-uri Internet publice de profil.

Sa poata lucra, alternativ, în mod independent de opinia/implicarea agentului poluant ('Polluter-unbiased mode'), fara necesitatea invocarii de termeni-sursa chestionabili de catre acesta, strict în temeiul factorilor de dilutie atmosferica; sau la intreaga capacitate, implicand termeni-sursa postulati, doze, contramasuri, efecte sanitare si interpretari ale impactului în relatie cu prescriptiile de reglementare ('Polluter-biased mode').

Sa poata acomoda scenarii de eveniment alternative ('what if' scenarios) pentru aceleasi prognoze meteorologice din rezerva stocata si de a trata emisii multiple din diverse surse, sau provenind din diferite episoade de emisie ale aceleiasi surse.

Sa prezinte un design al fluxului operational bazat pe rularea modelisticii si resurselor de vizualizare în mod standalone (pe desktop), urmata de comutarea sistemului în mod web-server si publicarea rezultatelor asamblate intr-un Raport de situatie ('SitRep'), incluzand un bilant Input/Output complet, hartile rezidente interactive si harti web sinoptice si cu interogare punctuala.

Sa asigure robustete operationala, realizata prin stocarea de prognoze meteo în perioade de disponibilitate Internet si efectuarea de evaluari chiar si atunci cand retelele sunt scoase din functiune – o eventualitate de luat în considerare în perioade de criza.

Interfata original-proiectata a codului, cu toate elementele de input secvential acumulate, permanent 'la vedere' si editabile în mod-text, amical pentru utilizator (user-friendly).

Sa dispuna de o consistenta baza de resurse rezidente, incluzand harti digitale de elevatie (DEM); date GIS; librariile de date fizice, date de reglemetare si cunostinte.

Sa sprijine utilizatorii printr-o 'Biblioteca virtuala', conceputa ca o selectie actualizabila de documentatie de insemnatate speciala în administrarea situatiilor de urgenta nucleara.

Sa exploateze la maximum multidisciplinaritatea inerenta a sarcinii asumate si expertiza corespunzatoare a Partenerilor de proiect (Figura 6).

Page 15: Activitatea 1.1

12

Fig. 6. Contributori disciplinari ai proiectului si articularea lor intr-o abordare multi-disciplinara.

Baza de cunostinte, modelele, cerintele de date si solutiile de implementare IT decurg în mod natural din cerintele mentionate. Restranse la minimul indispensabil proiectarii si dezvoltarii IT a produsului, aceste elemente se prezinta în breviarul ce urmeaza. Detalii suplimentare de continut se pot obtine din bibliografia atasata Raportului, cu asistenta permanent asigurata a CO – IFIN-HH.

Page 16: Activitatea 1.1

13

2. Termenul sursă al emisiilor atmosferice radioactive

'We frequently give too little attention to the derivation of the source term, and yet this step is where the greatest potential lies for losing scientific and

stakeholder credibility. This is also the component of radiological assessment

that typically requires the most resources relative to the other steps.' Till [24]

2.1. Definiţia

In domeniul Nuclear Emergency Preparedness, termenul sursa se defineste astfel:

Source term

The amount and isotopic composition of material released or the release rate, used in modelling releases of material to the environment.

(IAEA -TECDOC-955, 1997 [25])

In logica evaluarii unei situatii radiologice consecutive unei emisii atmosferice radioactive, evaluarea termenului sursa ocupa prima pozitie (Figura 7):

Fig.7. Termenul sursa în logica Radiological Assessment.

2.2. Soluţii de evaluare In sens academic, evaluarea unui termen sursa consta în construirea si solutionarea unei ecuatii de bilant adecvate, reflectand migrarea materialului radioactiv – presupus a penetra accidental 'barierele de aparare în adancime' (defence-in-depth barriers) ale sursei primare de radiatii – în cazul în speta, un reactor nuclear – prin 'volumele de control' (control volumes) ale sistemului: tecile elementelor combustibile; vasul de presiune al reactorului; anvelopa (containment structure); si, eventual, alte spatii circuland 'aburul nuclear' (nuclear steam) – sala turbinelor etc (Figura 8).

Page 17: Activitatea 1.1

14

Fig. 8. 'Volume de control' si ecuatii de bilant – solutia academica [26].

Date fiind dificultatile de conceptie si executie ale solutiei academice, organisme de reglementare nucleara de referinta (v. U.S. NRC) au adoptat si recomandat în 'manualele de raspuns' la accident nuclear (Response Technical Manuals, RTM [27]) o solutie simplificata, practica si oferind grade de incredere suficiente în adoptarea deciziilor de raspuns la

Page 18: Activitatea 1.1

15

'evenimente nucleare anormale' (abnormal nuclear events). Cunoscuta drept 'Regula celor patru factori' (The Four-Factors Rule, 4FRule), solutia este explicata în Figura 9.

Fig. 9. 'Regula celor patru factori' [26].

Page 19: Activitatea 1.1

16

2.3. Iniţiatorul: accidentul de referinţă Data fiind vocatia sa declarata – evaluarea anticipativa a vulnerabilitatilor induse de prezenta si functionarea obiectivelor nucleare – N-WATCHDOG se va concentra pe 'evenimente nucleare anormale' de tipul cunoscut drept 'Accident prin pierdere de racire' (Loss-Of-Coolant-Accident, LOCA). Relevanta LOCA decurge din faptul ca orice diminuare necontrolata a debitului, sau alta alterare a parametrilor prescrisi ai agentului de racire a zonei active a reactorului (reactor core) poate declansa un lant de evenimente soldat cu emisie de materie radioactiva în afara 'barierelor de aparare în adancime' – în mediul inconjurator.

Fig. 10. 'Subcooling margin negative' – diagnoza starii de alarma a conditiei zonei active a reactorului – prodromul unui LOCA [26].

Page 20: Activitatea 1.1

17

In spiritul aceleiasi conduite ce a animat adoptarea 'Regulii celor patru factori' – a 'minimei complexitati necesare' (observance of Point of Diminishing Return, POD), manualele de raspuns atribuie generic LOCA iesirii accidentale din regimul de saturatie a 'aburului nuclear', fapt ce poate surveni

i) prin pierdere de presiune (pressure drop), sau

ii) printr-o 'excursie de temperatura' (temperature excursion) în circuitul de racire primar

(primary coolant loop) al reactorului (Figura 10).

Ambele eventualitati descrise – pressure drop si temperature excursion conduc la aceeasi diagnoza:

IF, for a given coolant pressure, temperature is HIGHER than saturation temperature, then Subcooling Margin is NEGATIVE and LOCA is possible.

IF, for a given coolant temperature, pressure is LOWER than saturation pressure, then Subcooling Margin is NEGATIVE and LOCA is possible.

2.4. Modelul 2.4.1. Algoritmul de bază Din acest punct, evaluarea termenului sursa urmeaza urmatoarele etape: Factorul timp al crizei de racire, explicat în Figura 11:

Fig. 11. Factorul timp, în determinarea tipului si severitatii consecintelor unui LOCA [26].

Page 21: Activitatea 1.1

18

Factorul #1 al 4FR: Inventarul de radioactivitate al zonei active (FPRi – Fission Product Inventory, nuclide i in inventory mix)

Calculat, în practica, pe baza unui inventar unitar de referinta, mediat în mod conservativ pentru reactorii moderati si raciti cu apa usoara (Light Water Reactors, LWR) si publicat în literatura deschisa (Figura 12). Problematic în cazul reactorilor moderati si raciti cu apa grea (Heavy Water Reactors, HWR), pentru care literatura este considerabil mai putin transparenta. Exprimat în unitati de activitate per megawatt-electric putere instalata (Ci/MWe, MBq/MWe).

Fig. 12. Formulare tipica a unui inventar unitar de activitate al zonei active – reactori LWR [26].

Factorul #2 al 4FR: Factorii de pierdere a activitatii din zona activa (CRFi – Core Release Fraction, of nuclide i )

Postuleaza proportia transgresiei nuclizilor-produsi de fisiune din zona activa a

reactorului (core) în volumul de control al anvelopei (containment). Fractii subunitare tabelate si publicate în literatura LWR (v. Figura 13). Practic indisponibile în literatura HWR deschisa. Factorul #3 al 4FR: Factorii de reducere a activitatii in containment (RDFmec – Reduction Factors, of nuclide i )

Postuleaza proportia în care mecanisme fizice pasive si solutiile tehnice active

instalate în anvelopa reactorului (containment) diminueaza nivelele de radioactivitate prin retinerea de material inaintea evacuarii controlate/scaparii necontrolate din avelopa. Fractii considerate independente de nuclid – o ipoteza simplificatoare (Figura 14). Tabulate pentru LWR, în functie de mecanismele de reducere. Practic indisponibile în literatura HWR deschisa.

Page 22: Activitatea 1.1

19

Fig. 13. Tabel de corelare a CRFi cu nivelele de afectare a zonei active de catre LOCA – reactori LWR [26].

Fig. 14. Tabel de corelare a RDFmec cu mecanismele de reducere – reactori LWR [26].

Page 23: Activitatea 1.1

20

Factorul #4 al 4FR: Factorii de pierdere ai anvelopei reactorului (EFcnt – Escape Factors, of containment )

Postuleaza proportia în care anvelopa reactorului 'pierde' în mod inerent în mediul

inconjurator material radioactiv. Fractii dependente de tipul de anvelopa si, partial, de tipul de accident (Figura 15).

Fig. 15. Factori de pierdere ai anvelopei – reactori LWR [26].

2.4.2. Modelul de evaluare: căile de emisie Generica în algoritm – 'Regula celor patru factori' – metodologia de referinta, recomandata de IAEA Viena prin documentul tehnic TECDOC-955/1997 devine specifica în privinta 'căilor de emisie' (Release Pathways) ale celor 7 tipuri de reactori cu apa usoara ce domina industria nuclearo-electrica în lume. Seria figurilor 16, 1 – 7 [27, 28] ilustreaza schemele adoptate în aceasta privinta prin consensul international al expertilor – autori ai documentului, ca reprezentative si aplicabile în caz de urgente nucleare. In considerarea lipsei de transparenta a originatorilor filierei HWR în materie, documentul citat nu acopera si problematica acesteia. Propunand spre implementare metoda TECDOC/955 – sprijinita de o substantiala serie de studii publicate de institutii de cercetare si organisme de reglementare nationale, N-WATCHDOG adopta, în cazul reactorilor cu apa grea – de interes special pentru Romania, ce a optat pentru filiera CANDU-PHWR, de origine canadiana – solutia de a recurge la 4 termeni-sursa prefabricati, identificati în literatura fara suportul analitic implicat, dar acoperitori pentru un numar egal de trepte de severitate a consecintelor accidentelor respective. Termenii astfel postulati vor deveni scalabili la interfata-utilizator a codurilor asigurand astfel, pe calea judecatii experte (expert, best-guess judgment) o minima flexibilitate în evaluarile radiologice.

Page 24: Activitatea 1.1

21

16.1. (PWR), Large-Dry Containment 16.2. Pressurized Water Reactor (PWR), Ice Condenser Containment

Page 25: Activitatea 1.1

22

16.3. Boiling Water Reactor (BWR), Mark 1 Containment 16.4. Boiling Water Reactor (BWR), Mark 2 Containment

Page 26: Activitatea 1.1

23

16.5. Boiling Water Reactor (BWR), Mark 3 Containment HWR

PENDING PUBLICATION BY ORIGINATORS/OPERATORS...

Page 27: Activitatea 1.1

24

16.6. VVER-440/230 (Eastern Europe) 16.7. VVER-440/213 (Eastern Europe and Finland)

Fig.16. Cai de emisie, pentru diferite tipuri de reactori cu apa usoara (LWR).

Page 28: Activitatea 1.1

25

2.5. Soluţia de implementare: arborii de eveniment In rezumat, evaluarea termenului sursa este condusa, în sistemul adoptat de N-WATCHDOG, conform fluxului logic rezumat în Figura 17:

Fig.17. Diagrama logica a schemei 4FR (Four-Factor Rule) [26].

Cei patru factori ai schemei 4FR implica, în moduri diferite, tipul de accident si caile de emisie respective, comportari distincte ale nuclizilor evadati din barierele de aparare în adancime (Defense-in-Depth Barriers), starea zonei active a reactorului (core condition), functiile de retinere pasive si active ale anvelopei si calitatile izolante (etanseitatea) acesteia fata de mediu.

Integrarea acestor elemente a necesitat o tehnica implementabila (i) initial la nivel de 'foi de lucru' preformatate (Worksheets), si ulterior, odata cu dezvoltarea mijloacelor IT de asistare a deciziei – la nivel de masina de calcul. Metoda recomandata de documentul de referinta, adoptata pentru nevoile N-WATCHDOG este cea a 'Arborilor de eveniment' (Event Trees).

Implementarea IT a acestora permite parcurgerea verificabila a cailor de emisie, de la factorul initiator al scaparii de radioactivitate la evacuarea efectiva în mediu a acesteia. Figurile 18, 1-14 [27, 28] redau arborii de eveniment considerati de literatura consultata suficienti pentru determinarea termenului sursa al principalelor evenimente anormale (abnormal events) ce pot interveni, cu probabilitati semnificative, la reactorii nucleari.

Page 29: Activitatea 1.1

26

18.1 18.2

Page 30: Activitatea 1.1

27

18.3 18.4

Page 31: Activitatea 1.1

28

18.5 18.6

Page 32: Activitatea 1.1

29

18.7 18.8

Page 33: Activitatea 1.1

30

18.9 18.10

Page 34: Activitatea 1.1

31

18.11 18.12

Page 35: Activitatea 1.1

32

18.13 18.14

Fig.18. Arborii de eveniment considerati în sistemul N-WATCHDOG.

Page 36: Activitatea 1.1

33

Se considera ca modelul de evaluare a termenului sursa al emisiilor atmosferice radioactive descris în prezenta sectiune în contextul bazei de cunostinte necesare este acoperitor pentru tipurile de reactori industriali cu apa usoara (LWR) în functiune în Europa - inclusiv si în mod special în vecinatatea Romaniei - si dominand industria nuclearo-electrica mondiala. Limitate, în cazul reactorilor cu apa grea (HWR) la un numar restrans de cazuri semnificative postulate, scalabile, codurile N-WATCHDOG vor fi proiectate si dezvoltate astfel incat sa poata acomoda, cu minime adaptari si reactorii HWR – daca informatia tehnica relevanta va deveni disponibila.

Page 37: Activitatea 1.1

34

3. Dispersia atmosferică 'It is expected that releases to the atmosphere

will contribute more to the (nonnatural) dose received by people than will releases to other environmental media.'

(Little1984, quoted by Till, 2008).

3.1. Definiţia

Din literatura domeniului se retine, pentru uzul proiectului, urmatoarea definire descriptiva:

La dispersion atmosphérique caractérise le devenir dans le temps et dans l’espace d’un ensemble de particules (aérosols, gaz, poussières) rejetées dans l’atmosphère. L’émission d’un produit à l’atmosphère peut revêtir un caractère :

soit chronique, avec des émissions à l’atmosphère plus ou moins continues ou périodiques dans le temps. Les rejets sont les sous-produits indésirables de toute activité humaine, par exemple, les gaz d'échappement des voitures, les fumées d'usines, de chauffages urbains ou toute forme de pollution diffuse (émission de gaz issu d'une décharge...);

soit accidentel, avec des émissions à l’atmosphère ponctuelles dans le temps, non désirées comme la fuite d'une cuve ou un dégagement de fumées dû à un incendie.

INERIS-DRA-2002-25427 [29]

In secventa de fenomene ce conduc de la emisiile radioactive la expunerea radiologica a populatiei dispersia atmosferica ocupa prima pozitie (Figura 19).

Fig.19. Radioecologia impactului de mediu si sanitar al industriei nucleare [24].

Page 38: Activitatea 1.1

35

3.2. Soluţii de evaluare Dispersia atmosferica (Atmospheric Dispersion, AD; uneori – Atmospheric Transport) este un proces complex, caruia Fizica Atmosferei i-a putut conferi un cadru de intelegere – inca limitat în capacitate diagnostica si predictiva - doar printr-o energica tratare reductionista.

Esenta modelului academic al dispersiei o constituie conservarea marimilor fizice implicate: conservarea masei (kg); conservarea impulsului (kg.m/s); conservarea cantitatii de caldura (J); conservarea unei proprietati caracteristice – în cazul proiectului de fata, activitatea (Bq, Ci).

Data fiind particularitatea sistemului fizic vizat – atmosfera – de a nu prezenta conditii la limita univoce la extremitatea superioara (ea insasi o notiune prost definita în sens matematic), sistemul complet de ecuatii cu derivate partiale ce articuleaza marimile mentionate nu are o solutie unica, si nici analitica.

Pentru a-l face util, ca baza a prognozelor meteorologice speculative (ce nu vectorizeaza, pur si simplu observatia, terestra sau satelitara a fronturilor atmosferice, maselor noroase etc.), stiinta domeniului a recurs, în principal, la doua tipuri de operatii: linearizarea; si scalarea, ajutate de Analiza dimensionala. Aproximatiile astfel obtinute sunt solubile prin analiza numerica, pe sisteme IT de performanta ridicata.

Fig. 20. Fenomene dominante retinute în modelarea, din perspectiva NEP, a dispersiei atmosferice [13].

Definirea unui model de valoare practica pentru NEP (Nuclear Emergency Preparedness) necesita insa o degradare suplimentara a solutiei academice. Astfel, – Pe palierul teoretic - tratarea în izolare a unei legi de conservare unice: conservarea activitatii; – Pe palierul practic – identificarea si modelarea adecvata a unui set limitat de fenomene demonstrabile experimental ca dominante în conditionarea rezultatului cautat: distributia spatiala si evolutia în timp a concentratiilor de entitate dispersata, cu efecte de mediu si sanitare, inclusiv afectarile economice si sociale ce creaza costuri indirecte în aprecierea impactului alterarii cadrului natural prin interventia entitatilor respective – Figura 20.

Page 39: Activitatea 1.1

36

3.2.1. Palierul teoretic Pentru scopurile N-WATCHDOG, autorii au dezvoltat o solutie compacta a problemei [30] prin: (a) linearizarea ecuatiei de dispersie a activitatii derivata din legea de conservare; si (b) rezolvarea acesteia prin metoda functiilor Green, metoda avand calitatea de a leaga termenul sursa de efectul de mediu al acestuia – distributia spatiala a concentratiei de

activitate (kBq/m3 sau Ci/m3) în spiritul unei relatii 'semnal-raspuns', descrisa printr-o integrala corespunzatoare. O compilare a etapelor esentiale în conducerea procesului se prezinta în Figura 21.

Fig. 21. Legea de conservare a activitatii (primul cadru rosu); ecuatia de dispersie linearizata (cadrul

albastru);elemente de calcul al propagatorului Green 'semnal-raspuns'; si solutia analitica integrala a distributiei spatiale a concentratiei de activitate, în modelul N-

WATCHDOG (al doilea cadru rosu).

Page 40: Activitatea 1.1

37

Fig. 22. Solutiile ecuatiei de dispersie pentru sursa indicata în partea superioara a figurii, suficienta în

majoritatea evaluarilor radiologice. Emisie în intervalul de timp [0, tR]. Dimensiunile surse (m): Lx, Ly, Lz. In partea dreapta a figurii – solutiile pentru o sursa punctuala, adoptate de N-WATCHDOG

ca adecvate unui program de veghe si alertare radiologica prompta. Solutia obtinuta prezinta o deosebita versatilitate în raport cu geometria si rata de emisie a sursei, putand fi adusa, prin operatii algebrice relativ simple, la forme convenabile nevoilor N-WATCHDOG, ca program de veghe si alertare radiologica prompta (Figura 22), si anume: (a) Evaluarea radiologica a impactului emisiilor atmosferice radioactive pe intreaga arie de influenta semnificativa a unui obiectiv nuclear; si (b) Evaluarea radiologica a impactului emisiilor atmosferice radioactive în zona de proximitate a sursei potentiale, cea mai vulnerabila în principiu. 3.2.2. Palierul practic Reductiile solutiei redate în Figura 22 în scopurile indicate conduce la doua modele, consacrate în literatura si direct adaptabile aplicatiilor IT avute în vedere: :

Dispersia în pulsuri gaussiene – Gaussian Puff Trails; si Dispersia în pana gaussiana – Gaussian Plume.

Page 41: Activitatea 1.1

38

3.2.2.1. Modelul Gaussian Puff Trails Ecuatia constitutiva de baza a modelului este:

n n

DF0(x,y,z) = 1/ [ (2)3/2 x(q) y(q) z(q) ] (DF1) p=0 q=p

.{ exp[-(zc - H)2/(2z2

(q))] + exp[-(zc + H)2/(2z2(q))]

+ exp[-(2hinv - z - H)2]/(2z2(q))] + exp[-(2hinv + z - H)2/(2z

2(q))]}

.{exp[-(x – xc)2/(2x

2(q))] . exp[-(y – yc)

2/(2y2(q))]}

in care:

xc, yc, zc (m) - coordonatele carteziene ale centrului 'pufului'; x, y, z (m) - coordonatele carteziene ale punctului observat;

H (m) - inaltimea sursei de emisie, presupusa punctuala;

hinv (m) - inaltimea stratului de inversie termica, o functie de clasa de sabilitate atmosferica

x, y, z (m) - coeficientii de dispersie pe directia axelor respective; depinzand de sistemul adoptat, acestia

pot fi: functii de timp – 'varsta', qa pufului din momentul emisiei în secventa (trail) de pufuri; sau functii de distanta, pe orizontala, a centrului pufului fata de sursa, calculabila prin cumularea segmentelor de drum parcurs de puff cu vitezele corespunzatoare momentelor respective, livrate de prognoza meteo.

(s) - este pasul de timp al secventei de pufuri; daca se alege ca secventa sa contina n pufuri, durata totala de observare a dispersiei emisiei atmosferice

(timpul de monitorare) este nsecunde; daca se

prescriu un numar de pufuri, n si un timp de monitorare tmon, atunci pasul de timp al secventei se deduce a fi tmon/n.

DF0(x,y,z) este Factorul de Dilutie brut – necorectat prin considerarea proceselor asociate advectiei-difuziei (v. sectiunea 3.2.3) - în punctul observat. Dimensiunea acestuia, s/m3, este determinata (a) de primul factor din membrul drept al ecuatiei, cu dimensiunea 1/m3 (ceilalti factori si termeni fiind adimensionali); si (b) de cea de-a doua suma - de fapt, o digitizare a unei integrale de timp, care adauga un factor s (secunda):

n n

∫ dt ~

p q=p

Page 42: Activitatea 1.1

39

3.2.2.2. Modelul Gaussian Plume Ecuatia constitutiva de baza a modelului este:

N

DF0(x,y,z) = 1 / [ 2 y(d) z(d) v ] (DF2) s=0

.{ exp[-(z – H(s))2/(2z2

(d))] + exp[-(z + H(s))2/(2z2(d))]

+ exp[-(2hinv - z – H(s))2]/(2z2

(d))] + exp[-(2hinv + z – H(s))2/(2z2(d))]}

.{exp[-x2/(2x2(d))] . exp[-y 2/(2y

2(d))]}

in care:

x, y, z (m) - coordonatele carteziene ale punctului observat; H(s) (m) - inaltimea sursei de emisie indexata s, presupusa

punctuala; hinv (m) - inaltimea stratului de inversie termica, o functie de

clasa de sabilitate atmosferica v (m/s) - viteza medie a vantului pe durata de

observatie(timpul de monitorare);

x, y, z (m) - coeficientii de dispersie pe directia axelor respective; depinzand de sistemul adoptat, acestia pot fi: în mod tipic, functii de distanta, pe orizontala, a punctului de observatie fata de sursa; se pot folosi si functii de timp – coreland distanta parcursa cu viteza;

d (m) - distanta punctului de observatie fata de sursa.

Suma se extinde asupra tuturor celor N surse participante la evenimentul de emisie.

Cazul cel mai comun este cel al unei singure surse. DF0(x,y,z) este Factorul de Dilutie brut – necorectat prin considerarea proceselor asociate advectiei-difuziei - în punctul observat. Dimensiunea acestuia este determinata strict de primul factor din membrul drept al ecuatiei, cu dimensiunea s/m3, ceilalti factori si termeni fiind adimensionali. 3.2.3. Procesele asociate Dupa cum s-a aratat, ecuatiile constitutive de baza ale modelelor livreaza Factorul de Dilutie brut al dispersiei. Prin traditie ele reflecta, din ansamblul de fenomene luate în cosiderare de abordarea practica a procesului, advectia (transportul în masa determinat de viteza si directia vantului), difuzia (expandarea norului radioactiv ejectat, caracterizata de coeficientii de dispersie), reflexia la sol si pe stratul de inversie a maselor de aer contaminate. O abordare a dispersiei revelatoare pentru impactul dozimetric al acesteia necesita insa si luarea în calcul a unor procese asociate, si anume:

Depunerea 'uscata' pe sol (Dry Ground Deposition); Depunerea 'umeda' pe sol (Wet Ground Deposition); Dezintegrarea radioactiva (Radioactive Decay); 'Saracirea' norului radioactiv (Cloud/Plume Depletion), ca urmarea a acestor

procese;

Page 43: Activitatea 1.1

40

si, influentand intregul proces de dispersie,

Suprainaltarea norului radioactiv (Cloud/Plume Rise); si Clivajul vertical al norului/penei de efluent.

3.2.3.1. Depunerea uscată In contextul dat, depunerea uscata este rezultatul integrat în timp al intersectiei cu solul a fluxului de difuzie al activitatii. In timp ce, la nivel academic, modelarea procesului ocupa o intreaga literatura (v.e.g. [24]), la nivelul EPM se iau în considerare numai în mod indirect parametri ai vectorilor activitatii (stare de agregare, diametre, vascozitati etc.) – gaze sau aerosoli, prin intermediul unei 'viteze de depunere uscata' (Dry Deposition Velocity), vdry, data ca o functie de nuclidul considerat sau de clase de nuclizi. De regula, isotopii gazelor nobile (Kripton, Xenon) ce apar ca produsi de fisiune se considera a avea viteza de depunere uscata nula, în timp ce altor produse gazoase (e.g. iodura de cesiu) si aerosolilor li se atribuie viteze specifice, depinzand, în unele abordari si de natura suprafetei de depunere (sol, apa, zapada, iarba, padure). Detalii concrete se vor prezenta în sectiunea consacrata nevoilor de date ale N-WATCHDOG. Efectul de prima consecinta al depunerii uscate il constituie 'saracirea' (spolierea, debilitarea) continutului de activitate al norului/penei de efluent. Efectul se apreciaza printr- un Factor de saracire uscata (Dry Depletion Factor), calculat astfel: Fdry = exp(-vdry fdry/v), cu vdry –viteza de depunere uscata si v – viteza vantului, (F1) unde x

fdry = (/2)1/2 ∫d exp[-H2/(2z2())]/z()

0

integrala calculandu-se prin cuadraturi, pe distanta dintre sursa si punctul x parcurs prin advectie pana la momentul de interes. 3.2.3.2. Depunerea umedă Este rezultatul antrenarii activitatii aeropurtate (airborne activity) – de fapt, a purtatorilor materiali ai acesteia – de catre precipitatii. Precipitatia de referinta este ploaia, ninsoarea fiind tratata în literatura în termeni de 'ploaie echivalenta' (rain-equivalent).

Se calculeaza, prin integrare pe verticala de la 0 metri la infinit, o viteza de depunere umeda, astfel:

vwet = (/2)1/2 z exp(H2/(2z2)),

unde = a.Ib este o marime de calcul ce normeaza intensitatea ploii, I (mm/h) în raport cu natura nuclizilor, prin constantele specifice a si b. Factorul de saracire umeda (Wet Depletion Factor) este:

Fwet = exp(-. train), (F2) unde train (ore) este durata, observata sau presupusa, a ploii.

Page 44: Activitatea 1.1

41

3.2.3.3. Dezintegrarea radioactivă Factorul de saracire prin dezintegrare radioactiva a norului/penei pe durata dispersiei atmosferice (Decay Depletion Factor) se calculeaza dupa cunoscuta lege exponentiala:

Fdecay = exp(- t), (F3)

unde = ln(2)/T1/2 ~ 0.693/T1/2 este constanta de dezintegrare a nuclidului din amestecul de izotopi radioactivi specificat de termenul sursa, dedusa din Timpul de injumatatire T1/2 al nuclidului, iar t este timpul scurs de la ejectia nuclidului. De notat ca, pentru inlesnirea calculatiei, disciplina 'de manual' în materie integreaza efectele filiatiei (formarea în cascada de noi nuclizi din antecesori prin dezintegrare si dezintegrarea consecutiva a acestora – descrisa de ecuatiile Bateman) în Factorii de Conversie la Doze (Dose Conversion Factors), ce vor fi explicati în sectiunea de Dozimetrie a Raportului. Relevanta proceselor de saracire depinde în masura importanta de trei factori: (i) timpul de injumatatire al nuclizilor implicati; (ii) durata de monitorizare a evenimentului; si (iii) regimul precipitatiilor.

Astfel, efectul saracirii asupra rezultatelor este considerabil în cazul dominarii în termenul sursa a nuclizilor de viata scurta, la durate de monitorizare mari, si în prezenta precipitatiilor; si poate deveni neglijabil în cazul contrar. In mod conservativ, N-WATCHDOG va lua constant în calcul efectele saracirii. Rezultatul net al proceselor asociate descrise consta în corectarea Factorului de Dilutie brut – ecuatiile (DF1) si (DF2), astfel: DF(x,y,z) = DF0(x,y,z).Fdry.Fwet.Fdecay (DF3)

Factorul de Dilutie efectiv, DF, astfel obtinut este marimea de prima importanta în evaluarea consecintelor unei emisii atmosferice radioactive. Astfel,

DF intervine ca marime de intrare indispensabila (input) în calculele dozimetrice care conduc, în final, la diagnoza de eveniment nuclear si recomandarile de contramasuri.

Pe de alta parte, distributia spatiala a DF (s/m3) poate constitui în sine o masura a

expunerii în aria de influenta a obiectivului nuclear, independent de o descriere completa a termenului sursa – subiect prin traditie controversat intre operatorii de obiective nucleare, tentati sa comunice date subestimate în materie si operatorii de management al urgentelor nucleare, tentati de un conservatism uneori excesiv.

3.2.3.4. Supraînălţarea norului/penei de efluent

Materia purtatoare de radioactivitate este ejectata din sursa de doi factori motori:

(i) impulsul mecanic; si (ii) continutul caloric. Proportia influentei acestora asupra inaltimii stabilizate (o medie teoretica a unei marimi în fapt fluctuante) a norului/penei radioactive variaza în functie de jocul presiunilor si temperaturilor în volumele de control ale obiectivului

Page 45: Activitatea 1.1

42

– anvelopa, sala turbinelor, alte spatii de pe traseul cailor de emisie (v. sectiunea dedicata termenului sursa). Importanta evidenta a acestei etape a emisiei radioactive a determinat unii autori la o extindere a conceptului de termen sursa, care sa inglobeze nu numai problemele amestecului de nuclizi, ci si problema suprainaltarii. O disertatie completa fiind exclusa în limitele acestui breviar, se redau în continuare conceptele de adresare a subiectului în sistemul N-WATCHDOG. Modelul a retinut trei cazuri de interes: emisia; focul deschis; si focul în spatiu inchis. 3.2.3.4.1. Emisia Continutul radioactiv – gaze, vapori, aerosoli este ejectat prin orificii ale sistemelor de de evacuare controlata – cosuri de fum, valve de siguranta, filtre, sau în mod neontrolat prin sparturi ale anvelopei sau ale altor structuri de confinare.

HOT MIX - INPUT

_______________

Change defaults if/as appropriate.

When ready, 'PROCEED' from menu.

_________________________________

Physical Constants

------------------

PI Number, pi: 3.1415926

Gravity Acceleration, g (m/s2): 9.812

Ideal Gas Constant, Ridg (J/(mol.K))): 8.314

Mechanical Equivalent of Calorie (J/cal): 4.186

Air Molar Mass (kg/mol): 0.0289

Air Specific Heat (cal/(g.K)): 0.24

Air Density (g/m3): 1290

Release Data

------------

Venting Height (m AG): 40

Venting Diameter, Dvent (m): 3.7

Venting Velocity, w0 (m/s): 8.33

Vent Gas Temperature, tG (C): 90

Vent Gas Molar Mass, miug (kg/mol):0.0289

Ambient Temperature (C): 20

Ambient Pressure, Pa (mmHg):760

Wind Speed, u (m/s at 10 mAG): 2

Pasquill Stability: D

Downdraft (1 - considered, 0 - ignored): 0

Height of Most Influencial Building, Hbld (mAG): 20

____________________________________________________________________

THE PLUME RISE

_______________

EFFECTIVE RELEASE HEIGHT - STATIC ADJUSTMENTS

_____________________________________________

STACK WAKE DOWNDRIFT

.--------------------

If release through stake then

. If w0 <= 1.5 u, with u - the average wind speed at release vent height H, then

. dHstack = 2(1.5 - w0/u)D

If no stack or w0 > 1.5 u then

. dHstack = 0.

Page 46: Activitatea 1.1

43

Effective Release Height, Heff_stack (mAG)

. Heff_stack = H - dHstack

CASE: no stack

. dHstack (m) = 0.

. Heff.stack (m) = 40

NEAREST BUILDING WAKE DOWNDRIFT

-------------------------------

In general: Heff_nbld = Heff_stack - dHnbld

If Heff_stack > 2.5 Hbld then

. dHnbld = 0

If Heff_stack > Hbld and Heff_stack <=2.5 Hbld then

If u >= 5 then

dHnbld = 1.5 Hbld - 0.6 Heff_stack

If u < 5 then

dHnbld = 0

If Heff_stack <= Hbld then

dHnbld = 0

CASE: Heff_stack > Hbld and Heff_stack <= 2.5 Hbld and u < 5

. dHnbld (m) = 0

. Heff.nbld = 40

. Consequent Effective Release Height (mAG): 40

EFFECTIVE RELEASE HEIGHT - PLUME RISE

_____________________________________

The Thermal Plume Rise:

If x < 3.5 x0 then

dHrise_th(x) = 1.6 (F^(1/3)) (x^(2/3))/u

If x >= 3.5 x0 then

dHrise_th(x) = dHrise_th(x0)

where

the vertical shear-adjusted wind speed at release vent is:

u = u10 (H/10)^m, if H>10, or u10 otherwise,

with u10 (m/s) - the wind speed at 10 mAG;

The transition distance from source is:

x0 = 14 F^(5/8) if F < 55 m4/s3

x0 = 34 F^(2/5) if F >= 55 m4/s3

the thermal portant flux is:

F = ((Tgas/muGas - Tair/muAir)/(Tgas/muGas)) g w0 ((D/2)^2)

with Tair, muAir - ambient air absolute temperature and molar mass, respectively,

. Tgas - gas absolute temperature at vent and molar mass, respectively.)

and the other notations - above.

The Final Thermal Plume Rise:

. If Pasquill A, B, C, D then

. dHrise_th = 1.6 F^(1/3) ((3.5 x0)^(2/3))/u

. If Pasquill E, F, G then

. dHrise_th = 5.0 (F^(1/4))/(S^(3/8)), S>0

The Stability Parameter (Squared Vaisala Frequency, N), S is: S = (g/Ta) DthetaDz

with DthetaDz - the Potential Temperature Gradient of the local atmosphere.

Note that S is effective only in stable atmospheres, of class E or F.

Page 47: Activitatea 1.1

44

The Momentum Plume Rise

In the transition zone:

dHrise_mm = 1.89 (((w0^2) D/(u (w0 + 3u)))^(2/3)) (x^(1/3))

The Final Momentum Plume Rise:

the lowest rise from the following:

dHrise_mm = 1.5 w0 Dvent/u

dHrise_mm = 4.0 ((Fm/S)^(1/4))

dHrise_mm = 1.5 ((Fm/u)^(1/3))/(S^(1/6))

where Fm (m4/s2) is the momentum-driven portant flux:

Fm = (rhoAir/rhoGas)(w0^2)((Dvent/2)^2)

See the other notations above.

If Thermal and Momentum Drives are comparable:

dHrise = (3^(1/3))((Fm x/(((1/3+u/w0)^2)(u^2)) + F (x^2)/(0.5 (u^3)))^(1/3))

Inversion Cutoff

With this code, one holds the conservative assumption that there is no penetration

of the inversion lid, so that the effective height of the plume axis can only be

lower than,

or at most equal to, the height of the inversion lid defaulted for the respective

stability class.

CHARACTERISTIC DATA

___________________

- The vertical shear-adjusted wind speed (m/s) at release vent, u (m/s): 3.20427951

- The air density, rhoAir (kg/m3), at T = 293 K: 1.18637013

- The released gas density, rhoGas (kg/m3), at T = 363 K: 0.95759352

Thermall rise:

- The thermal portant flux, F (m4/s3): 169.467834

- The transition distance, x0 (m) from source: 264.91944

- The Stability Parameter, S (1/s2): 0(Vaisala Frequency N = 0.0)

- The Final Thermal Plume Rise, dHrise_th (mAG), for a class-D atmosphere: 262.74831

Momentum rise:

- The momentum portant flux, Fm (m4/s2): 294.220185

- The Final Momentum Plume Rise, dHrise_mm (mAG), for a class-D atmosphere:

14.4280484

Final Plume Rise, selected as the dominant among dHrise_th and dHrise_mm, above:

262.74831

- The Effective Plume Height of the Briggs' Stake Release Model: 302.74831

- The Entrainment-Corrected Plume Height (open fires):

Heffective = (HBriggs^3+(pool_Radius/entrainment_coeff)^3)^(1/3)

- pool_Radius/entrainment_coeff

CONCLUSION: Final, Effective Release Height (mAG): 292.751947

Page 48: Activitatea 1.1

45

3.2.3.4.2. Focul deschis Scenariul reprezentativ, a cărui evaluare este solicitată de organismele de reglementare [31] (v. si [32]) este considerat căderea unei aeronave peste o structură adăpostind material radioactiv – ca bazinul de calmare a combustibilului nuclear uzat ataşat reactorilor de putere, sau altă formă de depozit, ‘uscat’ sau ‘umed’ de combustibil uzat, comun în cazul reactorilor de cercetare – însoţită de decopertarea structurii şi urmată de aprinderea carburantului.

OPEN FIRE - INPUT _________________

Change defaults if/as appropriate.

When ready, 'PROCEED' from menu.

_________________________________

Physical Constants

------------------

PI Number, pi: 3.1415926

Gravity Acceleration, g (m/s2): 9.812

Ideal Gas Constant, Ridg (J/(mol.K))): 8.314

Mechanical Equivalent of Calorie (J/cal): 4.186

Air Molar Mass (kg/mol): 0.0289

Air Specific Heat (cal/(g.K)): 0.24

Air Density (g/m3): 1290

Fire Data

----------

Fuel Mass (kg): 5300

Fuel Density (kg/m3): 950

Fuel Heat Value (J/kg): 33000000

Equivalent Fuel Pool Radius (m): 6

Equivalent Fuel Pool Linear Burn Rate (mm/min): 0.175

Fire Radiance Fraction (% energy radiated): 0.3

Entrainment Coefficient (): 0.06

Release Data

------------

Venting Height (m AG): 40

Ambient Temperature (C): 20

Ambient Pressure, Pa (mmHg):760

Wind Speed, u (m/s at 10 mAG): 2

Pasquill Stability: D

____________________________________________________________________

Fuel Volume = (Fuel Mass)/(Fuel Density)

= 5.57894737 m3

= 5578947.37 cm3

= 1473.96232 gal

Pool Area = 3.1415926 x (Fuel Pool Radius)^2

= 113.097334 m2

Pool Height = (Fuel Volume)/(Pool Area)

= 0.49328726e-1 m

= 49.3287259 mm

_________________________________________________________________________________

Duration of Fuel Fire = (Pool Height)/(Pool Linear Burn Rate)

= 281.878434 min

= 16912.706 sec

= 4.69797389 hrs

Heat Emission Rate:

Q = 3785.V.d.H.(1-f)/t

where:

Q - heat emission rate (cal/s)

t = 16912.706 - duration of fuel fire (s)

3785 - volume conversion factor (cm3/gallon)

Page 49: Activitatea 1.1

46

V = 1473.96232 - volume of fuel (gallons) burned in time, t (s)

d = 0.95 - fuel density (g/cm3)

H = 7883.42093 - heat of combustion (cal/g)

f = 0.3 - assumed fraction of the heat of combustion that is radiated.

The Buoyant Flux:

F = g.Q/(pi.C.r.T)

where:

Q - heat emission rate (cal/s)

g - the gravity acceleration (m/s2)

C - gas specific heat (cal/(kg.K))

r - air density (kg/m3)

T - ambient temperature

One obtains:

___________

Q = 1729320.64 cal/s

= 7238936.21 J/s

t = 16912.706 sec

= 4.69797389 hrs

THE PLUME RISE

_______________

EFFECTIVE RELEASE HEIGHT - PLUME RISE

_____________________________________

The Thermal Plume Rise:

If x < 3.5 x0 then

dHrise_th(x) = 1.6 (F^(1/3)) (x^(2/3))/u

If x >= 3.5 x0 then

dHrise_th(x) = dHrise_th(x0)

where

the vertical shear-adjusted wind speed at release vent is:

u = u10 (H/10)^m, if H>10, or u10 otherwise,

with u10 (m/s) - the wind speed at 10 mAG;

The transition distance from source is:

x0 = 14 F^(5/8) if F < 55 m4/s3

x0 = 34 F^(2/5) if F >= 55 m4/s3

The Final Thermal Plume Rise:

. If Pasquill A, B, C, D then

. dHrise_th = 1.6 F^(1/3) ((3.5 x0)^(2/3))/u

. If Pasquill E, F, G then

. dHrise_th = 5.0 (F^(1/4))/(S^(3/8)), S>0

The Stability Parameter (Squared Vaisala Frequency, N), S is: S = (g/Ta) DthetaDz

with DthetaDz - the Potential Temperature Gradient of the local atmosphere.

Note that S is effective only in stable atmospheres, of class E or F.

Inversion Cutoff

With this code, one holds the conservative assumption that there is no penetration

of the inversion lid, so that the effective height of the plume axis can only be lower

than,

or at most equal to, the height of the inversion lid defaulted for the respective stability

class.

CHARACTERISTIC DATA

___________________

- The vertical shear-adjusted wind speed (m/s) at release vent, u (m/s): 3.20427951

- The air density, rhoAir (kg/m3), at T = 293 K: 1.18637013

Page 50: Activitatea 1.1

47

- The released gas density, rhoGas (kg/m3), at T = 363 K: 0.95759352

Thermall rise:

- The thermal portant flux, F (m4/s3): 59.5407948

- The transition distance, x0 (m) from source: 174.343102

- The Stability Parameter, S (1/s2): 0(Vaisala Frequency N = 0.0)

- The Final Thermal Plume Rise, dHrise_th (mAG), for a class-D atmosphere: 140.273728

Momentum rise:

- The momentum portant flux, Fm (m4/s2): 294.220185

- The Final Momentum Plume Rise, dHrise_mm (mAG), for a class-D atmosphere: 14.4280484

Final Plume Rise, selected as the dominant among dHrise_th and dHrise_mm, above: 140.273728

- The Effective Plume Height of the Briggs' Stake Release Model: 180.273728

- The Entrainment-Corrected Plume Height (open fires):

Heffective = (HBriggs^3+(pool_Radius/entrainment_coeff)^3)^(1/3)

- pool_Radius/entrainment_coeff

CONCLUSION: Final, Effective Release Height (mAG): 89.9967394

3.2.3.4.3. Focul în spaţiu închis Scenariul reprezentativ – de asemenea in atentia organismelor de reglementare [33] este considerat un incendiu in spatiul inchis al unei structuri strategice – ca anvelopa unui reactor sau un depozit de material radioactiv – frecvent intalnit in operatiile de dezafectare, insotit de evacuarea gazelor si cenusilor rezultate (fly-ashes) prin solutiile normale de continuitate cu mediul – sisteme de ventilare, cai de acces.

FIRE IN THE HALL - INPUT

________________________

Change defaults if/as appropriate.

When ready, 'PROCEED' from menu.

_________________________________

Physical Constants

------------------

PI Number, pi: 3.1415926

Gravity Acceleration, g (m/s2): 9.812

Ideal Gas Constant, Ridg (J/(mol.K))): 8.314

Mechanical Equivalent of Calorie (J/cal): 4.186

Air Molar Mass (kg/mol): 0.0289

Air Specific Heat (cal/(g.K)): 0.24

Air Density (g/m3): 1290

Fire Data

----------

Fuel Mass (kg): 5300

Fuel Density (kg/m3): 950

Fuel Heat Value (J/kg): 33000000

Equivalent Fuel Pool Radius (m): 6

Equivalent Fuel Pool Linear Burn Rate (mm/min): 0.175

Fire Radiance Fraction (% energy radiated): 0.3

Entrainment Coefficient (): 0.6

Sugawa Model Parameter a (K.kW^(3/2).m^(-3/5)): 20

Sugawa Model Parameter k (): 1

Release Data

------------

Venting Height (m AG): 40

Venting Diameter, Dvent (m): 3.7

Ambient Temperature (C): 20

Ambient Pressure, Pa (mmHg):760

Wind Speed, u (m/s at 10 mAG): 2

Pasquill Stability: D

Page 51: Activitatea 1.1

48

____________________________________________________________________

Fuel Volume = (Fuel Mass)/(Fuel Density)

= 5.57894737 m3

= 5578947.37 cm3

= 1473.96232 gal

Pool Area = 3.1415926 x (Fuel Pool Radius)^2

= 113.097334 m2

Pool Height = (Fuel Volume)/(Pool Area)

= 0.49328726e-1 m

= 49.3287259 mm

_________________________________________________________________________________

Duration of Fuel Fire = (Pool Height)/(Pool Linear Burn Rate)

= 281.878434 min

= 16912.706 sec

= 4.69797389 hrs

Heat Emission Rate:

Q = 3785.V.d.H.(1-f)/t

where:

Q - heat emission rate (cal/s)

t = 16912.706 - duration of fuel fire (s)

3785 - volume conversion factor (cm3/gallon)

V = 1473.96232 - volume of fuel (gallons) burned in time, t (s)

d = 0.95 - fuel density (g/cm3)

H = 7883.42093 - heat of combustion (cal/g)

f = 0.3 - assumed fraction of the heat of combustion that is radiated.

One obtains:

___________

Q = 1729320.64 cal/s

= 7238936.21 J/s

t = 16912.706 sec

= 4.69797389 hrs

THE FIRE FLOW

_____________

According to Sugawa (see menu's Help),

the fire flow temperature, Tg (C) at a height H m from the fire base

and a radial distance r (m) from the fire vertical axis is:

Tg = aSu/(N^(5/3))

where N is the following function of the fire power, Q (kW):

N =(H + r)/(Q^(2/5))

and the empirical constant aSu in the range 20-22 kW^(3/2).m^(-3/5).

With the flow temperature, Tg, and the ambient air temperature, Ta known,

the ejection velocity is:

v = kSu.(H/(H + 2.r)).((dT/Ta).g.H)^(1/2)

kSu = 1.0

g = 9.81 m/s^2.

One thus obtains:

Height Flow-Temperature Flow-Velocity

(m above fire base) (C) (m/s)

_____________________________________________________

1 7484.21914 15.8313594

2 2357.38131 12.5653583

3 1199.34576 10.9768515

4 742.528584 9.97313146

5 511.913388 9.25823512

Page 52: Activitatea 1.1

49

6 377.770242 8.71233281

7 292.179514 8.2759691

8 233.881848 7.91567968

9 192.195101 7.61092375

10 161.242613 7.34826608

11 137.559953 7.11848071

12 118.99017 6.91498314

13 104.12961 6.73292469

14 92.0307799 6.56864103

15 82.0340961 6.4193017

16 73.6681659 6.28267913

17 66.5883561 6.15699168

18 60.5376633 6.04079418

19 55.3210601 5.93289971

20 50.7882407 5.83232266

_____________________________________________________

One retains, at the ejection mouth level:

_________________________________________

Reference Gas Temperature (C): 50.7882407

Reference Gas Velocity (m/s): 5.83232266

THE PLUME RISE

_______________

EFFECTIVE RELEASE HEIGHT - PLUME RISE

_____________________________________

The Thermal Plume Rise:

If x < 3.5 x0 then

dHrise_th(x) = 1.6 (F^(1/3)) (x^(2/3))/u

If x >= 3.5 x0 then

dHrise_th(x) = dHrise_th(x0)

where

the vertical shear-adjusted wind speed at release vent is:

u = u10 (H/10)^m, if H>10, or u10 otherwise,

with u10 (m/s) - the wind speed at 10 mAG;

The transition distance from source is:

x0 = 14 F^(5/8) if F < 55 m4/s3

x0 = 34 F^(2/5) if F >= 55 m4/s3

the thermal portant flux is:

F = ((Tgas/muGas - Tair/muAir)/(Tgas/muGas)) g w0 ((D/2)^2)

with Tair, muAir - ambient air absolute temperature and molar mass, respectively,

. Tgas - gas absolute temperature at vent and molar mass, respectively.)

and the other notations - above.

The Final Thermal Plume Rise:

. If Pasquill A, B, C, D then

. dHrise_th = 1.6 F^(1/3) ((3.5 x0)^(2/3))/u

. If Pasquill E, F, G then

. dHrise_th = 5.0 (F^(1/4))/(S^(3/8)), S>0

The Stability Parameter (Squared Vaisala Frequency, N), S is: S = (g/Ta) DthetaDz

with DthetaDz - the Potential Temperature Gradient of the local atmosphere.

Note that S is effective only in stable atmospheres, of class E or F.

Inversion Cutoff

With this code, one holds the conservative assumption that there is no penetration

of the inversion lid, so that the effective height of the plume axis can only be lower

than,

or at most equal to, the height of the inversion lid defaulted for the respective stability

class.

Page 53: Activitatea 1.1

50

CHARACTERISTIC DATA

___________________

- The vertical shear-adjusted wind speed (m/s) at release vent, u (m/s): 3.20427951

- The air density, rhoAir (kg/m3), at T = 293 K: 1.18637013

- The released gas density, rhoGas (kg/m3), at T = 323.788241 K: 1.07356106

Thermall rise:

- The thermal portant flux, F (m4/s3): 58.5081283

- The transition distance, x0 (m) from source: 173.127237

- The Stability Parameter, S (1/s2): 0(Vaisala Frequency N = 0.0)

- The Final Thermal Plume Rise, dHrise_th (mAG), for a class-D atmosphere: 138.808892

Momentum rise:

- The momentum portant flux, Fm (m4/s2): 128.653022

- The Final Momentum Plume Rise, dHrise_mm (mAG), for a class-D atmosphere: 10.1019248

Final Plume Rise, selected as the dominant among dHrise_th and dHrise_mm, above: 138.808892

- The Effective Plume Height of the Briggs' Stake Release Model: 178.808892

- The Entrainment-Corrected Plume Height (open fires):

Heffective = (HBriggs^3+(pool_Radius/entrainment_coeff)^3)^(1/3)

- pool_Radius/entrainment_coeff

CONCLUSION: Final, Effective Release Height (mAG): 168.819317

3.2.4. Alocarea modelelor de disprsie in N-WATCHDOG In aprecierea autorilor, modelul Puff Trails prezinta o relevanta superioara, putand acomoda scari spatiale si de timp extinse – pana la zeci de ore si sute de kilometri, tinand seama de variatiile rapide ale meteorologiei pe duratele de monitorizare, tipuri de emisie diverse in profil si durata, si putand acomoda o maniera analitica naturala de a considera efectele topografiei. Modelul Gaussian Plume, ce recurge la medierea efectelor pe directia transversala fata de cea a vantului mediu pe intreaga durata de monitorizare are o acuratete acceptabila, demonstrata experimental, doar pe distante relativ scurte fata de zona de emisie. Pe de alta parte insa, modelul dispune de unele avantaje: in sens tehnic, poate acomoda cu relativa usurinta mai multe surse de emisie simultan, impreuna cu efectele topografiei in zona apropiata sursei; iar in sens legal, are meritul considerabil de fi fost adoptat de Autoritatea nucleara nationala, CNCAN, drept model oficial recomandat, printr-un document de reglementare [2]. In proiectarea N-WATCHDOG s-a tinut seama de avantajele mentionate in privinta ambelor modele, astfel incat corelarea aplicatiilor efective cu versiuni ale modelelor de baza mentionate se prezinta astfel (Tabelul 2): Tabelul 2. Modele servind aplicatiile N-WATCHDOG.

APLICATIA MODELUL Versiunea

The Far-Field Watchdog Puff Trails Basic

The Far-Field Trainer Puff Trails Basic

The Near-Field Watchdog Plume Basic

The Near-Field Trainer Plume Basic

Explosive RD* Devices Puff Trails 5-Puff column

Incendiary RD* Devices Puff Trails Dense short sequence

* RD – Radioactive Dispersion (Devices)

Page 54: Activitatea 1.1

51

Versiunile modelelor reflecta particularitati ale termenului sursa, tinand de durata emisiilor – arbitrara sau strict conditionata de dinamica procesului (evacuare din structuri, explozie sau incendiu provocat) si configuratia initiala a norului de ejectie. Adoptarea lor raspunde faptului demonstrat in realitate – conform caruia distributia spatiala a efectelor radiologice ale unei emisii depinde atat de meteorologia de mediu cat si de mecanismele de ejectie la sursa ce pot determina, in cazuri speciale, necesitatea imperativa a considerarii efectelor topografiei zonelor expuse ('terenul complex').

3.3. Soluţii IT Principalii algoritmi preconizati pentru implementarea modelelor descrise urmaresc, in esenta:

In cazul modelului Puff Trails:

Istoria fiecarui puff dintr-o secventa temporala de emisie, determinand, la fiecare pas de timp, efectele pasajului acestuia peste teritoriul expus in virtutea meteorologiei momentului respectiv. Pornind din centrul puff-ului, se calculeaza simultan valorile 'efectului', exprimat in concentratii de activitate (kBq/m3) in fiecare nod al retelei spatiale cu celule rectangulare georeferentiate, ce acopera aria de studiu. Folosita ca mediu de stocare, reteaua cumuleaza treptat efectele in 'Concentratia de activitate integrata in timp' (Time-Integrated Concentration, TIC), masurata in kBq/m3 (sau μCi/m3) – marime de nemijlocita relevanta in calculul dozelor de radiatie (mSv), de interes in diagnoza locala si sinoptica a 'Situatiei Radiologice' (Radiological Situation). Intr-o redare indicativa, algoritmul decurge in sensul indicat in caseta C1.

In cazul modelului Gaussian Plume:

Variatia cu distanta pe directia de actiune a vantului mediu (downwind-from-source velocity = viteza de origine + 180 grade) a Concentratiei de activitate integrate in timp, TIC. Pornind de la datele astfel obtinute pe axa penei de dispersie, se calculeaza apoi valorile 'efectului', exprimat in concentratii de activitate (kBq/m3) in fiecare nod al retelei spatiale cu celule rectangulare georeferentiate, ce acopera aria de studiu, pregatindu-se astfel stocul de date pentru calculul dozelor de radiatie (mSv), de interes in diagnoza locala si sinoptica a 'Situatiei Radiologice' (Radiological Situation). Intr-o redare indicativa, algoritmul decurge in sensul indicat in caseta C2. Dupa cum rezulta din schitele de conceptie prezentate in continuare, punerea in opera a algoritmilor principali necesita o serie de rutine de calcul reflectand nevoia unor algoritmi ancilari, indispensabili. Dintre acestia se evidentiaza, ne-exhaustiv:

Algoritmul de calcul al coeficientilor de dispersie dependenti de timp - sistemul Doury; si dependenti de distanta la sursa – sistemele Karlsruhe-Julich (COSYMA), Brookhaven, Klug, StLouis, Slade, Briggs – versiunea CNCAN si Briggs – versiunea HotSpot a Lawrence Livermore Laboratories (SUA). Alegerea sistemului este, in evaluarile radiologice, rezultatul unei judecati-experte din partea utilizatorilor de coduri, ce poate afecta sensibil rezultatele finale. In contrast cu alte sisteme DSS, N-WATCHDOG ofera la interfata posibilitati de optiune corespunzatoare. Folosit in ambele modele.

Page 55: Activitatea 1.1

52

Algoritmul numit de dezvoltatori 'Puffs Control Tower' care, prin analogie cu strategia turnurilor de control al traficului aerian, detecteaza in runtime cea mai apropiata statie meteorologica furnizoare de prognoze, aplicand in calcule datele provenind de la aceasta. Folosit de modelul Puff Trails.

Algoritmul rapid de calcul al distributiei spatiale a Concentratiei de activitate integrate in timp (Time-Integrated Concentration, TIC), construit pe o emulare in memorie a unei stive (stack), utilizat in modelul Gaussian Plume.

Algoritmii dedicati recoltarii in timp real si mod offline-browsing a datelor de prognoza meteorologica de la site-uri publice – de la o singura statie, cea mai apropiata de sursa in cazul Gaussian Plume si de la toate statiile ('turnurile de control') detectate in raport cu vectorul local al dispersiei pe traiectoria impusa de meteorologia rapi-variabila, in cazul Puff Trails.

Algoritmii de generare direct in runtime, din resursele DEM rezidente ale codului, de harti de situatie ad-hoc, acoperind dispersia si efectele sale pe intervalul de monitorare, in orice zona a Globului cu exceptia unor vecinatati nesemnificative ale Polilor.

Page 56: Activitatea 1.1

53

C1. Schiţa de concepţie a algoritmului Puff Trails (dialect: Liberty BASIC 4.03 – limbaj cvasi-algoritmic de nivel înalt)

'The puff trail sequence loop

For p = 1 to npuffsX 'For each and every puff in the trail of npuffsX puffs...

'The assessment of the individual puff 'history' begins here...

laA = laSrc: LoA = LoSrc 'Starting from source at laSrc latitude and LoSrc longitude (decimal degrees)...

da = 0

'The puff time loop

For t = (p-1)*tau to tSpan-(p-1)*tau step tau 'Follow puff history from its relase at time = (p-1)*tau,

'over the duration of release, tSpan(s), with tau(s)- the puffs sequencing time step

dispuff = 0

age = t-(p-1)*tau 'Determine puff age(s) in the loop

if age>0 then 'as long as puff has not completely dissipated (concentration still above a pre-set boundary limit)

imet = int(t/3600) 'get time-position in the meteo forecast

if imet<1 then imet = 1

if imet>tMon then imet = tMon 'In this context,

wo$ = met$(imet)

wspd0 = val(trim$(word$(wo$,2))) 'get respective barometric wind velocity (hourly average at 10m above ground)

wdr = val(trim$(word$(wo$,3))) 'get respective wind direction, in degrees from North by East.

class = asc(trim$(word$(wo$,5)))-64 'get the pre-determined atmospheric stability category (A through F)

iRain = val(trim$(word$(wo$,6))) 'get respective precipitation rate(mm/h)

prel = prel(class) 'get vertical wind shear exponent

hInv = hInv(class) 'get inversion lid

wsp = wspd0*(hRel/10)^prel 'get wind velocity on the puff trajectory centerline

dispuff = dispuff+wsp*tau 'get puff horizontal distance to source

if dispuff<10*hRise then 'get effective puff height, hEff, knowing release height, hRel, pre-determined puff rise, and dispuff(m)

h = hRel+hRise*(dispuff/(10*hRise))^(2/3)

hEff = h

else

h = hRel+hRise

hEff = h

end if

if hEff>hInv then hEff = hInv 'cut (conservatively) puff height to the inversion lid level

'Compute dispersion coefficient sigmay (horizontal) and sigmaz (vertical)

'as functions of either puff age, or distance to source

gosub [sigmas]

'Compute puff radius considering ground, and inversion lid reflection

lnarg = tau*(1+lRGrd)*(Expo((-1)*hEff*hEff/(2*sigmaz*sigmaz))+

+lRInv*(Expo((-1)*(0-hEff-2*hInv)*(0-hEff-2*hInv)/(2*sigmaz*sigmaz))

+ Expo((-1)*(0+hEff-2*hInv)*(0+hEff-2*hInv)/(2*sigmaz*sigmaz))

Page 57: Activitatea 1.1

54

+ Expo((-1)*(0-hEff+2*hInv)*(0-hEff+2*hInv)/(2*sigmaz*sigmaz))

+ Expo((-1)*(0+hEff+2*hInv)*(0+hEff+2*hInv)/(2*sigmaz*sigmaz)))/(kpi*sigmay*sigmay*sigmaz*Clim))

if lnarg> = 1 then

rPuff = sigmay*sqr(2*log(lnarg))

else

rPuff = 0

end if

'Compute Puff's depletion

if rPuff>0 then 'if puffs exists...

'The Dry Depletion

vDry0 = vDry(1) 'aerosols, Cs...

nT = 10

w = age/nT

Idry = 0

for ka = 1 to nT

x1 = (ka-1)*w: tageBIS = x1:gosub [sigmasBIS]:sigma1 = sigmazBIS: y1 = Expo((-1)*hEff*hEff/(2*sigma1*sigma1))/sigma1

x2 = ka*w: tageBIS = x2:gosub [sigmasBIS]:sigma2 = sigmazBIS: y2 = Expo((-1)*hEff*hEff/(2*sigma2*sigma2))/sigma2

Idry = Idry+w*(y1+y2)/2

next

Fdry0 = Expo((-1)*vDry0*Idry)

'The Radioactive Decay Depletion

HalflifeDCs = 1.01e4 'd

lambdaD0 = 0.69315/HalflifeDCs

Fdecay0 = Expo((-1)*tageD*lambdaD0)

'The Wet Depletion

tRain = 3600 's

aRain0 = aRain(1) '1/s

bRain0 = bRain(1)

Lrain0 = aRain0*(iRain^bRain0)

Fwet0 = Expo((-1)*Lrain0*tRain) 's, rain time

vWet0 = sqr(pi/2)*Lrain0*sigmaz*Expo(hEff*hEff/(2*sigmaz*sigmaz))

'Get total (dry + wet) ground deposition velocity

vTot = vDry0+vWet0

'Compute the effective Dilution Factor (s/m3)

DF = DF0*Fdecay0*Fwet0*Fdry0

'Compute Grid Knot Dilution Factors and Doses,

jc = int((LoA-NWLo)/pasLo)

ic = int((NWla-laA)/pasla)

'Compute puff contribution to the Time-Integrated Concentration (TIC)

'and apply Dosimetric Model(s) */ to the effect of determining the Radiological Situation-relevant doses

'over the entire grid

gosub [grid]

'The assessment of the individual puff 'history' ends here...

'Prepare the next step in the puff's time loop:

Page 58: Activitatea 1.1

55

'Vectorize the Puff, by pushing it one-step-forward in space (wind velocity and direction known); then loop its history in time, till puff vanishes...

da = 1

laLoB$ = TrailC$(wsp*tau,laA,LoA,wdr+180)

laB = val(trim$(word$(laLoB$,1,","))) 'la

LoB = val(trim$(word$(laLoB$,2,","))) 'Lo

laA = laB: LoA = LoB

else

exit for

end if

end if

next

if da = 0 then exit for

scan

'Go to the next puff in the sequence and get its history and effects, similarly...

next

____________________________________________________________________________________________________________________________________________________________________

[grid] 'This routine belongs organically to the Dispersion Engine and is therefore included here...

for ii=ic to 0 step -1 'Scanning the knot lines from the puff knot line, to the North

la=laB+abs(ii-ic)*pasla

for jj=jc to 0 step -1 'Scanning the knots from the puff center knot, to the West

Lo=LoB-abs(jj-jc)*pasLo

gosub [Range] '[Range] here determines the distance of the targeted grid knot to the puff center knot

if dis<=rPuff then

j=jj

i=ii

if j>0 and j<jub and i>0 and i<iub then

d(j,i)=d(j,i)+DF*Expo((-1)*dis*dis/(2*sigmay*sigmay)) 'The exponential here adjusts the puff center value to the knot position value...

else

exit for

end if

else

exit for

end if

next

for jj=jc+1 to jub step 1 'Scanning the knots from the puff center knot, to the East

Lo=LoB+abs(jj-jc)*pasLo

gosub [Range]

if dis<=rPuff then

j=jj

i=ii

if j>0 and j<jub and i>0 and i<iub then

d(j,i)=d(j,i)+DF*Expo((-1)*dis*dis/(2*sigmay*sigmay))

else

exit for

end if

else

exit for

Page 59: Activitatea 1.1

56

end if

next

next

for ii=ic to iub step 1 'Scanning the knot lines from the puff knot line, to the North

la=laB+abs(ii-ic)*pasla

for jj=jc to 0 step -1 'Scanning the knots from the puff center knot, to the West

Lo=LoB-abs(jj-jc)*pasLo

gosub [Range]

if dis<=rPuff then

j=jj

i=ii

if j>0 and j<jub and i>0 and i<iub then

d(j,i)=d(j,i)+DF*Expo((-1)*dis*dis/(2*sigmay*sigmay))

else

exit for

end if

else

exit for

end if

next

for jj=jc+1 to jub step 1 'Scanning the knots from the puff center knot, to the East

Lo=LoB+abs(jj-jc)*pasLo

gosub [Range]

if dis<=rPuff then

j=jj

i=ii

if j>0 and j<jub and i>0 and i<iub then

d(j,i)=d(j,i)+DF*Expo((-1)*dis*dis/(2*sigmay*sigmay))

else

exit for

end if

else

exit for

end if

next

next

return

* Rutinele Modelului Dosimetric vor fi redata in contextul Sectiunii 3, dedicate subiectului.

Page 60: Activitatea 1.1

57

C2. Schiţa de concepţie a algoritmului Gaussian Plume (dialect: Liberty BASIC 4.03 – limbaj cvasi-algoritmic de nivel înalt)

'The release sources loop

'Note that model 'Plume' has the ability to cover several release sources in one run-stroke.

'Source loop starts here...

for kSrc = 1 to nSrc 'sum over physical sources

bar$ = oldbar$+". Computing release #"+str$(kSrc)+ " of "+str$(nSrc)+"..."

calldll #user32,"SetWindowTextA", WndP as long, bar$ as ptr, res as long

'Source kSrc Cartesian coordinates, in a WGS84-wise projection

xc = int(mX*(LoSrc(kSrc)-NWLo)/LonWidth)

yc = int(mY*(NWla-laSrc(kSrc))/LatWidth)

x = mX*(LoSrc(kSrc)-NWLo)/LonWidth

y = mY*(NWla-laSrc(kSrc))/LatWidth

gosub [Elevation] 'get source elevation (mASL) from resident DEMs

zSrc = z

jc = int(xc/pasx)

ic = int(yc/pasy)

'Get the event meteo from pre-processed forecast

wspd10 = wspd(kSrc)

if wspd10<wspd10crt then

wspd10 = wspd10crt

end if

wdir = wdir(kSrc)

tRelh = tRel(kSrc)/60 'min/(min/h) = h

hRel = hRel(kSrc)

deltah = hRise(kSrc)

class = class(kSrc)

if wspd10<wspd10crt then

class = 1

end if

iRain = prec(kSrc)

tRain = tprec(kSrc)

multF = multF(kSrc)

'gosub [sigma1] 'dispersion system found outsite this code sequence

if sys$ = "D" then 'get dispersion coefficients and associated data (wind shear, inversion)

gosub [Doury1]

pw = pw(class)

hInv = hInv(class)

else

gosub [sigma1]

end if

Page 61: Activitatea 1.1

58

'Determine wind velocity at plume's stabilized centerline height

select case

case hRel> = 10

wspd = wspd10*(hRel/zref)^pH

case zref>10

wspd = wspd10*(10/zref)^pH

case else

wspd = wspd10

end select

if wspd<0.5 then wspd = 0.5 'to prevent stack height wind speed < 0.5 m/s

wspdh = wspd*3600 '(m/s).s/h = m/h

if lAssessment = 1 then 'Assumes full assessment based on a specified source term – one per every source, as appropriate

'Load nuclide mix data in memory

mixfile$ = DefaultDir$+"\public\mix\"+fMix$(kSrc)

#win.e " RELEASE #"+str$(kSrc)

#win.e " All activities to be multiplied by "+str$(multF)

open mixfile$ for input as #1

while eof(#1) = 0

line input #1,wo$

#win.e " "+wo$

wend

close #1

#win.e " "

#win.e "!contents? halfText$" '<<<

kCi = 1

open mixfile$ for input as #1

nmixk = 0

while eof(#1) = 0

line input #1,wo$

if instr(wo$,"(Ci)")>0 then

kCi = 3.7e7

end if

if instr(wo$,"(Bq)")>0 then

kCi = 0.001

end if

if instr(wo$,"|sur")>0 then

nmixk = nmixk+1

end if

wend

close #1

redim nukes$(nmixk+1)

open mixfile$ for input as #1

j = 0

while eof(#1) = 0

line input #1,wo$

if instr(wo$,"|sur")>0 then

j = j+1

nukes$(j) = wo$

end if

Page 62: Activitatea 1.1

59

wend

close #1

nukes$(0) = str$(nmixk)

end if

'Fill the data grid by a stack-wise algorithm

gosub [FillByStack]

next kSrc

'Source loop ends here...

_____________________________________________________________________________________________________________________________________________________________________

[FillByStack]

cursor hourglass

'Creates a pseudostack in memory, as an array mimicking the data grid – dim-ed outside this listing

redim d(iub+1,jub+1) 'the test matrix; once a cell is filled it is further avoided

'Ancillary – gets coords to place a legend in the situation map without obscuring essential data – ignore now...

wleg = 140 '120

hleg = 160 '80

if wdir> = 0 and wdir<90 then

xleg = mX-wleg-3

yleg = 0

end if

if wdir> = 90 and wdir< = 180 then

xleg = mX-wleg-3

yleg = mY-hleg-3

end if

if wdir< = 0 and wdir>-90 then

xleg = 0

yleg = 0

end if

if wdir< = -90 and wdir> = -180 then

xleg = 0

yleg = mY-hleg-3

end if

'Stack search-and-fill starts here...

frak = 0.05

maxtop = 0

do

j = jc-int(frak*jub*sin(wdir*arg)+.5)-2

i = ic+int(frak*iub*cos(wdir*arg)+.5)-2

if i<iub and i>0 and j<jub and j>0 and i<>ic and j<>jc then

ix = x(j) 'int(j*pasx)

iy = y(i) 'int(i*pasy)

gosub [Target]

if test>0 then

Page 63: Activitatea 1.1

60

exit do

end if

end if

frak = frak+0.05

loop while (test = 0 and frak<1)

'In stable atmospheres (classes E and F),

'and/or for circular areas closing on the source at small radii,

'and/or for very high release points (high stacks above a few tens of metres),

'and/or for certain varieties of dispersion systems (especially Doury),

'it MAY happen that the stack search will find no grid point to be accounted for,

'owing to dilutions/doses below the input limits defining the plume boundary

'(note that, mathematically, model sees plumes extended to infinity(!..)

'The following takes care of such cases.'

if frak> = 1 then

s$ = "Notice"+qb$

s$ = s$+"NO PLUME FOOTPRINT FOR THIS MAP COVERAGE,"+qb$

s$ = s$+"CONSIDERING CURRENT METEOROLOGY AND DISPERSION SYSTEM '"+sys$+"'."+qb$

s$ = s$+"PROGRAM WILL NOW CLOSE."+qb$

s$ = s$+"TRY A LARGER MAP RADIUS and/or DISPERSION SYSTEM 'C'."

notice s$

goto [exit]

end if

stack$ = ""

top = 0

try = 0

[exec]

do

j = j-1: gosub [push]

i = i-1: gosub [push]

j = j+1: gosub [push]

j = j+1: gosub [push]

i = i+1: gosub [push]

i = i+1: gosub [push]

j = j-1: gosub [push]

j = j-1: gosub [push]

if da = 0 then gosub [pull]

bar$ = oldbar$+". Release #"+str$(kSrc)+", Grid stack counter: "+string$(int(top/10),"|")

calldll #user32,"SetWindowTextA", WndP as long, bar$ as ptr, res as long

scan

if top>maxtop then

maxtop = top

end if

loop while top>0 '!!!

cursor normal

stack$ = ""

return

Page 64: Activitatea 1.1

61

'Stack works on 'push' and 'pull'...

[push]

if i<0 then

i = 0

gosub [pull]

return

end if

if i>iub then

i = iub

gosub [pull]

return

end if

if j<0 then

j = 0

gosub [pull]

return

end if

if j>jub then

j = jub

gosub [pull]

return

end if

'So far the process went an assumed X-axis, irrespective of the actual wind direction.

'Now is the time where the entire grid knots exposed will be properly rotated by the angle bringing data to their true grid positions!

if wspd10>wspd10crt then

jw = jc-int(jc*sin(wdir*arg)+.5)

iw = ic+int(ic*cos(wdir*arg)+.5)

else 'Ooops! Plume models do not tolerate zero-wind velocities.

wwdir = 360*rnd(1) ' Therefore, for very low winds – i.e. below a (hard-coded) given limit, wspd10crt,

jw = jc-int(jc*sin(wwdir*arg)+.5) ' the wind directions are taken at random within a 360 degree span, at each computation step...

iw = ic+int(ic*cos(wwdir*arg)+.5)

end if

pdot = (jw-jc)*(j-jc)+(iw-ic)*(i-ic)

if pdot<0 then return

if top<0 then return

da = 0

ix = x(j)

iy = y(i)

if j<0 then return 'keep process only within the grid!..

if j>jub then return

if i<0 then return

if i>iub then return

gosub [Target] 'see below!..

'The Dosimetric Model is embedded here

'Will be explained in Section 3.

return

Page 65: Activitatea 1.1

62

[pull]

w$ = mid$(stack$,len(stack$)-10,10)

stack$ = left$(stack$,len(stack$)-10)

top = top-10

j = val(trim$(word$(w$,1))): i = val(trim$(word$(w$,2)))return

'The Stack algorithm ends here...

_____________________________________________________________________________________________________________________________________________________________________

[Target] 'This routine organically belongs to the Dispersion engine, and is thereby rendered here...

la1 = NWla-LatWidth*yc/mY

Lo1 = NWLo+LonWidth*xc/mX

la2 = NWla-LatWidth*iy/mY

Lo2 = NWLo+LonWidth*ix/mX

gosub [distances]

if ok = 0 then

test = 0

return

end if

downwind = distance

if sys$ = "D" then

gosub [Doury]

else

gosub [sigma2]

end if

if warn$ = "none" then

s$ = "DEFECTIVE INPUT FOR DISPERSION SYSTEM."+qb$

s$ = s$+"PROGRAM WILL RESET ITSELF."

notice s$

goto [begin]

end if

x = mX*(Lo2-NWLo)/LonWidth

y = mY*(NWla-la2)/LatWidth

gosub [Elevation]

if downwind<10*deltah then

h = hRel+deltah*(downwind/(10*deltah))^(2/3)+zSrc-z 'ASL!

else

h = hRel+deltah+zSrc-z '+z*(z> = zSrc)

end if

if h<1 then h = 1

hEff = h

if hEff<1 then hEff = 1

f0 = 1/(2*pi*sigy*sigz) '1/m2

fy = Expo((-1)*crosswind*crosswind/(2*sigy*sigy)) '1

fz = Expo((-1)*hEff*hEff/(2*sigz*sigz)) '1

fzgrd = lref*fz

Page 66: Activitatea 1.1

63

fzinv = linv*(Expo((-1)*(0-hEff-2*hInv)*(0-hEff-2*hInv)/(2*sigz*sigz))

+ Expo((-1)*(0+hEff-2*hInv)*(0+hEff-2*hInv)/(2*sigz*sigz))

+ Expo((-1)*(0-hEff+2*hInv)*(0-hEff+2*hInv)/(2*sigz*sigz)) + Expo((-1)*(0+hEff+2*hInv)*(0+hEff+2*hInv)/(2*sigz*sigz)))

DF0 = f0*fy*(fz+fzgrd+fzinv) '(1/m2)*1*1 = 1/m2 Dilution Factor

'(kBq/s)*s/m3 = kBq/m3 Concentration

test = (DF0> = DFcontour) 'observing pre-set plume boundary...

return

Page 67: Activitatea 1.1

64

4. Evaluarea radiologică a unei emisii atmosferice radioactive

'Radiological assessment has matured significantly over the past three decades. It has become the foundation of many regulations and legal cases and has provided a means for decision makers to take action on important issues such as cleanup of

contaminated sites and control of emissions to the environment from nuclear facilities. Additionally,radiological assessment has increasingly become a fundamental element in communicating information to stakeholders about exposure to radioactive materials

in the environment.' (Till, 2008)

4.1. Definiţie

In contextul N-WATCHDOG, termenul 'Evaluare radiologica' se doreste o trimitere la initiatorii conceptului Radiological Assessment – cercetarea si industria nucleara euro-atlantica. Intr-o referinta de baza a proiectului [24]

Radiological assessment is defined as the process of estimating dose and risk to humans from radioactive materials in the environment.

In integralitatea sa conceptul acopera o problematica de impresionanta si

multidisciplinara intindere. Caseta ce urmeaza retine, pentru ilustrare, doar titlurile majore din tabla de materii a referintei citate.

1 The Radiological Assessment Process 2 Radionuclide Source Terms 3 Atmospheric Transport of Radionuclides 4 Surface Water Transport of Radionuclides 5 Transport of Radionuclides in Groundwater 6 Terrestrial Food Chain Pathways: Concepts and Models 7 Aquatic Food Chain Pathways 8 Site Conceptual Exposure Models 9 Internal Dosimetry 10 External Dosimetry 11 Estimating and Applying Uncertainty in Assessment Models 12 The Risks from Exposure to Ionizing Radiation 13 The Role of Epidemiology in Estimating Radiation Risk: Basic Methods and Applications 14 Model Validation 15 Regulations for Radionuclides in the Environment

Sursa: Till J.E, Grogan H.A. (2008). Radiological Risk Assessment and Environmntal Analysis. Oxford University Press [24]

Autorii Raportului si-au luat libertatea de a evidentia in text tematicile ce au alimentat,

in mod selectiv, baza de cunostinte si date a proiectului asumat. In particular, subiectul sectiunii curente a Raportului se reclama de la temele 9 – Internal Dosimetry si 10-External Dosimetry ale listei, aduse la specificitatea N-WATCHDOG. 4.2. Mărimile fizice de bază ale dozimetriei radiaţiilor ionizante Analiza dozimetrica a expunerii la radiatii ionizante uzeaza de urmatoarele concepte si marimi fizice de baza (Tabelul 3).

Page 68: Activitatea 1.1

65

Tabelul 3. Marimi fizice de baza in Dozimetria radiatiilor ionizante

Conceptul Specia fizică Unităţi SI Unităţi tolerate Ţinta Definiţie

Expunere* Sarcina electrica C (Coulomb) R (Roentgen) Aerul The quantity of X or γ-radiation such that the associated corpuscular emission per 0.001293 gram of air produces, in air, ions carrying 1 electrostatic unit of quantity of electricity of

either sign.**

Doza absorbita Energie Gy (Gray) rad Materie Marimea dozimetrica fundamentala definita ca energia medie cedata de radiatia ionizanta unitatii de masa iradiata.***

Doza echivalenta Energie scalata cu factori de impact la materia vie

S (Sievert) rem Materie vie, Om Doza absorbita, in tesutul sau organul T, ponderata pentru calitatea radiatiei R (capacitatea de a afecta tinta).***

Doza angajata Varietate de Doza Echivalenta

S (Sievert) rem Materie vie, Om Integrala pe o durata de timp (uzual 50 ani) a debitului dozei echivalente intr-un organ sau tesut al unui organism uman, ce va fi primita in urma unei incorporari de substante radioactive.***

Doza efectiva angajata

Varietate de Doza Echivalenta

S (Sievert) rem Materie vie, Om Suma ponderata a dozelor echivalente angajate de organele si tesuturile unui organism uman in urma unei incorporari de substante radioactive; fiecare din dozele echivalente angajate de un organ sau tesut este ponderata cu factorul de pondere al organului sau tesutului respectiv.***

Doza efectiva Varietate de Doza Echivalenta

S (Sievert) rem Materie vie, Om Suma ponderata a dozelor echivalente provenite din expunerea externa si interna, efectuata pe o serie selectiva de organe si tesuturi esentiale ale corpului, stabilite de reglementarile nucleare.***

* Unitate traditionala de apreciere a expunerii la radiatie, inlocuita in practica actuala de ‘doza absorbita’. Asimilarea ei in setul de unitati folosite califica o analiza drept ‘radio-dozimetrica’. N-WATCHDOG mentine Expunerea in libraria de date, dar nu o utilizeaza efectiv in evaluarea radiologica.

In contextul sistemului, termenul ‘Expunere’ este utilizat numai in sensul sau ‘literal’ (involving the ordinary or usual meaning of a word – Merriam Webster online). * * ICRP (1950). *** CNCAN (2000). NORME FUNDAMENTALE DE SECURITATE RADIOLOGICA, NSR-01. [1]

Page 69: Activitatea 1.1

66

Definitiile unitatilor de masura ale dozelor sunt larg disponibile in literatura, inclusiv in documentele tehnice si de reglementare din bibliografia Raportului. Relativ specioase, se apreciaza ca tabelarea lor in breviarul de fata nu prezinta o reala valoare informativa. In locul definitiilor, Figura 23 ofera o imagine graitoare a relatiei dintre doze, masurate in unitatile enumerate si cele mai semnificative efecte ale acestora.

Fig.23. Unitati de masura, din perspectiva nivelelor de doza [RTM-96].

1Sv = 100 rem; 1 rem = 1000 mrem

Page 70: Activitatea 1.1

67

4.3. Dozimetria accidentelor nucleare Alegerea tipurilor de doza in evaluarea radiologica a emisiilor de radioactivitate in mediu se face in functie de relevanta dozei in diagnoza evenimentului si in determinarea eventualei necesitati de contramasuri. Termenul de apreciere in asemenea judecati il constituie accidentul nuclear sever, caracterizat prin efecte la scara regionala, de obicei trasfrontaliere; si semnificative pe perioade indelungate, de ordinul anilor sau deceniilor. 4.3.1. Fazele tipice ale unei urgenţe radiologice severe Analiza este condusa pe o scara de timp, comportand o periodizare. Se disting astfel:

(a) O ‘Faza timpurie’ (Early Phase) a evenimentului; si (b) O ‘Faza tarzie’, sau ulterioara (Late Phase).

‘Faza tarzie’ comporta o ambiguitate, in functie de acceptiunea data de diferiti autori. Sursele U.S., de obicei urmate in aplicare, numesc Faza tarzie ‘Faza intermediara’ (Intermediate Phase), atribuindu-i insa un profil ce se suprapune aproape indiscriminabil peste ceea ce aceleasi surse identifica drept ‘Faza de ingestie’ (Ingestion Phase). Pentru edificare, Tabelul 4 reproduce definitiile date de manualul de raspuns la urgente RTM-6 [28].

Tabelul 4. Fazele tipice ale unui accident nuclear, cf. RTM-96.

Faza timpurie (Early Phase)

The early phase of an accident extends from the identification of a release threat until the release (or threat of the release) has ended and any areas of major contamination have been identified. The early phase normally includes up to 4 days (100 h) of exposure to deposition*. To project the potential consequences from a radiological accident the following steps must be performed: (1) estimate the amount of activity released, (2) estimate the downwind dose from this material, and (3) determine the impact of this dose in terms of health effects and PAGs**.

Faza intermediară (Intermediate

Phase)

The intermediate phase is the period beginning after the incident source and releases have been brought under control and reliable environmental measurements are available for use as a basis for decisions on additional protective actions and extending until these protective actions are terminated. This phase may overlap the early and late phases and may last from weeks to many months. For the purpose of dose projection, the intermediate phase is assumed to last for 1 year. Two radiation exposure pathways are of primary concern during the intermediate phase: (1) exposure to deposited material (direct exposure and inhalation of resuspended material); and (2) ingestion.

Faza ingestiei (Ingestion

Phase), sau Faza tarzie

(Late Phase)

(An) Ingestion Pathway Protective Action Assessment. This (…) is used only to determine if protective actions are warranted to protect the public from ingestion of food, milk, and water that have been contaminated as a result of an accident. (To this effect,) determine the area where (…) ingestion PAGs may be exceeded based on either (1) gross gamma measurements (for a reactor accident before the isotopic contamination mixture is known) or (2) ground surface deposition.

* Metodologia europeana scaleaza Early Phase la 7 zile (168 ore) – aspect asigurat de N-WATCHDOG. ** PAG – Protective Action Guide: nivele de doza, sau nivele derivate ale concentratiilor in mediu,

furaje sau alimente ce impun recomandarea de contramasuri.

Page 71: Activitatea 1.1

68

4.3.2. Doze caractersitice fazelor Monitorizarea evolutiei unei situatii radiologice consecutive unei urgente apleleaza la proiectii de doza, pe un set de doze considerat reprezentativ, redat in Tabelul 5.

Tabelul 5. Doze reprezentative in monitorizarea evolutiei unei situatii radiologice

Faza timpurie (Early Phase)

External Doses ____________ AIR IMMERSION EXTERNAL DOSE, Ha DEPOSITION 4-DAY EXTERNAL DOSE,NON-ARID LAND, Hg4 DEPOSITION 4-DAY EXTERNAL DOSE,ARID LAND, Hg2 DEPOSITION 7-DAY EXTERNAL DOSE,GENERIC, Hg7 Inhalation Doses _____________ EARLY PHASE INHALATION COMMITTED EFFECTIVE DOSE (50 year), CEDE50 EARLY PHASE INHALATION ACUTE BONE DOSE, Dbone EARLY PHASE INHALATION ACUTE LUNG DOSE, Dlung EARLY PHASE INHALATION COMMITTED DOSE TO THYROID, CDEThy Total Doses _________ TOTAL ACUTE BONE DOSE (TABD) TOTAL ACUTE LUNG DOSE (TALD) TOTAL ACUTE THYROID DOSE (TTHD) TOTAL EFFECTIVE DOSE EQUIVALENT (TEDE)

Faza intermediară (Intermediate

Phase)

DEPOSITION TOTAL EFFECTIVE DOSE EQUIVALENT, in 1st year, NON-ARID LAND DEPOSITION TOTAL EFFECTIVE DOSE EQUIVALENT, in 1st year, ARID LAND DEPOSITION COMMITTED EFFECTIVE DOSE EQUIVALENT (50 year) EFFECTIVE EQUIVALENT DOSE FROM INHALATION OF RESUSPENDED MATERIAL EQUIVALENT DOSE TO SKIN, FROM DEPOSITION

Faza ingestiei (Ingestion Phase)

INFANT INGESTION DOSE* CHILD INGESTION DOSE** ADULT INGESTION DOSE

* Doza de referinta in regimul de consum al laptelui si apei ** Doza de referinta in consumul de produse vegetale proaspete

Varietatile de doza cu efect direct in recomandarea de contramasuri si identificarea de efecte sanitare posibile sunt urmatoarele – cu notatiile din Tabelul 5: TABD = Ha + Hg2 + Dbone, TALD = Ha + Hg2 + Dlung, TTHD = Ha + Hg2 + CDEThy, TEDE = Ha + Hg7 + CEDE50, unde Hg2 si Hg7 sunt dozele externe din depunere (Groundshine), pe doua zile si, respectiv, 7 zile. Individualizarea, in aceasta lista, a TEDE – Doza Echivalenta Efectiva Totala se datoreaza importantei centrale a acestei marimi, atat in documentele normative de reglementare cat si in evaluarile N-WATCHDOG.

Page 72: Activitatea 1.1

69

4.3.3. Dozele de referinţă în sistemul N-WATCHDOG Proiectul N-WATCHDOG a fost propus si aprobat in conceptia dezvoltarii unui instrument 'de alertare timpurie si asistare a deciziilor'. Din aceasta perspectiva, produsul va adresa exclusiv Faza timpurie (Early Phase) a unui accident, sau alta urgenta radiologica ce rezulta intr-o distributie spatiala semnificativa a efectelor. Dozele caracteristice fazei timpurii se coreleaza in moduri specifice cu

(i) recomandarile de contramasuri; si (ii) identificarea efectelor sanitare posibile, deterministe si stochastice.

Tabelul 6 prezinta aceasta relatie, urmand ca precizarea nivelelor de doza ce fac recomandabile contramasurile, sau fac efectele sanitare probabile sa faca obiectul sectiunii 5, dedicata reglementarilor.

Tabelul 6. Relatii de principiu Doza-Efect, in Early Phase, cf. [27, 28] TEDE: Total Effective Dose Equivalent; TABD: Total Acute Bone Dose; TALD: Total Acute Lung Dose; TTHD: Total Thyroid Dose Equivalent

EFECTE TEDE TABD TALD TTHD

CONTRAMĂSURI

Adapostire (Sheltering)

Evacuare (Evacuation)

Administrare de iod stabil (Iodine Prophylaxis)

EFECTE SANITARE SEMNIFICATIVE

D*: Hipotiroidism, in decurs de unul sau mai multi ani; sau S*: Risc de cancer tiroidian fatal: 8.0e-8

D*: Voma, din prima zi de expunere

D*: Deces, in decurs de 1-2 luni; sau S*: Risc de cancer fatal: 0.1

D*: Deces, in 1-12 luni; sau S*: Risc de cancer pulmonar: 0.05

D*: Efect determinist. S*: Efect sochastic

4.3.4. Calculul dozelor Calculul efectiv al dozelor relevante in modelele adoptate de N-WATCHDOG porneste de la Factorul de Dilutie efectiv, DF(x,y,z) (sectiunea 3.2.3.3, ecuatia DF3), evaluat la nivelul solului (z = 0), unde se presupun plasate tintele prioritare ale expunerii - oamenii. Marimile ce mijlocesc obtinerea dozelor din DF sunt Factorii de Conversie la Doze (Dose Conversion Factors, DCF), ce constiuie de fapt doze pe unitatea de DF. DCF nu depind de modelul de dispersie, ci (a) de nuclid; si (b) de tipul de doza: externa, sau de inhalare (v. Tabelul 5), dozele totale rezultand in consecinta, prin simpla sumare. In implementarile IT, retetele de calcul se prezinta astfel:

Page 73: Activitatea 1.1

70

4.3.4.1. Cheia de calcul al dozelor în modelul Gaussian Puff Trails

Initialize: Ha = 0, CEDE = 0, Thy =0, Bone = 0, Lung = 0.

For every nuclide in the source term mix,

Given

DF ‘ Effective Dilution Factor (s/m3), computed under the Dispersion Algorithm

vTot = vDry + vWet ‘ Total Deposition Velocity

Compute:

vTotH = vTot*3600 '(m/s).(s/h) = m/h

DFh = DF/3600 '(s/m3)/(s/h) = h/m3

Ha = Ha+activity*DFh*dcfHa 'kBq.(h/m3).(mSv/h)/(kBq/m3) = mSv, External, Air immersion

CEDE = CEDE+activity*DFh*dcfCEDE 'kBq.(h/m3).(mSv/h)/(kBq/m3) = mSv, Committed Effective, 50 year

Thy = Thy+activity*DFh*dcfThy 'kBq.(h/m3).(mSv/h)/(kBq/m3) = mSv, Committed to Thyroid

Bone = Bone+activity*DFh*dcfBone 'kBq.(h/m3).(mSv/h)/(kBq/m3) = mSv, Acute Bone

Lung = Lung+activity*DFh*dcfLung 'kBq.(h/m3).(mSv/h)/(kBq/m3) = mSv, Acute Lung

Hg1 = Hg1+activity*vTotH*DFh*dcfHg*(1-Expo((-1)*lambdaH*2))/lambdaH 'kBq.(m/h).(h/m3).(mSv/h)/(kBq/m2)/(1/h) = mSv, Ground external, 2 days

Hg2 = Hg2+activity*vTotH*DFh*dcfHg*(1-Expo((-1)*lambdaH*7))/lambdaH 'kBq.(m/h).(h/m3).(mSv/h)/(kBq/m2)/(1/h) = mSv, Ground External, 7 days

next jk

TABD = Ha+Hg1+Bone 'mSv

TALD = Ha+Hg1+Lung 'mSv

TTHD = Ha+Hg1+Thy 'mSv

TEDE = Ha+Hg2+CEDE 'mSv

4.3.4.2. Cheia de calcul al dozelor în modelul Gaussian Plume

Initialize all arrays holding grid data in knots (j,i); j = 0,…,J columns (East to West), I = 0,…,I rows (North to South)

For every nuclide in the source term mix,

Given

DFeff ‘ Effective Dilution Factor (s/m3), computed under the Dispersion Algorithm

Wspd ‘ Average wind velocity (m/s)

vTot = vDry + vWet ‘ Total Deposition Velocity

DF=DF.wspd ‘(s/m3).(m/s) = 1/m2

d(j,i)=DF

dTot(j,i)=dTot(j,i)+d(j,i)

Page 74: Activitatea 1.1

71

activity=kCi*multF*val(trim$(word$(wk$,2))) 'kBq

actrate=activity/tRelh 'kBq/h

dcfCEDE=val(trim$(word$(wk$,4))) '(mSv/h)/(kBq/m3)

dcfBone=val(trim$(word$(wk$,5))) '(mSv/h)/(kBq/m3)

dcfLung=val(trim$(word$(wk$,6))) '(mSv/h)/(kBq/m3)

dcfThy=val(trim$(word$(wk$,7))) '(mSv/h)/(kBq/m3)

dcfHa=val(trim$(word$(wk$,9))) '(mSv/h)/(kBq/m3)

dcfHg=val(trim$(word$(wk$,8))) '(mSv/h)/(kBq/m2)

dTotHa(j,i)=dTotHa(j,i)+actrate*d(j,i)*dcfHa*tExp/wspdh '(kBq/h).(1/m2).(mSv/h)/(kBq/m3).h/(m/h) = mSv

dTotCEDE(j,i)=dTotCEDE(j,i)+actrate*d(j,i)*dcfCEDE*tExp/wspdh '(kBq/h).(1/m2).(mSv/h)/(kBq/m3).h/(m/h) = mSv

dTotThy(j,i)=dTotThy(j,i)+actrate*d(j,i)*dcfThy*tExp/wspdh '(kBq/h).(1/m2).(mSv/h)/(kBq/m3).h/(m/h) = mSv

dTotBone(j,i)=dTotBone(j,i)+actrate*d(j,i)*dcfBone*tExp/wspdh '(kBq/h).(1/m2).(mSv/h)/(kBq/m3).h/(m/h) = mSv

dTotLung(j,i)=dTotLung(j,i)+actrate*d(j,i)*dcfLung*tExp/wspdh '(kBq/h).(1/m2).(mSv/h)/(kBq/m3).h/(m/h) = mSv

dTotHg1(j,i)=dTotHg1(j,i)+activity*vTotalH*d(j,i)*dcfHg*(1-Expo((-1)*lambdaH*2))/(lambdaH*wspdh)

'kBq.(m/h).(1/m2).(mSv/h)/(kBq/m2)/((1/h).(m/h)) = mSv

dTotHg2(j,i)=dTotHg2(j,i)+activity*vTotalH*d(j,i)*dcfHg*(1-Expo((-1)*lambdaH*7))/(lambdaH*wspdh)

'kBq.(m/h).(1/m2).(mSv/h)/(kBq/m2)/((1/h).(m/h)) = mSv

dTotTABD(j,i)=dTotHa(j,i)+dTotHg1(j,i)+dTotBone(j,i) 'mSv

dTotTALD(j,i)=dTotHa(j,i)+dTotHg1(j,i)+dTotLung(j,i) 'mSv

dTotTTHD(j,i)=dTotHa(j,i)+dTotHg1(j,i)+dTotThy(j,i) 'mSv

dTotTEDE(j,i)=dTotHa(j,i)+dTotHg2(j,i)+dTotCEDE(j,i) 'mSv

Page 75: Activitatea 1.1

72

4.3.5. Nivele de doză reglementate, în N-WATCHDOG In pofida tentativelor, reluate in cateva reprize la interval de decenii (e.g. dupa accidentele nucleare de la Three Mile Island, SUA, 1979 si Cernobyl, URSS/Ucraina, 1986), de unificare a nivelelor de doza reglementate, ce se cer observate iar, in caz de urgente, utilizate in aplicarea uniforma de contramasuri si/sau aprecierea pragurilor de atentie privind posibilitatea de manifestare a efectelor sanitare, acestea continua sa varieze de la tara la tara sau, in cel mai bun caz, de regiune la regiune. Faptul reflecta diferente in perceptia riscului, cultura de securitate si disponibilitatea de suportare a costurilor, in general ridicate, de aplicare a masurilor preventive si corective ce devin obligatorii odata ce nivelele de observare/interventie au fost legiferate. Principalii arbitri in acest exercitiu sunt IAEA – International Atomic Energy Agency, ICRP – International Commission on Radiological Protection si autoritatile nationale de reglementare nucleara – in cazul Romaniei CNCAN - Comisia Nationala pentru Controlul Activitatilor Nucleare. Proiect cu declarata vocatie internationala in virtutea caracterului potential-transfrontalier al urgentelor nucleare, N-WATCHDOG a adoptat o strategie de raportare a evaluarii radiologice (Radiological Assessment) care sa tina seama de diferentele mentionate, indicand de fiecare data pozitia proiectiilor de doza realizate atat fata de normele nationale cat si, selectiv, fata de diverse nivele de reglementare ale altor parti (Tabelul 7).

Tabelul 7. Nivele reglementate de observare si interventie in N-WATCHDOG

REGULATORY ASSUMPTIONS: Observation and Intervention Dose Levels __________________________________________________________________________ TOTAL EFFECTIVE DOSE EQUIVALENT, TEDE _______________________________________ Doses unnoticeable or inconsequencial, TEDE less than 0.01 mSv 1-yr TEDE Constraint for unplanned irradiation to population, Romania: 0.01 mSv 1-yr TEDE Limit to population, all sources, Romania: 1 mSv Sheltering TEDE PAG, Romania: 3 mSv Sheltering TEDE PAG, IAEA: 10 mSv Evacuation TEDE PAG, Romania: 30 mSv Evacuation TEDE PAG, IAEA: 50 mSv Hot Intervention Zone TEDE PAG, Romania: 100 mSv COMMITTED DOSE EQUIVALENT TO THYROID ________________________________________ Sheltering THYD PAG, Romania: 30 mSv Iodine prophylaxis THYD PAG, IAEA: 100 mSv Evacuation and Iodine prophylaxis THYD PAG, Romania: 300 mSv Hypothyroidism in 1 or more yrs./8.0e-3 risk of fatal thy.cancer THYD PAG IAEA: 5000 mSv TOTAL ACUTE BONE DOSE ________________________ Vomiting in 1 day TABD PAG, IAEA: 500 mSv Death in 1-2 mnt./1.0e-1 risk of fatal cancer TABD PAG, IAEA: 1000 mSv TOTAL ACUTE LUNG DOSE ________________________ Death in 2-12 mnt./5.0e-2 risk of lung cancer TALD PAG, IAEA: 6000 mSv

Se observa ca, in general, gradul de severitate creste in ordinea listarii, ceea ce

favorizeaza introducerea unei scari de apreciere a gradului de expunere implicat in analiza de vulnerabilitate – o dimensiune specifica N-WATCHDOG.

Page 76: Activitatea 1.1

73

5. Analiza de vulnerabilitate 'Pe Ahile nu l-a ucis Riscul conditiei sale de soldat

– de care era permanent constient; ci Vulnerabilitatea ce i-a fost imprimata la nastere

– pe care n-a stiut-o sau a ignorat-o. (Anonim).'

5.1. Definiţie In sens colocvial, o entitate se considera vulnerabila daca este

(a) ‘easily hurt or harmed physically, mentally, or emotionally’; (b) ‘open to attack, harm, or damage’ (Merriam-Webster Online).

Dupa un deceniu si jumatate de la primele tentative de asimilare a conceptului in Teoria Riscului, determinate imperativ de evenimentul ‘9/11’ (atacul asupra World Trade Center, New York, eveniment ce a revelat realitatea inimaginabila in perceptia curenta: ca tara considerata prin excelenta in-vulnerabila nu este, de fapt, astfel) o sursa de autoritate ca Departamentul Securitatii Interne al Statelor Unite (U.S. Department of Homeland Security, DHS) – creatie a vremurilor ce au urmat - precizeaza, in Lexiconul sau:

Vulnerability: characteristic of design, location, security posture, operation, or any combination thereof, that renders an entity, asset, system, network or geographic area susceptible to disruption, destruction or exploitation’. (DHS Risk Lexicon 2010 Edition, U.S. Dept. Of Homeland Security).

Doua observatii se impun atentiei. Astflel, (i) comparatia intre definitia colocviala si cea tehnica nu poate ignora remarcabila lor convergenta, in sensul global; si (ii) faptul ca intre evenimentul initiator din septembrie 2001 si formalizarea in sens tehnic a conceptului de vulnerabilitate s-a interpus un deceniu de dezbateri si controverse ce nu s-au stins complet nici in prezent, reflectate intr-o consistenta literatura (v. Bibliografia). 5.1.1.Risk şi Vulnerabilitate Ezitarile academice - si politologice - in acceptarea termenului vulnerabilitate ca instrument de analiza de situatie au o dubla explicatie: prima tine de principiul tiranic al parcimoniei, ce marcheaza disciplina intelectuala inca din zorii filosofiei, cu formulari autoritare incepand mai ales din secolul XIII, conform caruia entitățile, inclusiv conceptele explicative nu trebuie să fie multiplicate dincolo de necesar: Pluralitas non est ponenda sine necessitate (Duns Scotus - Ordinatio); a doua tine de relativa dificultate a caracterizarii cantitative a vulnerabilitatii. Argumentul ‘economiei de concepte’ – ce revine, in cazul de fata, la o judecata de felul ‘daca ne-am straduit, inca din anii ’80 sa operationalizam conceptul de Risc, dandu-i expresii cantitative ce s-au dovedit utile, de ce este nevoie de inca un concept, ca Vulnerabilitatea?’ – s-a erodat rapid in lumina imposibilitatii de a explica exclusiv in termenii Riscului esecurile dramatice in administrarea raspunsului la unele dezastre inregistrate in prima decada a actualului secol, ca amenintarea terorismului si urmarile acesteia, evenimentul Katrina – New Orleans (2005), consecintele eruptiei vulcanului Eyjafjallajökull din Islanda (2010), sau ale Marelui Cutremur Japonez, insotit de catastrofa nucleara de la Fukushima (2011). In cazul ce ne preocupa, sistemul N-WATCHDOG asimileaza raportul dintre Risc si Vulnerabilitate in termenii ilustrati in Figura 24.

Page 77: Activitatea 1.1

74

Fig. 24. Riscul si Vulnerabilitatea in intelegerea N-WATCHDOG: Riscul este apanajul sursei, Vulnerabilitatea priveste tinta.

5.1.2. Evaluarea cantitativă a vulnerabilităţii Chestiunea evaluarii cantitative a Vulnerabilitatii (Quantitative Vulnerability Assessment, QVA,) ocupa un domeniu de investigatie inca emergent, bogat in initiative si alternative mai degraba complementare decat reciproc-exclusive (v.e.g. [34]). Practic, problema revine la definirea unui Indicator de Vulnerabilitate, sau a unui set cat mai compact si articulat de indicatori care sa integreze intr-un mod justificabil acei parametri obiectivi ai ‘entitatii’ vizate - ‘design, location, security posture, operation, or any combination thereof,’

(v.definitia DHS) ce fac entitatea ‘susceptible to disruption, destruction or exploitation’. Faptul ca problema este, in principiu, solubila este confirmat de secondarea definitiei citate a Vulnerabilitatii de o definitie a ‘Gradului de vulnerabilitate’ (Vulnerability degree):

Vulnerability degree: ‘qualitative or quantitative expression of the level to which an entity, asset, system, network or geographic is susceptible to harm when it experiences a hazard’ (DHS Risk Lexicon 2010 Edition, U.S. Dept. Of Homeland Security).

In conceperea unei solutii sustenabile teoretic si implementabile IT, de evaluare cantitativa a Vulnerabilitatii comunitatilor expuse la efecte ale emisiilor atmosferice radioactive, urmarind relatiile indicate in Figura 24 autorii N-WATCHDOG au fost confruntati cu urmatoarele necesitati:

Identificarea unui set minimal-suficient de indicatori primari obiectivi de caracterizare a Vulnerabilitatii Statice – variabila lenta a modelului - a comunitatilor din zona de influenta a obiectivelor nucleare;

Definirea unei metrici abstracte adimensionale, exprimata prin indicatori agregati, capabile sa concilieze natura diferita a indicatorilor primari - exprimati, inerent, in unitati diferite (persoane, unitati monetare, grade de calificare etc.);

Page 78: Activitatea 1.1

75

Normarea metricii la o scara a Vulnerabilitatii Statice convenabila raportarilor si analizei comparative a comunitatilor din aceasta perspectiva;

Definirea unei metrici aplicate (a) Expunerii comunitatilor; si (b) Impactului potential al emisiilor radioactive, menita a servi conceptul de Vulnerabilitate Dinamica – variabila rapida a modelului.

Crearea unui Indicator sinoptic bidimensional, sub-intins in cele doua dimensiuni de, respectiv, vulnerabilitatile statica si dinamica, in fapt – a unei Matrici de Vulnerabilitate, corelabila cu hartile geografice ale distributiei teritoriale a Vulnerabilitatii.

Aceste aspecte sunt explicate in continuare. 5.1.2.1. Indicatorii Vulnerabilităţii Statice

In sensul N-WATCHDOG, Vulnerabilitatea Statica (VS) a unei comunitati in fata situatiilor de urgenta exprima susceptibilitatea comunitatii de a suferi destructurari si pagube atunci cand este supusa unei amenintari. Masura VS se considera data de doi factori:

1. valorile potential amenintate (assets): populatia (oamenii); economia; functionalitatile sociale; importanta strategica – in sensul valorii/semnificatiei comunitatii in relatia cu alte comunitati si contextul national/international; si

2. capacitatea de raspuns la amenintari (mitigation capability), de absorbtie a efectelor si de refacere (resilience).

5.1.2.1.1. Indicatorii primari

De prima evidenta s-au considerat urmatorii Indicatori primari (Tabelul 8).

Tabelul 8. Indicatori primari ai Vulnerabilitatii Statice a unei comunitati.

Toate valorile numerice sunt arbitrare si pur ilustrative.

O B J E C T: AnyPlace

LOCATION (longitude, latitude): 28.054511, 44.32155

____________________________________________________________

Community strength (0.01 to 1.0): 0.68249917

Note: this indicator qualifies your integrative, subjective appraisal of the relative importance

of the target as far as population and business, strategic, cultural etc. assets/activities.

The 0.1 default would roughly place a target mid-scale, from the standpoint described.

___________________________________________________________________________________________________

TARGET INDICATORS FOR EXPOSURE/IMPACT ASSESSMENT

_________________________________________________

Adjust defaults as appropriate.

Note that while YrMin, YrMax, XrMin and XrMax (see explanations below) are model-setting parameters reflective

of your data, best guess, or beliefs, Yr in the last column SIMULATE actual values

and should therefore be as close to the community realities as possible.

When ready, 'Process current case', from menu.

The header:

YrMin - Lower bound assumed for an indicator

YrMax - Upper bound assumed for an indicator

XrMin - Lower bound assumed for an index (normalized indicator)

XrMax - Upper bound assumed for an index (normalized indicator)

Yr - Actual value assumed for an indicator, r, for the targeted community

Xr - Actual value obtained for an index (normalized indicator), for the targeted community

___________________________________________________________________________________________________________

Indicator Unit YrMin YrMax XrMin XrMax Yr

. 1 2 3 4 5 6 7

___________________________________________________________________________________________________________

Page 79: Activitatea 1.1

76

TARGET EXPOSURE/IMPACT INDICATORS (tangibles)

_____________________________________________

Demography

----------

P1|Population.total persons 300 900000 0.2 0.8 173769.747

P2|Children.(<18.yrs) persons 100 100000 0.1 0.9 62321.1787

P3|Aged.(>65) persons 25 25000 0.1 0.9 11704.7628

P4|Disabled persons 10 10000 0.1 0.9 2961.4222

P5|Other.socially-assisted persons 50 5000 0.3 0.7 159.936032

Economy

-------

E1|Fixed.assets Euro/1 50000 10000000 0.1 0.9 6680318.84

E2|Real.estate Euro/1 50000 50000000 0.3 0.7 33763939.4

E3|Business.turnover Euro/1 10000 1000000 0.4 0.6 179300.67

E4|Insurance.commited Euro/1 1000 5000000 0.2 0.8 3378948.31

E5|Workforce.employed persons 50 10000 0.4 0.6 2627.44106

Social

------

C1|Heath.care.units Euro/2 10000 1000000 0.1 0.9 464763.927

C2|Daycare.units.(<7.yrs) Euro/2 5000 50000 0.1 0.9 23487.0287

C3|Educational.facilities Euro/2 5000 100000 0.1 0.9 62383.2044

C4|Cultural.facilities.or.symbols Euro/2 5000 25000 0.3 0.7 8789.04307

C5|Sport.facilities Euro/2 5000 25000 0.4 0.6 13558.0392

Strategic

---------

S1|Major.power.infrastructure Euro/2 50000000 500000000 0.1 0.9 1.7609e8

S2|Major.gas.infrastructure Euro/2 5000000 10000000 0.1 0.9 6020685.22

S3|Major.river.or.sea.harbor Euro/2 10000000 500000000 0.1 0.9 3.048267e8

S4|Major.railroad.infrastructure Euro/2 5000000 50000000 0.2 0.8 8282974.13

S5|Major.road.infrastructure Euro/2 2500000 65000000 0.3 0.7 36993411.6

S6|Major.ITC.infrastructure Euro/2 50000 500000 0.1 0.9 278353.647

S7|Major.logistic.depots Euro/2 1000000 10000000 0.2 0.8 3056986.42

S8|Major.commercial.hub Euro/2 50000 500000 0.4 0.6 72181.1964

S9|Major.waste.management.facilities Euro/2 1000000 10000000 0.4 0.6 2501476.5

S10|Defense.interoperative Euro/2 1000000 25000000 0.1 0.9 3191656.42

S11|Defense.operative Euro/2 500000 5000000 0.2 0.8 806505.232

S12|Defense.logistics Euro/2 5000000 50000000 0.2 0.8 29989659.1

MITIGATION CAPABILITY INDICATORS (intangibles)/3

______________________________________________

M1|Infrastructure.physical.protection/4 grade 1 9 0.1 0.9 3.89290072

M2|Natural.disasters.preparedness/5 grade 1 9 0.1 0.9 4.28347568

M3|Hazard.watch.infrastructure/6 grade 2 8 0.2 0.8 4.85995317

M4|Hazard.watch.performance/7 grade 1 9 0.3 0.7 6.01376498

M5|Operational.risk.control/8 grade 3 7 0.4 0.6 4.69345946

M6|Housekeeping.quality/9 grade 4 6 0.4 0.6 4.61255773

M7|Safety.culture.of.the.administration/10 grade 3 7 0.3 0.7 5.3037871

M8|Safety.culture.of.population/11 grade 4 6 0.4 0.6 4.70013415

M9|Social.climate.monitoring/12 grade 4 6 0.4 0.6 4.97077128

___________________________________________________________________________________________________________

. 1/ Market value

. 2/ Cleanup and recovery costs

. 3/ Audit-established grades, 0 to 10

. 4/ Including power, transportation, IT, communications, fixed assets

. 5/ Including earthquakes, floods, landslide, wildfires, with emphasis on adequate budgeting,

. manning and training of emergency preparedness personnel (fire fighters, ambulance service etc.)

. 6/ Level of integration with local, regional and/or national early alert systems,

. including manning and training

. 7/ Based on incident management history on local record

. 8/ Regarding process error, human error, fraud, sabotage, system failure

. 9/ Including drinking/domestic/sewage water systems, waste disposal, roads condition,

. cleaning and lighting etc.

.10/ Level of safety regulations knowledge, mastering and implementation

.11/ Compliance with safety/emergency rules of conduct, sound crisis behavior, rigors acceptance

.12/ Pressure groups and social unrest management.

Page 80: Activitatea 1.1

77

De notat ca aspectul etic al aprecierilor de valoare in privinta factorului uman – prin unitati monetare reflecta o cutuma acceptata in analiza de risc, intemeiata in esenta pe evaluari ale costurilor indirecte, de remediere – prim-ajutor, spitalizare, recuperare fizica, pierderi economice prin indisponibilitate pentru munca etc.

5.1.2.1.2. Indicatorii agregaţi de profil

Folosirea ca atare a indicatorilor primari intr-o analiza coerenta, cu finalitati sinoptice este virtual-imposibila. Solutia adoptata [v. 35-39 si bibliografia], inspirata din expertiza elvetiana in materie [40] consta in crearea unor Indicatori agregati, definiti pentru fiecare din cele cinci profile identificate in Tabelul 8. Operatia decurge conform algoritmului redat in Tabelul 9:

Tabelul 9. Algoritmul de constructie a Indicatorilor agregati de profil

INDICATOR ANALYSIS AND AGGREGATION

__________________________________

On the input above one may now compute, for every exposed community (target),

the following aggregated Indexes:

- The Exposure/Impact Index - population: Ip = {Sum(j = 1 to 5).Xp(Yp(j))^e}^(1/e)

- The Exposure/Impact Index - economy: Ie = {Sum(j = 1 to 5).Xe(Ye(j))^e}^(1/e)

- The Exposure/Impact Index - social: Ic = {Sum(j = 1 to 5).Xc(Yc(j))^e}^(1/e)

- The Exposure/Impact Index - strategic: Is = {Sum(j = 1 to 12).Xs(Ys(j))^e}^(1/e)

as well as

- The Mitigation Capability Index: Im = {Sum(j = 1 to 9).X(Yt(j))^e}^(1/e)

where

nP, nE, nC, nS, nM are the respective number of indicators in the categories above;

Xr(Yr(j))are normalized scores of the indicators in the respective categories, r,

obtained by a linear mapping of the assigned absolute scores Yr(j) in columns 3 and 4 on the table,

on the reference intervals bounded by the user-adjustable values XrMin(j), XrMax(j)in columns 5 and 6,

according to the equation:

Xr(Y(j)) = Ar.lg(Yr(j))+Br,

with r referring to p-population; e-economy; c-social; s-strategic; and m-mitigation capability,

respectively.

The constants Ar and Br are derived from the couple of equations of type:

Ar.lg(YrMin) + Br = XrMin

Ar.lg(YrMax) + Br = XrMmax

for every indicator variety r, having as solutions:

Ar = (XrMax - XrMin)/(lg(YrMax) - lg(YrMin))

Br = (XrMax.lg(YrMin) - XrMin.lg(YrMax))/(lg(YrMin) - lg(YrMax)).

Quantity e is a sensitive metric exponent, determined in such a manner that the minima and maxima of the

Exposure/Impact Indexes (not the 'indicators') be close to 10 times the minima and maxima XrMin and Xrmax,

respectively, of the normalized indicator scores - and that, irrespective of the values YrMin and YrMax,

and the nature (units) of the assumed bounds of the 'raw' indicators Yr themselves.

The 'magic' value of e satisfying the convenient condition above was obtained, by trial and error, to be

e = 0.52 and is hard-coded into the program.

In spirit, daca nu si riguros in metoda, algoritmul indicat a fost calificat drept 'fuzzy'

(vag).

Page 81: Activitatea 1.1

78

5.1.2.1.3. Indicatorul sintetic al Vulnerabilităţii Statice

Marimi cu dimensionalitate hibrida - expresii ale unei metrici pseudo-euclidiene sui generis pe spatiul indicatorilor primari obiectivi ('bruti'), indicatorii agregati de profil permit construirea unui Indicator sintetic al Vulnerabilitatii Statice. Solutia ne-fiind unica, N-WATCHDOG adopta ceea ce constituie, probabil, cea mai simpla forma (Tabelul 10):

Tabelul 10. Indicatorul Vulnerabilitatii Statice a unei comunitati, in N-WATCHDOG

(valori rezultate din date primare arbitrare, ilustrative)

THE AGGREGATED INDEXES

_______________________

POPULATION: Ip = 3.04198417

ECONOMY: Ie = 2.94831032

SOCIAL: Ic = 2.74619287

STRATEGIC: Is = 2.23942544

MITIGATION CAPABILITY: Im = 2.59481137

The model computes the OVERALL STATIC VULNERABILITY INDEX, Vstatic, as:

Vstatic = (Ip + Ie + Ic + Is) - Im

One obtains:

STATIC VULNERABILITY: 8.38110144

Assess the situation knowing that:

- The highest Static Vulnerability possible is 10.6511887;

- The lowest Static Vulnerability possible 2.41235968.

In aceasta acceptiune, Vulnerabilitatea Statica a unei comunitati creste atunci cand valoarea indicatorilor agregati de profil creste; si scade atunci cand valoarea capcitatii de raspuns la amenintari creste, dand marimii o evidenta valoare intuitiva.

5.1.2.2. Indicatorii Vulnerabilităţii Dinamice

In sensul N-WATCHDOG, Vulnerabilitatea Dinamica (VD) a unei comunitati in fata

situatiilor de urgenta exprima marimea amenintarii ce confrunta comunitatea in virtutea a doi

factori:

i) Pozitia geografica a comunitatii in raport cu dispersia atmosferica a emisiei virtuale de referinta, exprimata in esenta prin distanta fata de traiectoria maselor de aer contaminate; si

ii) Severitatea conditiilor meteorologice pe perioada de prognoza considerata, exprimata in esenta prin clasa de stabilitate atmosferica, asociata cu viteza vantului, nebulozitatea, inaltimea stratului de inversie termica si regimul precipitatiilor.

Dupa cum s-a explicat in sectiunile anterioare, contributia termenului sursa al emisiei in evaluarea Vulnerabilitatii Dinamice, desi dezirabila, ramane optionala: VD se poate evalua in doua ipoteze de lucru:

1) prin Expunere, masurata prin distributia teritoriala a Factorului de Dilutie, DF(s/m3) - v. sectiunea 2; si/sau

2) prin Impactul dozimetric asteptat – v. sectiunea 3 a Raportului. In contrast cu Vulnerabilitate Statica, ce a necesitat construirea, relativ elaborata, a unui indicator unic pe o metrica 'fuzzy', abstracta, indicatorii VD – expunere sau impact - se plaseaza cu usurinta pe scari de valori numerice imediat inteligibile. Tabelul 11 rezuma retetele respective de calcul:

Page 82: Activitatea 1.1

79

Tabelul 11. Retetele de calcul al indicatorilor Vulnerabilitatii Dinamice

A. EXPUNEREA

E(x,y,0) = E0 - log10[DF(x,y,0)],

E0 = (-1)log10(DFmin), DFmin – minimm de referinta al Factorului de Dilutie, DF(s/m3).

Valoare recomandabila: 1.0e-13, acoperitoare pentru

termenii sursa asteptati intr-o urgenta radiologica severa.

DF(x,y,0)- Factorul de Dilutie (s/m3) la nivelul solului, in punctul de harta (x,y).

Scara naturala a Expunerii, rezultata din definitie: 0 la 13 grade.

B. IMPACTUL VIRTUAL, I(x,y,0), pe scara sa naturala:

I(x,y,0) Diagnoza de situatie asteptata:

praguri reglementate depasite; contramsuri recomandate; efecte sanitare posibile

______________________________________________________________________________________________

TOTAL EFFECTIVE DOSE EQUIVALENT

_______________________________

1 1-yr TEDE Constraint for unplanned irradiation to population, Romania: 0.01 mSv

2 1-yr TEDE Limit to population, all sources, Romania: 1 mSv

3 Sheltering TEDE PAG, Romania: 3 mSv

4 Sheltering TEDE PAG, IAEA: 10 mSv

5 Evacuation TEDE PAG, Romania: 30 mSv

6 Evacuation TEDE PAG, IAEA: 50 mSv

7* Hot Intervention Zone TEDE PAG, Romania: 100 mSv

COMMITTED DOSE EQUIVALENT TO THYROID

____________________________________

8 Sheltering THYD PAG, Romania: 30 mSv

9 Iodine prophylaxis THYD PAG, IAEA: 100 mSv

10 Evacuation and Iodine prophylaxis THYD PAG, Romania: 300 mSv

11 Hypothyroidism in 1 or more yrs./8.0e-3 risk of fatal thy.cancer THYD PAG IAEA: 5000 mSv

TOTAL ACUTE BONE DOSE

________________________

12 Vomiting in 1 day TABD PAG, IAEA: 500 mSv

13 Death in 1-2 mnt./1.0e-1 risk of fatal cancer TABD PAG, IAEA: 1000 mSv

TOTAL ACUTE LUNG DOSE

________________________

14 Death in 2-12 month/5.0e-2 risk of lung cancer TALD PAG, IAEA: 6000 mSv

* Utila in orientarea lucratorilor de interventie (salvare, decontaminare);

numai indirect relevanta ca indicator de vulnerabilitate al comunitatii.

5.1.2.3. Matricea de vulnerabilitate

5.1.2.3.1. Metoda

Analiza descrisa ofera, pentru fiecare comunitate din zona de influenta a unui obiectiv nuclear doi parametri de apreciere a vulnerabilitatii: (1) Vulnerabilitatea Statica – variabila lenta a modelului, VS; si (2) Vulnerabilitatea Dinamica – variabila rapida. Solutia naturala de utilizare a acestora consta in construirea unui produs cartezian discret, in fapt a unei matrici, sau 'harti', sub-intinse de cele doua dimensiuni, VS in abscisa si VD in ordonata.

Operatia necesita o minima prelucrare suplimentara – re-scalarea VS si VD pe acelasi interval-standard de apreciere, convenabil fiind intervalul 0 – 100. Judecata este rezumata in Tabelul 12.

Page 83: Activitatea 1.1

80

Tabelul 12. Re-scalarea indicatorilor vulnerabilitatii, pentru construirea Matricii de Vulnerabilitate.

1. Mapping Static Vulnerability on a Lvs scale, 0 to Lvs:

VSmap = Lvs*(VS-VSmin)/(VSmax-VSmin), (1)

where

VS is the 'raw' Static Vulnerability as assessed,

VSmin, VSmax are the lowest and highest values of VS, respectively.

2. Mapping Dynamic Vulnerability on a Lvd scale, 0 to Lvd:

VDmap = Lvd*(E/13 + Imax/14)/2, (2)

where

E is the community Exposure evaluated as E = 13 + log(DF)/log(10),

with DF(s/m3) – the Dilution Factor,

Imax is the index, in Table 11, of the highest impact level expected

at the community location, following a virtual emission event (0 to 14).

Number 13, appearing in the E definition and also as a denominator of

the

Exposure term in Eq.(2) indicates the maximum Exposure attainable;

Denominator 14 of the Impact term in Eq.(2) indicates the maximum

Impact attainable;

Note the following properties, consolidating the meaning of Eq.(2:

- If Imax = 0, then VDmap is given by only the term Lvd*E/13;

- If E = 0, one would also automatically have Imax = 0, for one cannot

contemplate an 'Impact' if there is no 'Exposure' – meaning that

the community is simply falling off the area accounted for

by the model;

- If E = 13 and Imax = 14, then VDmap = 100; i.e. the simultaneous

attainment of the all-possible Exposure and Impact levels would

result in the highst-possible Dynamic Vulnerability, for the

respective community.

For all intent and purposes, N-WATCHDOG will assume Lvs = Lvd.

Completand informatia data de hartile geografice de caz (v. Figura 26) si fisierele-text Input/Output ce raporteaza sistematic toate operatiile sesiunilor de lucru, Matricea de Vulnerabilitate (Figura 25) va constitui un sinoptic imediat-inteligibil al situatiei curente din zona de influenta a obiectivului nuclear monitorizat. Solutia aleasa permite compararea vizuala a vulnerabilitatii comunitatilor aflate sub efectul maselor de aer ce survoleaza sursa virtuala de emisii atmosferice radioactive.

Page 84: Activitatea 1.1

81

Fig. 25. Descendenta analitica a indicatorilor vulnerabilitatii statice si dinamice ai comunitatilor si Matricea Vulnerabilitatii. Bazinele de acceptabilitate, pentru valorile 0.1 si, respectiv, 0.3 ale parametrului de frontiera dintre bazine.

Verde – vulnerabilitate scazuta (acceptabila); Galben – vulnerabilitate moderata (tolerabila); Rosu – vulnerabilitate mare (inacceptabila).

Page 85: Activitatea 1.1

82

Fig. 26. Trei expresii ale hartilor geografice sinoptice de situatie, corespunzatoare Matricii de Vulnerabilitate a cazului redat in Figura 25. Imagini de 'storyboard', din faza de proiectare a codurilor si testare a fezabilitatii solutiilor.

Page 86: Activitatea 1.1

83

Valorificarea Matricii de Vulnerabilitate ca instrument de evaluare comparata se face:

a) prin constatarea pozitiei relative a diverselor comunitati in sistemul de axe VS/VD; si b) prin introducerea, la discretia judecatii utilizatorului, a unui argument de

acceptabilitate a situatiei comunitatilor. 5.1.2.3.2. Argumentul de acceptabilitate Contextul problemei a fost fixat in analiza traditionala a Riscului, unde o 'Matrice a Riscului', sub-intinsa in abscisa de o metrica a Consecintelor, iar in ordonata de metrica naturala a Probabilitatilor (0-1) ofera imaginea pozitionarii relative a diferitelor evenimente cauzatoare de probleme. Alternativ, la un nivel de sofisticare superior, in ordonata se plaseaza valorile CDF(x) – Cumulative Distribution Function, ce exprima probabilitatea y = P(x) ca o consecinta sa prezinte o valoare mai mica decat x; sau valorile CCDF – Complementary Cumulative Distribution Function, ce exprima probabilitatea y' = P'(x) ca o consecinta sa prezinte o valoare mai mare decat x. Pe campul bidimensional fixat de cantitatile descrise se obisnuieste ca analistul sa fixeze trei bazine de interes. Adoptate sub diferite nume, ce pot include si popularele DEFCON 1, 2, 3 din strategia defensiva transatlantica, bazinele de interes exprima grade de risc ce necesita grade ale strategiilor de raspuns preventiv si/sau corectiv, planificate. Prin simpla translatie de sensuri, in campul bidimensional al Matricii de vulnerabilitate se pot fixa cu folos trei bazine de interes:

(1) Vulnerabilitate scazuta, sau acceptabila; (2) Vulnerabilitate moderata, sau tolerabila; si (3) Vulnerabilitate mare, sau inacceptabila.

Sarcina consecutiva este ca judecata experta sa stabileasca un criteriu sustenabil de definire a frontierelor dintre bazine. Solutia aleasa de autorii N-WATCHDOG, inspirata din Fizica proceselor termodinamice izoterme este ca frontierele sa fie trasate prin curbele F(VS,VD) in planul celor doua variabile, pentru care produsul VS × VD este constant, la valori alese de utilizator in intervalul 0-1. Asfel, de exemplu,

o Daca vulnerabilitatea unei comunitati se apreciaza ca scazuta / acceptabila pana la o fractiune de 0.1 din valoarea maxima posibila de 100 × 100 a ariei 'hartii' (matricii) de vulnerabilitate, atunci ecuatia frontierei dintre zonele de vulnerabilitate 'acceptabila' si 'moderata' este

VS × VD = 0.1,

toate punctele, inclusiv comunitatile, dintre originea axelor si curba apartinand bazinului de vulnerabilitate acceptabila.

o Analog, daca vulnerabilitatea se considera mare / inacceptabila peste o fractiune de 0.3 din aria hartii, atunci ecuatia frontierei dintre zonele de vulnerabilitate 'tolerabila' si 'inacceptabila' este

VS × VD = 0.3,

iar bazinele de vulnerabilitate inacceptabila si tolerabila se contureaza in consecinta. Factorul din membrul al doilea al ecuatiilor s-a numit 'parametru de frontiera' (Figura 25) si se va seta la interfata de catre utilizator. Rationamentul ce a condus la alegerea de frontiere hiperbolice intre bazine este astfel explicat, la interfata-utilizator a codului:

Page 87: Activitatea 1.1

84

The rationale behind the solution rests on the observation that lower Static Vulnerabilities – in the sense of the definition adopted - would associate higher mitigative capabilities, thus warranting higher potential radiological impacts to be entrusted for management; whereas higher Static Vulnerabilities would indicate a community less prepared to face crises, so that only lower impacts should be assumed manageable.

Pe scurt, celor mai bine pregatiti sa infrunte crizele li se vor fixa exigente mai inalte, iar celor mai putin pregatiti – exigente mai modeste. Principiul, calificat uneori drept cinic, iar alteori doar pragmatic este, de asemenea, cutumiar in managementul urgentelor – de orice natura. Analiza poate fi elaborata in continuare, de exemplu prin conturarea si calcularea, in planul 'hartii' de vulnerabilitate, a ariei de circumscriere a comunitatilor expuse (convex hull) si crearea, pe acesta baza, a unui indicator global, numeric, de vulnerabilitate indusa de obiectivul nuclear pe fereastra de prognoza curenta etc. In spiritul 'minimei complexitati necesare' pe care proiectul si-a propus sa o cultive, versiunea propusa a Demonstratorului de concept N-WATCHDOG se abtine de la asemenea dezvoltari, ce pot mai degraba ingreuna asimilarea produsului de catre utilizatori.

Page 88: Activitatea 1.1

85

6. Datele în N-WATCHDOG: biblioteci şi gestiune

'Data are of high quality if, "they are fit for their intended uses in operations, decision making and planning." (J. M. Juran).

Alternatively, data are deemed of high quality if they correctly represent the real-world construct to which they refer...'

(Wikipedia, 2014) Modelele N-WATCHDOG necesita trei categorii de date: (1) date radiologice; (2) date meteorologice; si (3) date geografice – fapt reflectat si in sectiunile precedente ale Raportului. Natura subiectului adresat – asistarea experta a managementului urgentelor nucleare - confera termenului ‘date’ un sens mai larg fata de cel uzual, de ‘numere’ pur si simplu. Deoarece numerele cerute de modele au adesea in subtext concepte cu un anumit grad de complexitate, a caror buna intelegere este indispensabila in a le da un sens in aplicatii, bibliotecile (libraries) ce le structureaza in formate adecvate utilizarii de catre coduri pot fi mai degraba calificate drept ‘biblioteci de date si cunostinte asociate’. 6.1. Relaţiile bibliotecilor de date cu modulele funcţionale Sistemul de date al N-WATCHDOG serveste modulele functionale ale sistemului pe ambele dimensiuni ale interfetei de comunicare cu utilizatorul: input si output. O schema a relatiilor este indicata in Figura 27.

Fig. 27. Relatia intre bibliotecile de date si modulele functionale ale N-WATCHDOG.

Pentru orientare, Tabelul 13 detaliaza aceste relatii indicand si adresele, din Anexa, ale tabelelor numerice respective.

Page 89: Activitatea 1.1

86

Tabelul 13. Datele N-WATCHDOG - Misiunea

Specia Misiunea

Datele

radiologice

Modulul Source Term

- Input pentru algoritmul ‘4Factor Formula’: calculul

activitatilor

amestecului de nuclizi efectiv emis in atmosfera

- Input pentru Selectia arborilor interactivi de eveniment

relevanti in cazul de studiu

----------------------------------------------------------

Anexa A.1.1: 21-28; 37-42

Anexa A.1.2

Anexa A.1.3

Anexa A.1.4

Anexa A.1.5

Modulul Dispersie

- Input pentru calculul fractiilor de depunere/saracire, ale

norului radioactiv

--------------------------------------------------------

Anexa A.1.1: 1-4; 49-51

Anexa A.2

Modulul Dozimetrie

- Input pentru calculul dozelor

- Input pentru evaluarea oportunitatii contramasurilor

- Input pentru evaluarea eventualitatii efectelor sanitare

----------------------------------------------------------

Anexa A.1.1: 1-15

Anexa A.1.2

Anexa A.1.3

Anexa A.1.4

Anexa A.1.5

Modulul Vulnerabilitate

- Input pentru calculul gradului de Expunere

- Input pentru calculul gradului de Impact

- Input pentru calculul Vulnerabilitatii Dinamice

Modulul Comunicare

- Output catre Arhiva de termeni sursa

- Output catre Arhiva de caz desktop

- Output catre Serverul N-WATCHDOG

Datele

Meteorologice

Modulul Source Term

- Input pentru Algoritmele ‘Plume Rise’: calculul inaltimii

Stabilizate a norului radioactiv

Modulul Dispersie

- Input pentru calulul traiectoriilor de advectie

- Input pentru inferarea stabilitatii atmosferice

- Input pentru calculul coeficientilor de dispersie

Modulul Comunicare

- Output catre Arhiva de prognoze meteorologice

- Output catre Arhiva de caz desktop

- Output catre Serverul N-WATCHDOG

Datele GIS Modulul Source Term

- Input pentru masina web/desktop de localizare interactiva a sursei

Modulul Dispersie

- Input pentru crearea in mod runtime a hartilor desktop de caz

(ad-hoc maps)

- Input pentru selectia dinamica (case-specific) a comunitatilor

efectiv expuse, din zona de influenta a obiectivului nuclear.

Modulul Vulnerabilitate

- Input pentru calculul Vulnerabilitatii Statice a comunitatilor

Modulul Comunicare

- Output pentru Arhiva de date primare, de caracterizare a comunitatilor

- Output pentru Arhiva de caz desktop

- Output pentru Serverul N-WATCHDOG

Page 90: Activitatea 1.1

87

6.2. Gestiunea librăriilor de date 6.2.1. Stocarea

Datele rezidente ale Demonstratorului de concept (PoC) N-WATCHDOG sunt stocate astfel:

Datele DEM (Digital Elevation Maps) – in fisiere tip Random-Access, pre-procesate in cadrul proiectului din fisierele secventiale sau binare obtinute din surse web publice.

Orice alte date si cunostinte asociate – in fisiere secventiale cu acces I/O editabile la interfata.

6.2.2. Utilizarea

Librariile de date N-WATHDOG se acceseaza in doua situatii: (1) in sesiunile de evaluare; si (2) in sesiunile de mentenanta.

In sesiunile de evaluare modulele functionale sunt echipate cu rutinele necesare spre

a adresa fisierele relevante, a cauta datele adecvate si a le livra masinii de calcul. In fisierele Random-Access operatia automata decurge prin cautare standard de campuri indexate; in fisierele secventiale operatia comporta, in general, (i) identificarea de linii text; si/sau (ii) extractia de ‘cuvinte’ (words) prin operatii conventionale cu variabile de tip string$.

In mod caracteristic, pentru colectiile de date aduse la interfata in procesul de calcul s-a prevazut facilitatea editarii directe, in mod text – ce raspunde cerintei cutumiare a utilizatorilor experti, de a putea inlocui anumite valori, sau seturi intregi de valori, cu cele carora le acorda personal incredere – noile valori fiind refectate in outputul sesiunilor. Editarea directa nu altereaza datele-default ale bibliotecilor.

Sesiunile de mentenanta sunt rezervate Dezvoltatorului, sau Administratorului de sistem acreditat de acesta in temeiul unei competente verificate.

Dat fiind caracterul static si volumul considerabil al datelor DEM (resursa maximala SRTM90, de exemplu totalizeaza cca 54 GigaByte de hard disk) sesiunile de mentenanta nu prevad solutii de editare interactiva, la interfata. Asemenea solutii sunt insa disponibile pentru toate celelalte resurse, in cadrul fiecarui modul functional.

Pentru datele radiologice, de importanta centrala in sistem, N-WATCHDOG va oferi un modul dedicat, accesabil direct din pagina de intrare a platformei.

Aspectele teoretice si datele esentiale ale librariilor N-WATCHDOG – cu exceptia datelor DEM - se prezinta in Anexele Raportului.

__________

Nota: Autorii multumesc Dr. Bogdan I. Vamanu pentru contributia esentiala adusa la solutionarea unor probleme de analiza si dezvoltare IT a N-WATCHDOG PoC – proces in curs de desfasurare. Afilierea curenta a colegului si colaboratorului nostru este EC Joint Research Centre Ispra, Institute for Energy and Transport.

Page 91: Activitatea 1.1

88

Referinţe 1. CNCAN (2000). Normele fundamentale de securitate radiologica. NSR-01. 2. CNCAN (2004). Normele privind calculul dispersiei efluentilor radioactivi evacuati in mediu de instalatiile nucleare. NSR-23. Ordinul Presedintelui CNCAN nr. 360 / 20.10.2004. 3. CNCAN (2005). Norma privind monitorizarea emisiilor radioactive de la instalatiile nucleare sau radiologice. NSR-21. Ordinul Presedintelui CNCAN nr. 276 / 26.09.2005. 4. CNCAN (2005). Norma privind monitorizarea radioactivitatii mediului in vecinatatea unei instalatii nucleare sau radiologice. NSR-22. Ordinul Presedintelui CNCAN nr. 275 / 26.09.2005. 5. EUROPEAN COMMISSION (1996). Council Directive 96/29/EURATOM of 13 May 1996 laying down basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation. http://ec.europa.eu/energy/nuclear/radioprotection/doc/legislation/9629_en.pdf. 6. Rasmussen N. et al. (1975). Reactor Safety Study. An Assessment of Accident Risks in U.S. Commercial

Nuclear Power Plants. WASH-1400 (NUREG 751014), U.S. Nuclear Regulatory Commission, October 1975. 7. U.S. National Intelligence Council (2012). Global Trends 2030: Alternative Worlds. NIC 2012-001, April 2012.

8. National Governors’ Association (1979). Comprehensive Emergency Management. A Governor’s Guide. NGA Center for Policy Research. Washington, D.C. (May,1979) 9. Wikipedia. Emergency Management. http://en.wikipedia.org/wiki/Emergency_management (December, 2013) 10. M.E. Baird (2010). The “Phases” of Emergency Management. Background Paper, Prepared for the Intermodal Freight Transportation Institute (IFTI), University of Memphis. (January 2010). Online at: http://www.vanderbilt.edu/vector/research/emmgtphases.pdf 11. U.S. DHS (2011). National Preparedness Plan. U.S. Department of Homeland Security (2011). Online at: http://www.fema.gov/media-library-data/ 20130726-1828-25045-9470/national_preparedness_goal_2011.pdf. 12. Real Time Online Decision Support System for Nuclear Emergency Management. (http://www.rodos.fzk.de/rodos.html) 13. Jones J.A., Mansfield P.A. et al. (1996). PC Cosyma (version 2): An Accident Consequence Assessment Package for Use on a PC. Report EUR 16239 EN. (http://bookshop.europa.eu/en/pc-cosyma-pbCGNA16239/) 14. Prolog Development Center White Paper: ARGOS CBRN Information System for Emergency Management. Version 0.9, March 2011. (http://www.pdc.dk/Argos/decision.asp) 15. CEA/DASE/SRCE – Presentation CERES – Journees SFRP. (http://www.sfrp.asso.fr/IMG/pdf/E6-Monfort.pdf) 16. Sullivan T.J., Ellis J.S. et al. (1993). Atmospheric Release Advisory Capability. Real-Time Modeling of Airborne Hazardous Material. Bulletin of the American Meteorological Society, Vol. 74, No. 12, U.S.A. (https://narac.llnl.gov/uploads/pbamqmed.pdf) 17. Athey G.F., McGuire S.A. et al. (2007). RASCAL 3.0.5 Workbook. NUREG-1889. (http://pbadupws.nrc.gov/docs/ML0729/ML072970068.pdf) 18. Homann S.G. (2011). HotSpot Health Physics Codes version 2.07.2. LLNL-SM-483991

Page 92: Activitatea 1.1

89

(https://narac.llnl.gov/HotSpot/HotSpot.html) 19. Napier B.A.(2011). GENII Version 2 Users’ Guide. PNNL-14583, Rev.3. (http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-14583Rev3.pdf) 20. Chanin D., Young M.L. et al.(1998). Code Manual for MACCS2: Volume 1, User's Guide. NUREG-CR-6613, SAND97-0594. (http://www.doeal.gov/SWEIS/OtherDocuments/481%20MACCS2%20Vol%201.pdf) 21. Imai K., Chino M. et al. (1985). SPEEDI: A Computer Code System for the Real-Time Prediction of Radiation Dose to the Public due to an Accidental Release. Japan Atomic Energy Research Institute. JAERI-1297. (http://jolissrch-inter.tokai-sc.jaea.go.jp/pdfdata/JAERI-1297.pdf) 22. Vamanu D.V., Gheorghe A.V., Acasandrei V.T. and Vamanu B.I. Environmental Modeling for Blue Collars. International Journal of Environment and Pollution Vol. 46, Nos. 3/4, pp. 246–266, 2011. 23. Consultancy meeting 'Advising on evaluating options for the development of assessment capabilities related to source term calculations for nuclear power plant accidents'. IAEA, Incidents and Emergency Center, 9-10 April 2013. 24. Till J.E., Grogan H.A. (2008). Radiological Risk Assessment and Environmental Analysis. Oxford University Press. ISBN 978–0 19–512727–0. 25. IAEA (1997). Generic Assessment Procedures for Determining Protective Actions During a Reactor Accident. IAEA-TECDOC-955, ISSN 1011-4289. 26. Acasandrei V.T., Vamanu D.V., Vamanu B.I. (2012). Fast Methods for Source Term Assessment. CNCAN, Afumati, 3-5 December, 2012. 27. U.S. NRC (1995). International RTM-95 Response Technical Manual. U.S. Nuclear Regulatory Commission, Washington D.C., May 1995. 28. McKenna T., Trefethen J., Gant K., Jolicoeur J., Kuzo G., Athey G. (2006). RTM-96 Response Technical Manual. NUREG/BR-0150, Vol.1, Rev.4, March 1996. U.S. Nuclear Regulatory Commission, Washington D.C. 29. Ministère de l’Ecologie et du Développement Durable – République Francaise (2002). Méthodes pour l’évaluation et la prévention des risques accidentels, Dispersion atmosphérique

(Mécanismes et outils de calcul). DRA-006, -12, INERIS-DRA-2002-25427. 30. Gheorghe A.V., Vamanu D.V. Disaster Risk and Vulnerability Management. From Awareness to Practice, in Gheorghe A.V. (Ed.), Integrated Risk and Vulnerability Management Assisted by Decision Support Systems. Relevance and Impact on Governance, Springer, Dordrecht, ISBN-10 1-4020-3451-2 (HB), ISBN-13 978-1-4020-3451-0 (HB), ISBN-10 1-4020-3721-X (e-book), ISBN-13 978-4020-3721-4 (e-book), Volume 8, pp. 1-320, 2005. 31. Vamanu D.V., Vamanu B.I., Acasandrei V.T. Slavnicu D.S., and Gheorghiu D. Urgenta radiologica la transportul de combustibil nuclear uzat LEU tip EK-10. Accidentul ipotetic, de severitate superioara autorizarii. Suplimente tehnice la solicitarea CNCAN. Partea I. Accident pe segmentul aerian.. IFIN-HH, Raport tehnic intern, comanda 684/09.04.2012, aprilie 2012. 32. Vamanu D.V., Vamanu B.I., Acasandrei V.T. Slavnicu D.S., and Gheorghiu D. Urgenta radiologica la transportul de combustibil nuclear uzat LEU tip EK-10. Accidentul ipotetic, de severitate superioara autorizarii. Suplimente tehnice la solicitarea CNCAN. Partea II. Accident pe segmentul rutier. IFIN-HH, Raport tehnic intern, comanda 684/09.04.2012, mai 2012. 33. Vamanu D.V., Galeriu D., Slavnicu D.S., Gheorghiu D., Melintescu A., Acasandrei V.T. Dezafectarea Reactorului VVR-S al IFIN-HH. Scenarii de accident sever. IFIN-HH, Raport tehnic intern, comanda nr. 545/18.03.2009, aprilie 2009.

Page 93: Activitatea 1.1

90

34. Calida B.Y., Gheorghe A.V., Unal R., Vamanu D.V., and Radu C.V. Complexity-Induced Vulnerability Assessment: How Resilient are Our Academic Programs? In Infranomics - Sustainability, Engineering Design and Governance. A.V. Gheorghe, M. Masera, P. F. Katina – Editors. ISBN: 978-3-319-02492-9 (Print), 978-3-319-02493-6 (Online). Topics in Safety, Risk, Reliability and Quality, Volume 24, pp 377-393, 2014. 35. Adrian V. Gheorghe and Dan V. Vamanu. Faces of Resilience. In "Energy Security. International and Local Issues, Theoretical Perspectives, and Critical Energy Infrastructures". NATO Science for Peace and Security Series-C. Part II. Theoretical Prespectives for Energy Security. Edited by A.Gheorghe and L.Muresan. Published by Springer, The Nethelands. ISBN 978-94-007-0721-4 (PB); ISBN 978-94-007-0718-4 (HB); ISBN 978-94-007-0719-1 (e-book), pp. 79-109, 2011. 36. Gheorghe A.V., Vamanu D.V. Towards QVA - Quantitative Vulnerability Assessment: A Generic Practical Model. Journal Risk Research, 7 (6), 616-628, 2004 37. Gheorghe A.V. and Vamanu D.V. Resilience and vulnerability in critical infrastructure systems – a physical analogy. International Journal of Critical Infrastructures, Volume 5, Number 4, pp. 389-397, 2009. 38. Gheorghe A.V., Vamanu D.V. System of Systems concept for Vulnerability Assessment of Large Scale Critical Infrastructures. Atlantic Treaty Association (ATA) Meeting, Norfolk, Virginia, USA, 18 February 2009. 39. Gheorghe A.V. and Vamanu D.V. Mining intelligence data in the benefit of critical infrastructures security: vulnerability modelling, simulation and assessment, system of systems engineering. International Journal of System of Systems Engineering, Vol. 1, Nos. 1/2, 2008, pp. 189-221, 2008 40. BUWAL (1991). Federal Ordinance of April the 1

st, 1991, and the ensuing implementation

guidelines and manuals. Bundesamt fur Umwelt, Wald und Landschaft Storfallverordnong.

Page 94: Activitatea 1.1

A1.1

ANEXA 1

Datele Radiologice Cuprins

Introducere ................................................................................................................ A1.2 A.1.1. Radiological Data - The Inventory ................................................................... A1.3 A.1.2. Selective definitions, assumptions, limitations ................................................. A1.4 A.1.3. Radiological data – the numbers ................................................................... A1.11 A.1.4. Source term specific data ............................................................................. A1.25 A.1.5. Reference data in N-WATCHDOG dosimetry ............................................... A1.29 A.1.6. Nuclear emergency-oriented knowledge elements and guides ..................... A1.32

Page 95: Activitatea 1.1

A1.2

Introducere Dat fiind primatul, in ordinea logicii Proiectului, al Radiologiei (domeniul Radiation Protetction and Nuclear Safety), sectiunile 2 – 4 ale Raportului au tratat, la nivelul de breviar presupus suficient dezvoltarii produselor IT, aspectele teoretice corespunzatoare. Prezenta Anexa va dispensa, in consecinta, lectura de reveniri asupra sensului si misiunii datelor in relatie cu modulele functionale ale sistemului N-WATCHDOG, concentrandu-se asupra datelor in sine, detaliind (a) definitiile tehnice; si (b) seturile de valori. Abordarea aleasa se justifica in lumina unei ipoteze provizorii asupra ordinii naturale in care se va desfasura tranzitia de la Dezvoltatorul de concept N-WATCHDOG PoC spre produsul final asteptat – modelul experimental N-WATCHDOG EM – o secventa de activitati in care datele ocupa prima pozitie:

(1) bazele de date si instrumentele de management al acestora; (2) masina geografica - achizitia de date, localizare, reprezentare; (3) masina meteorologica - achizitia de date si solutiile de management; (4) aplicatiile propriuzise.

Datele radiologice redate fac efectiv parte din inventarul pe care N-WACHDOG PoC il dezvolta. Faptul ca volumul datelor informatiilor redate in tabelele A.1.1 – A.1.3 excede necesitatile stricte de operare a aplicatiilor se explica prin preocuparea autorilor de a respecta dimensiunea educationala asumata explicit de Proiectul PCCA – de a familiariza diversele categorii de utilizatori angajati, sau interesati, in managementul situatiilor de urgenta, dar fara formatie/educatie profesionala in materie, cu cerinte de cunostinte si date specifice in domeniu. Pentru o orientare coreapunzatoare, datele radiologice strict necesare operarii N-WATCHDOG sunt individualizate in tabelele separate A.1.4 si A.1.5.

Page 96: Activitatea 1.1

A1.3

A.1.1. Radiological Data - The Inventory Primary sources: EURATOM, U.S.NRC/DOE/EPA/FRMAC/ORNL, AECL

Data Item

1. ELEMENT

2. ATOMIC NUMBER

3. HALFLIFE T1/2 [hours]

4. HALFLIFE T1/2 [days]

5. MEAN HALFLIFE Tm [days]

6. EARLY PHASE EFFECTIVE EXPOSURE PERIOD Tepeep [eff.hrs/100hrs]

7. EARLY PHASE INHALATION DCFe50 CEDE [(mSv/h)/(kBq/m3)]

8. EARLY PHASE INHALATION DCFab Acute Bone [(mSv/h)/(kBq/m3)]

9. EARLY PHASE INHALATION DCFal Acute Lung [(mSv/h)/(kBq/m3)]

10. EARLY PHASE INHALATION DCFthy Thyroid [(mSv/h)/(kBq/m3)]

11. EARLY PHASE DEPO.EXTNL.EXPOSURE RATE ECFg [(mGy/h)/(kBq/m3)]

12. EARLY PHASE DEPO.EXTNL.EDE DOSE RATE DCFg [(mSv/h)/(kBq/m2)]

13. DEPO.4-DAY DOSE EXT.& NON-ARID DCFepgna [(mSv/7d)/(kBq/m2)]

14. DEPO.4-DAY DOSE EXT.& ARID RSPN. DCFepga [(mSv/7d)/(kBq/m2)]

15. AIR IMMERSION EXTERNAL EDE DOSE RATE DCFa [((mSv/h)/(kBq/m3)]

16. INTERMEDIATE PHASE EFF.EXPOSURE PERIOD Tipeep [eff.hrs/1year]

17. INTERMD.PH.DCF DEPO 1st year NORMAL [(mSv in 1st y)/(kBq/m2)]

18. INTERMD.PH.DCF DEPO 1st month NON-ARID [(mSv in 1st mnt)/(kBq/m2)]

19. INTERMD.PH.DCF DEPO 2nd month NORMAL [(mSv 2nd mnt)/(kBq/m2)]

20. INTERMD.PH.DCF DEPO 50 y NORMAL [(mSv 50 y)/(kBq/m2)]

21. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 1 hr

22. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 6 hrs

23. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 12 hrs

24. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 24 hrs

25. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 3 d

26. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 7 d

27. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 15 d

28. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 30 d

29. INTERMD.PH.DCF INHL.RESPND.MAT.DCFipa [(mSv 1st mnt)/(kBq/m3)]

30. INTERMD.PH.DCF SKIN DOSE FROM DEPO [(mSv in 1st y)/(kBq/m2)]

31. COW TRANSFER FACTOR [(kBq/L)/(kBq/d)]

32. INGESTION CRITICAL ORGAN

33. CHILD INGESTION DOSE CONVERSION FACTOR DCFingch [mSv/kBq]

34. INFANT INGESTION DOSE CONVERSION FACTOR DCFingch [mSv/kBq]

35. INFANT INGESTION CEDE CONVERSION FACTOR [mSv/kBq]

36. ISOTOPE SPECIFIC ACTIVITY [Ci/g]

37. LWR TYPICAL CORE INVENTORY [Ci/MWe]

38. BWR TYPICAL COOLANT CONTAMINATION [Ci/g]

39. PWR TYPICAL COOLANT CONTAMINATION [Ci/g]

40. LWR CORE RELEASE FRACTIONS AT 650 C

41. LWR CORE RELEASE FRACTIONS AT 1250 C

42. LWR CORE RELEASE FRACTIONS AT 1650 C

43. ISOTOPE DECAY MODES

44. TARGET NUCLIDE FOR NEUTRON ACTIVATION

45. TARGET MATERIAL FOR NUCLIDE ACTIVATION

46. NEUTRON TARGET NUCLIDE ABUNDANCE IN TARGET MATERIAL [%]

47. NEUTRON ACTIVATION CROSS-SECTION OF TARGET NUCLIDE [cm2]

48. ELEMENT DENSITY [g/cm3]

49. DEPOSITION VELOCITY [m/s]

50. WASHOUT RATE [1/s]

51. WASHOUT EXPONENT []

Page 97: Activitatea 1.1

A1.4

A.1.2. Selective definitions, assumptions, limitations - cf. A.1.1. box indexing -

3. On HALFLIFE T1/2 [hours]

_________________________________________________________________________

The halflife given for the following nuclides in the left column actually

applies to the mixtures in the right column:

Ti-44 ........... Ti-44 + Sc-44

Ge-68 ........... Ge-68 + Ga-68

Kr-88 ........... Kr-88 + Rb-88

Mo-99 ........... Mo-99 + Tc-99m

Ru-106 ........... Ru-106 + Rh-106

Cd-109 ........... Cd-109 + Ag-109m

Sn-113 ........... Sn-113 + In-113m

Sn-126 ........... Sn-126 + Sb-126m

I-135 ........... I-135 + Xe-135m

Cs-137 ........... Cs-137 + Br-137m

Ce-144 ........... Ce-144 + Pr-144m

4. On HALFLIFE T1/2 [days]

_________________________________________________________________________

The halflife given for the following nuclides in the left column actually

applies to the mixtures in the right column:

Ti-44 ........... Ti-44 + Sc-44

Ge-68 ........... Ge-68 + Ga-68

Kr-88 ........... Kr-88 + Rb-88

Mo-99 ........... Mo-99 + Tc-99m

Ru-106 ........... Ru-106 + Rh-106

Cd-109 ........... Cd-109 + Ag-109m

Sn-113 ........... Sn-113 + In-113m

Sn-126 ........... Sn-126 + Sb-126m

I-135 ........... I-135 + Xe-135m

Cs-137 ........... Cs-137 + Br-137m

Ce-144 ........... Ce-144 + Pr-144m

5. On MEAN HALFLIFE Tm [days]

_________________________________________________________________________

The MEAN HALFLIFE is defined as:

Tm = T1/2 x 1.44

with T1/2 - the radiological halflife .

6. On EARLY PHASE EFFECTIVE EXPOSURE PERIOD Tepeep [eff.hrs/100hrs]

_________________________________________________________________________

The halflife given for the following nuclides in the left column actually

applies to the mixtures in the right column:

Ti-44 ........... Ti-44 + Sc-44

Ge-68 ........... Ge-68 + Ga-68

Kr-88 ........... Kr-88 + Rb-88

Mo-99 ........... Mo-99 + Tc-99m

Ru-106 ........... Ru-106 + Rh-106

Cd-109 ........... Cd-109 + Ag-109m

Sn-113 ........... Sn-113 + In-113m

Sn-126 ........... Sn-126 + Sb-126m

Page 98: Activitatea 1.1

A1.5

I-135 ........... I-135 + Xe-135m

Cs-137 ........... Cs-137 + Br-137m

Ce-144 ........... Ce-144 + Pr-144m

For isotopes with short lived daughters (e.g.Cs-137, Br-137m), that are

expected to be in equilibrium the Effective Period is based on the half

life of their parent.

Early Phase Effective Exposure Period is calculated by:

Tepeep = T1/2 x [1 - 0.5**(100/(T1/2))]

1 hour is assumed to be the minimum Effective Exposure Period.

7. On EARLY PHASE INHALATION DCFe50 CEDE [mrem/h)/(uCi/m3)]

_________________________________________________________________________

CEDE Factor (DCFe50) is the Committed Effective Dose Equivalent exposure-

to-dose conversion factor:

DCFe50 = EDCFe50 x BR x CF

where

EDCFe50 - Exposure-to-Dose Conversion Factors from EPA-520/1-88-020,

'Limiting Values of Radionuclides Intake and Air concentration and Dose

Conversion Factors for Inhalation Submersion and Ingestion; Federal

Guidance Report No 11', Table 2.1 page 121 'Effective' column.

BR - breathing rate for an adult performing light activity, EPA-520/1-88-

020 op.cit., page 10: 0.020 m3/min x 60 min/hr = 1.2 m3/hr.

CF - conversion factor for units:

Sv/Bq x 1.0E+05 mrem/Sv x Bq/(2.7E-05 uCi) = 3.7E+09 mrem/uCi

For H-3 CEDE Dose factor was doubled to account for skin absorption.

For Natural and Depleted Uranium it is assumed that all the release is

U-238. For Enriched Uranium it is assumed that all the release is U-234.

The specific activity of Natural and Depleted Uranium is dominated by the

concentration of U-238, whereas the Enriched Uranium is dominated by

U-234 (because of its high SpA). While releases from Natural and Enriched

Uranium will be composed principally of a mixture of U-234, U-235 and

U-238, the Dose factors are all within 10%, so it is reasonable to use a

single factor.

8. On EARLY PHASE INHALATION DCFab Acute Bone [mrem/h)/(uCi/m3)]

_________________________________________________________________________

Acute Bone Marrow Dose Factors (DCFab) from inhalation by an adult, i.e.

30 day equivalent dose acquired in red bone marrow:

DCFab = ABM-AD x QF x BR x CF

where

ABM-AD - Acute Bone Marrow Absorbed Dose (Gy/Bq) from NRPB R-162 'Dose

from Intake of Radionuclides by Adults and Young People', Table A.4, page

40. The most conservative lung clearance class was used.

QF - Quality Factor. The dose equivalent was computed using a QF = 10 to

better represent the acute dose.

Page 99: Activitatea 1.1

A1.6

BR - breathing rate for an adult performing light activity, EPA-520/1-88-

020 op.cit., page 10: 0.020 m3/min x 60 min/hr = 1.2 m3/hr.

CF - conversion factor for units:

Sv/Bq x 1.0E+05 mrem/Sv x Bq/(2.7E-05 uCi) = 3.7E+09 mrem/uCi

9. On EARLY PHASE INHALATION DCFal Acute Lung [mrem/h)/(uCi/m3)]

_________________________________________________________________________

Acute Lung Dose Factors (DCFal) from inhalation by an adult, i.e.

30 day equivalent dose in the lung:

DCFal = AL-AD x QF x BR x CF

where

AL-AD - Acute Lung - Absorbed Dose (Gy / Bq) from NRPB R - 162 'Dose

from Intake of Radionuclides by Adults and Young People', Table A.5, page

43. The most conservative lung clearance class was used.

QF - Quality Factor. The dose equivalent was computed using a QF = 10 to

better represent the acute dose.

BR - breathing rate for an adult performing light activity, EPA-520/1-88-

020 op.cit., page 10: 0.020 m3/min x 60 min/hr = 1.2 m3/hr.

CF - conversion factor for units:

Sv/Bq x 1.0E+05 mrem/Sv x Bq/(2.7E-05 uCi) = 3.7E+09 mrem/uCi

10. On EARLY PHASE INHALATION DCFthy Thyroid [mrem/h)/(uCi/m3)]

_________________________________________________________________________

Thyroid Dose Conversion Factor (DCFthy) from inhalation by an adult:

DCFthy = EDCFt x BR x CF

where

EDCFt - EPA-520/1-88-020 'Limiting Values of radionuclides Intake and Air

Concentration and Dose Conversion Factors for Inhalation Submersion and

Ingestion; Federal Guidance report No 11. Table 2.2, page 121 'Effective'

Column.

BR - breathing rate for an adult performing light activity, EPA-520/1-88-

020 op.cit., page 10: 0.020 m3/min x 60 min/hr = 1.2 m3/hr.

CF - conversion factor for units:

Sv/Bq x 1.0E+05 mrem/Sv x Bq/(2.7E-05 uCi) = 3.7E+09 mrem/uCi

11. On EARLY PHASE DEPO.EXTNL.EXPOSURE RATE ECFg [(mR/h)/(uCi/m2)]

_________________________________________________________________________

Quantity is the exposure rate at 1m AGL from 1 uCi/m2 deposition of iso-

tope, corrected for ground roughness. based on 'Dose Conversion for Expo-

sure to Contaminated Ground Surface' (DCECGS) factors from 'External Ex-

posure to Radionuclides in Air, Water and Soil, Federal Guidance Report

No.12', EPA-402-R-93-081, Table III.3. The effective dose was multiplied

by 1.4 to estimate exposure. The external dose from daughters expected to

be in equilibrium is included for the following: T-44+Sc-44, Ge-68+Ga-68,

Page 100: Activitatea 1.1

A1.7

Kr-88+Rb-88, Mo-99+Tc-99m, Ru-106+Rh-106, Cd-109+Ag-109m, Sn-113+In-113m,

Sn-126+Sb-126m, I-135+Xe-135m, Cs-137+Ba-137m, Ce-144+Pr-144.

ECFg = DCECGS x SiCF x GRCF x 1.4

where

GRCF = Ground roughness correction factor of .7 to convert the dose pro-

jected for a smooth plane to typical ground surface.

SiCF = IS unit conversion factor:

Sv/s 3.6E+03 s 1E+05 mrem Bq 1.33 E+13 mrem/hr

---- x --------- x ---------- x ----------- = -----------------

Bq hr Sv 2.7E-05 uCi uCi/m2

For Natural and Depleted Uranium it is assumed that all the release is

U-238. For Enriched Uranium the release is assumed as consisting of U-234

only. The activity of Natural and depleted Uranium is dominated by the

concentration of U-238 whereas that of Enriched Uranium is dominated by

the concentration of U-234 (because of its high SpA). While releases from

Natural and Enriched Uranium will be composed principally of a mixture of

U-234, U-235 and U-238, the dose factors are all within 10%, so that it

is reasonable to use a single factor.

12. On EARLY PHASE DEPO.EXTNL.EDE DOSE RATE DCFg [(mrem/h)/(uCi/m2)]

_________________________________________________________________________

Quantity is Effective Dose Equivalent (EDE) from 1 hour external exposure

at 1 m above ground level (AGL) from a contaminated ground surface (CGS).

Based on 'Dose Coefficients for Exposure to Contaminated Ground Surface'

(DCECGS) factors from 'External Exposure to Radionuclides in Air, Water

and Soil, Federal Guidance Report No.12', EPA-402-R-93-081, Table III.3.

Daughters contribution included as follows: T-44+Sc-44, Ge-68+Ga-68,

Kr-88+Rb-88, Mo-99+Tc-99m, Ru-106+Rh-106, Cd-109+Ag-109m, Sn-113+In-113m,

Sn-126+Sb-126m, I-135+Xe-135m, Cs-137+Ba-137m, Ce-144+Pr-144.

DCFg = DCECGS x SiCF x GRCF

where

GRCF = Ground roughness correction factor of .7 to convert the dose pro-

jected for a smooth plane to typical ground surface.

SiCF = IS unit conversion factor:

Sv/s 3.6E+03 s 1E+05 mrem Bq 1.33 E+13 mrem/hr

---- x --------- x ---------- x ----------- = -----------------

Bq hr Sv 2.7E-05 uCi uCi/m2

For Natural and Depleted Uranium it is assumed that all the release is

U-238. For Enriched Uranium the release is assumed as consisting of U-234

only. The activity of Natural and depleted Uranium is dominated by the

concentration of U-238 whereas that of Enriched Uranium is dominated by

the concentration of U-234 (because of its high SpA). While releases from

Natural and Enriched Uranium will be composed principally of a mixture of

U-234, U-235 and U-238, the dose factors are all within 10%, so that it

is reasonable to use a single factor.

13. On DEPO.4-DAY DOSE EXT.& NON-ARID DCFepgna [(mrem/4d)/(uCi/m2)]

_________________________________________________________________________

Page 101: Activitatea 1.1

A1.8

Quantity is the total dose from remaining on contaminated ground for four

days, and includes the external exposure from GSC and the CEDE from

resuspension. The dose is calculated for two different resuspension

factors: arid (Rs = 1E-04), and non-arid (Rs = 1E-06). See Method M.3.3

in Manual for a full description of how DCFepg is calculated.

Daughters contribution included as follows: T-44+Sc-44, Ge-68+Ga-68,

Kr-88+Rb-88, Mo-99+Tc-99m, Ru-106+Rh-106, Cd-109+Ag-109m, Sn-113+In-113m,

Sn-126+Sb-126m, I-135+Xe-135m, Cs-137+Ba-137m, Ce-144+Pr-144.

For Natural and Depleted Uranium it is assumed that all the release is

U-238. For Enriched Uranium the release is assumed as consisting of U-234

only. The activity of Natural and depleted Uranium is dominated by the

concentration of U-238 whereas that of Enriched Uranium is dominated by

the concentration of U-234 (because of its high SpA). While releases from

Natural and Enriched Uranium will be composed principally of a mixture of

U-234, U-235 and U-238, the dose factors are all within 10%, so that it

is reasonable to use a single factor.

15. On AIR IMMERSION EXTERNAL EDE DOSE RATE DCFa [(mrem/h)/(uCi/m3)]

_________________________________________________________________________

Quantity is the external EDE from 1 hr exposure to a semi-infinite cloud

of constant concentration. Based on 'Dose Coefficients for Air Submersion'

(DCAS) from 'External Exposure to Radionuclides in Air, Water and Soil,

Federal Guidance Report No.12', EPA-402-R-93-081, Table III.1. One has:

DCFa = DCAS x SiCF

Daughters contribution included as follows: T-44+Sc-44, Ge-68+Ga-68,

Kr-88+Rb-88, Mo-99+Tc-99m, Ru-106+Rh-106, Cd-109+Ag-109m, Sn-113+In-113m,

Sn-126+Sb-126m, I-135+Xe-135m, Cs-137+Ba-137m, Ce-144+Pr-144.

SiCF = IS unit conversion factor:

Sv/s 3.6E+03 s 1E+05 mrem Bq 1.33 E+13 mrem/hr

---- x --------- x ---------- x ----------- = -----------------

Bq hr Sv 2.7E-05 uCi uCi/m2

For Natural and Depleted Uranium it is assumed that all the release is

U-238. For Enriched Uranium the release is assumed as consisting of U-234

only. The activity of Natural and depleted Uranium is dominated by the

concentration of U-238 whereas that of Enriched Uranium is dominated by

the concentration of U-234 (because of its high SpA). While releases from

Natural and Enriched Uranium will be composed principally of a mixture of

U-234, U-235 and U-238, the dose factors are all within 10%, so that it

is reasonable to use a single factor.

16. On INTERMEDIATE PHASE EFF.EXPOSURE PERIOD Tipeep [eff.hrs/1year]

_________________________________________________________________________

The halflife given for the following nuclides in the left column actually

applies to the mixtures in the right column:

Ti-44 ........... Ti-44 + Sc-44

Ge-68 ........... Ge-68 + Ga-68

Kr-88 ........... Kr-88 + Rb-88

Mo-99 ........... Mo-99 + Tc-99m

Ru-106 ........... Ru-106 + Rh-106

Cd-109 ........... Cd-109 + Ag-109m

Sn-113 ........... Sn-113 + In-113m

Sn-126 ........... Sn-126 + Sb-126m

I-135 ........... I-135 + Xe-135m

Page 102: Activitatea 1.1

A1.9

Cs-137 ........... Cs-137 + Br-137m

Ce-144 ........... Ce-144 + Pr-144m

For isotopes with short lived daughters (e.g.Cs-137, Br-137m), that are

expected to be in equilibrium the Effective Period is based on the half

life of their parent.

Intermediate Phase Effective Exposure Period is calculated by:

Tepeep = T1/2 x [1 - 0.5**(8760/(T1/2))]

1 hour is assumed to be the minimum Effective Exposure Period.

17. On INTERMD.PH.DCF DEPO 1st year NORMAL [(mrem in 1st y)/(uCi/m2)]

_________________________________________________________________________

Dose includes external dose from groundshine and CEDE from resuspension.

Groundshine Dose factors are from Federal Guidance Report No 12 (EPA93)

and are corrected for ground roughness. All doses based on RASCAL 2.1.

Decay, ingrowth and weathering considered. Doses are calculated using the

method recommended by EPA (EPA91).

Initial resuspension rates for arid areas (1E-04) are from An-75, whereas

those for normal areas (1E-06) are from IAEA86. The effects of weathering

using EPA assumptions was considered for the 1st year dose.The respective

assumptions are seen as very conservative.

For Strontium the beta dose to the skin from resuspension may be critical.

For Natural and Depleted Uranium it is assumed that all the release is

U-238, whereas for the Enriched Uranium it assumed as consisting of U-234.

For isotopes with short lived daughters (e.g.Cs-137, Br-137m), that are

expected to be in equilibrium the Effective Period is based on the half

life of their parent.

Intermediate Phase Effective Exposure Period is calculated by:

Tepeep = T1/2 x [1 - 0.5**(8760/(T1/2))]

1 hour is assumed to be the minimum Effective Exposure Period.

20. On INTERMD.PH.DCF DEPO 50 y NORMAL [(mrem 50 y)/(uCi/m2)]

_________________________________________________________________________

Dose includes external dose from groundshine and CEDE from resuspension.

Groundshine Dose factors are from Federal Guidance Report No 12 (EPA93)

and are corrected for ground roughness. All doses based on RASCAL 2.1.

Decay, ingrowth and weathering considered. Doses are calculated using the

method recommended by EPA (EPA91).

Initial resuspension rates for arid areas (1E-04) are from An-75, whereas

those for normal areas (1E-06) are from IAEA86. The effects of weathering

using EPA assumptions was considered for the 1st year dose.The respective

assumptions are seen as very conservative.

For Strontium the beta dose to the skin from resuspension may be critical.

For Natural and Depleted Uranium it is assumed that all the release is

U-238, whereas for the Enriched Uranium it assumed as consisting of U-234.

For isotopes with short lived daughters (e.g.Cs-137, Br-137m), that are

expected to be in equilibrium the Effective Period is based on the half

life of their parent.

Page 103: Activitatea 1.1

A1.10

Intermediate Phase Effective Exposure Period is calculated by:

Tepeep = T1/2 x [1 - 0.5**(8760/(T1/2))]

1 hour is assumed to be the minimum Effective Exposure Period.

21-28. On ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS

1 hr, 6hr, 12hr, 24hr, 3d, 7d, 15d, 30d

_________________________________________________________________________

The isotopes the most important to the intermediate and ingestion path-

ways for reactor accidents are included. Decay and ingrowth considered.

The ratio is believed to be valid for most accidents involving such

isotopes (NRC95).

29. On INTERMD.PH.DCF INHL.RESPND.MAT.DCFipa [(mrem 1st y)/(uCi/m3)]

_________________________________________________________________________

DCF calculated using dose factors in EPA/520/1-88-020 'Federal Guidance

Report 11' (EPA88), Table 2.1. Short lived daughters are not listed

separately because entries include the dose from both the daughter and

the parent. Such factors are based on the concentration of the parent

only, at the beginning of the exposure period. The lung clearance class

chosen is that which results in the highest dose conversion factor.

Parent-daughter cases include: Ge-68+Ga-68; Kr-88+Rb-88; Ru-106+Rh-106;

Cd-109+Ag-109m; Sn-126+Sb-126m; Te-129m+Te-129; I-135+Xe-135m; Cs-137+

Ba-137m; Ce-144+Pr-144.

Quantities are committed effective dose equivalents for one year per

unit air concentration considering only decay.

30. On INTERMD.PH.DCF SKIN DOSE FROM DEPO [(mrem in 1st y)/(uCi/m2)]

_________________________________________________________________________

Factors from EPA Manual of PAGs (EPA91) multiplied by 1E+06 to convert

to mrem/uCi. Doses for Pu isotopes are from EPA89 Table A1.

Quantities are dose equivalents integrated for a one-year exposure at one

meter height plus the estimated dose to the skin from materials deposited

on the skin as a result of resuspension (EPA91). Doses estimated based on

these factors consider decay and weathering and should be conservative.

The skin dose from resuspension is not considered critical for a reactor

accident. Skin dose is projected based on ground concentration due to the

difficulty in estimating skin dose based on other methods.

31. On COW TRANSFER FACTOR [(uCi/L)/(uCi/d)]

_________________________________________________________________________

Source: NUREG/CR-3323, (NRC83).

32. On INGESTION CRITICAL ORGAN

_________________________________________________________________________

Organs with the highest dose from ingestion.

Abbreviations used:

Bone S = Bone Surface /1 = ICRP-56 Age-dependent Doses

Bone M = Red Bone Marrow to Members of the Public

Stomch = Stomach

St.wll = Stomach Wall /2 = NRPB-GS7 Committed Dose

Pancrs = Pancreas to Selective Organs...

Page 104: Activitatea 1.1

A1.11

LLI = Lower Large Intestine

LLIW = Lower Large Intestine Wall

ULI = Upper Large Intestine

33. On CHILD INGESTION DOSE CONVERSION FACTOR DCFingch [mrem/uCi]

_________________________________________________________________________

HHS guidance states that the critical tissue and population (receiving

the highest dose) for each isotope should be used. For milk ingestion HHS

recommends that the infant be used as the critical population. For simpli-

city, for other foods and water it was decided to use the child (10 years

old) as the critical population. Considering ingestion rates and dose fac-

tors, the child was considered to be representative but conservative.

Table 5.5 in Manual lists the ingestion DCFs used throughout both Manual

and this code, which are based on the methods described in ICRP-56 where

available and ICRP-30 for the other isotopes. The DCFs in the EPA Federal

Report No.11 (D) were not used because they did not conform to the HHS

guidance that the dose to the critical population is calculated.

To convert from Sv/Bq to mrem/uCi use:

Sv 1.0E+05 mrem Bq mrem

-- x ------------ x ----------- = 3.7E+09 ----

Bq Sv 2.7E-05 uCi uCi

34. On INFANT INGESTION DOSE CONVERSION FACTOR DCFingch [mrem/uCi]

_________________________________________________________________________

HHS guidance states that the critical tissue and population (receiving

the highest dose) for each isotope should be used. For milk ingestion HHS

recommends that the infant be used as the critical population. For simpli-

city, for other foods and water it was decided to use the child (10 years

old) as the critical population. Considering ingestion rates and dose fac-

tors, the child was considered to be representative but conservative.

Table 5.5 in Manual lists the ingestion DCFs used throughout both Manual

and this code, which are based on the methods described in ICRP-56 where

available and ICRP-30 for the other isotopes. The DCFs in the EPA Federal

Report No.11 (D) were not used because they did not conform to the HHS

guidance that the dose to the critical population is calculated.

To convert from Sv/Bq to mrem/uCi use:

Sv 1.0E+05 mrem Bq mrem

-- x ------------ x ----------- = 3.7E+09 ----

Bq Sv 2.7E-05 uCi uCi

A.1.3. Radiological data – the numbers Primary sources: EURATOM, U.S.NRC/DOE/EPA/FRMAC/ORNL, AECL

RADIOLOGICAL NUCLIDE DATA

_________________________

1. ELEMENT

2. ATOMIC NUMBER

3. HALFLIFE T1/2 [hours]

4. HALFLIFE T1/2 [days]

5. MEAN HALFLIFE Tm [days]

6. EARLY PHASE EFFECTIVE EXPOSURE PERIOD Tepeep [eff.hrs/100hrs]

7. EARLY PHASE INHALATION DCFe50 CEDE [(mSv/h)/(kBq/m3)]

Page 105: Activitatea 1.1

A1.12

8. EARLY PHASE INHALATION DCFab Acute Bone [(mSv/h)/(kBq/m3)]

9. EARLY PHASE INHALATION DCFal Acute Lung [(mSv/h)/(kBq/m3)]

10. EARLY PHASE INHALATION DCFthy Thyroid [(mSv/h)/(kBq/m3)]

__________________________________________________________________

1 2 3 4 5 6 7 8 9 10

_____________________________________________________________________________________________________________________________________________________________________

H-3 hydrogen 1 1.1e05 4.5e03 6.5e03 100 5.40e-05 2.58e-06 2.58e-06 NC

C-14 carbon 6 5.0e07 2.1e06 3.0e06 100 2.40e-03 2.27e-05 2.27e-05 NC

Na-22 sodium 11 2.3e04 9.5e02 1.4e03 100 1.56e-03 NC NC NC

Na-24 sodium 11 1.5e01 6.3e-01 9.0e-01 21 3.24e-04 1.72e-04 1.34e-03 NC

P-32 phosphorus 15 3.4e02 1.4e01 2.1e01 90 4.08e-03 4.50e-04 4.30e-03 NC

P-33 phosphorus 15 6.1e02 2.5e01 3.7e01 94 1.80e-03 NC NC NC

S-35 sulfur 16 2.1e03 8.7e01 1.3e02 98 1.68e-03 7.50e-06 3.28e-04 NC

Cl-36 chlorine 17 2.6e09 1.1e08 1.6e08 100 8.76e-03 NC NC NC

K-40 potassium 19 1.1e13 4.7e11 6.7e11 100 2.52e-03 NC NC NC

K-42 potassium 19 1.2e01 5.2e-01 7.4e-01 18 1.44e-04 NC NC NC

Ca-45 calcium 20 3.9e03 1.6e02 2.3e02 99 3.24e-03 NC NC NC

Sc-46 scandium 21 2.0e03 8.4e01 1.2e02 98 8.16e-03 NC NC NC

Ti-44 titanium 22 4.1e05 1.7e04 2.5e04 100 1.44e-01 NC NC NC

V-48 vanadium 23 3.9e02 1.6e01 2.3e01 91 2.88e-03 NC NC NC

Cr-51 chromium 24 6.6e02 2.8e01 4.0e01 95 4.44e-05 3.56e-06 4.30e-05 NC

Mn-54 manganese 25 7.5e03 3.1e02 4.5e02 99 1.02e-03 9.20e-05 3.00e-04 NC

Mn-56 manganese 25 2.6e00 1.1e-01 1.5e-01 4 1.44e-04 NC NC NC

Fe-55 iron 26 2.4e04 9.9e02 1.4e03 100 4.56e-04 1.11e-06 3.76e-05 NC

Co-58 cobalt 27 1.7e03 7.1e01 1.0e02 98 1.92e-03 6.90e-05 5.70e-04 NC

Fe-59 iron 26 1.1e03 4.5e01 6.4e01 97 4.44e-03 1.29e-04 1.21e-03 NC

Co-60 cobalt 27 4.6e04 1.9e03 2.8e03 100 1.20e-02 1.66e-04 1.46e-03 NC

Ni-63 nickel 28 8.4e05 3.5e04 5.0e04 100 1.56e-03 3.16e-06 1.14e-04 NC

Cu-64 copper 29 1.3e01 5.3e-01 7.6e-01 18 1.44e-04 NC NC NC

Zn-65 zinc 30 5.9e03 2.4e02 3.5e02 99 1.92e-03 4.80e-05 2.60e-04 NC

Ga-68 gallium 31 1.1e00 4.7e-02 6.8e-02 2 5.88e-05 2.50e-06 2.52e-04 NC

Ge-68 germanium 32 6.9e03 2.9e02 4.1e02 99 1.68e-02 NC 9.32e-01 NC

Se-75 selenium 34 2.9e03 1.2e02 1.7e02 99 1.56e-03 5.30e-05 2.80e-04 NC

Kr-85 krypton 36 9.4e04 3.9e03 5.6e03 100 1.98e-07 NC NC NC

Kr-85m krypton 36 4.5e00 1.9e-01 2.7e-01 6 1.26e-07 NC NC NC

Kr-87 krypton 36 1.3e00 5.3e-02 7.6e-02 2 4.22e-07 NC NC NC

Kr-88 krypton 36 2.8e00 1.2e-01 1.7e-01 4 1.01e-06 NC NC NC

Rb-86 rubidium 37 4.5e02 1.9e01 2.7e01 92 1.12e-03 2.17e-04 1.88e-03 NC

Rb-87 rubidium 37 4.1e14 1.7e13 2.5e13 100 6.00e-04 NC NC NC

Rb-88 rubidium 37 3.0e-01 1.2e-02 1.8e-02 1 1.92e-05 NC NC NC

Sr-89 strontium 38 1.2e03 5.1e01 7.3e01 97 7.32e-03 2.20e-04 3.92e-03 NC

Sr-90 strontium 38 2.6e05 1.1e04 1.5e04 100 4.32e-02 2.36e-04 3.30e-03 NC

Sr-91 strontium 38 9.50e00 4.00e-01 5.70e-01 14 4.92e-04 NC NC NC

Y-90 yttrium 39 6.40e01 2.70e00 3.80e00 61 1.80e-03 9.30e-05 4.52e-03 NC

Y-91 yttrium 39 1.40e03 5.90e01 8.40e01 97 1.07e-02 9.90e-05 4.10e-03 NC

Y-91m yttrium 39 8.3e-01 3.5e-02 5.0e-02 1 1.32e-05 NC NC NC

Zr-93 zirconium 40 1.3e10 5.6e08 8.0e08 100 3.00e-02 NC NC NC

Zr-95 zirconium 40 1.5e03 6.4e01 9.2e01 98 5.76e-03 2.05e-04 1.06e-03 NC

Nb-94 niobium 41 1.8e08 7.4e06 1.1e07 100 5.88e-02 NC NC NC

Nb-95 niobium 41 8.4e02 3.5e01 5.1e01 96 1.80e-03 7.00e-05 5.40e-04 NC

Mo-99 molybdenum 42 6.6e01 2.8e00 4.0e00 62 1.07e-03 1.24e-04 2.04e-03 NC

Tc-99 technetium 43 1.9e09 7.8e07 1.1e08 100 4.80e-03 1.20e-05 6.80e-04 NC

Tc-99m technetium 43 6.0e00 2.5e-01 3.6e-01 9 2.28e-05 3.62e-06 3.52e-05 NC

Ru-103 ruthenium 44 9.4e02 3.9e01 5.7e01 96 2.88e-03 6.10e-05 9.10e-04 NC

Ru-105 ruthenium 44 4.4e00 1.9e-01 2.7e-01 6 2.04e-04 NC NC NC

Rh-106 rhodium 45 8.3e-02 3.5e-04 5.0e-04 1 NC NC NC NC

Ru-106 ruthenium 44 8.8e03 3.7e02 5.3e02 99 3.36e-02 2.39e-04 9.80e-03 NC

Ag-110m silver 47 6.0e03 2.5e02 3.6e02 99 9.12e-03 2.30e-04 1.51e-03 NC

Cd-109 cadmium 48 1.1e04 4.6e02 6.7e02 100 9.72e-03 NC NC NC

Cd-113m cadmium 48 1.2e05 5.0e03 7.1e03 100 1.32e-01 NC NC NC

In-114m indium 49 1.2e03 5.0e01 7.1e01 97 1.12e-02 NC NC NC

Page 106: Activitatea 1.1

A1.13

Sn-113 tin 50 2.8e03 1.2e02 1.7e02 99 3.24e-03 NC NC NC

Sn-123 tin 50 3.1e03 1.3e02 1.9e02 99 9.72e-03 NC NC NC

Sn-126 tin 50 8.8e08 3.7e07 1.8e01 100 3.36e-02 NC NC NC

Sb-124 antimony 51 1.4e03 6.0e01 8.7e01 97 7.68e-03 2.82e-04 3.10e-03 NC

Sb-126 antimony 51 3.0e02 1.2e01 1.8e01 89 3.36e-03 NC NC NC

Sb-126m antimony 51 3.2e-01 1.3e-02 1.9e-02 1 2.28e-05 NC NC NC

Sb-127 antimony 51 9.2e01 3.9e00 5.5e00 70 2.04e-03 NC NC NC

Sb-129 antimony 51 4.3e00 1.8e-01 2.6e-01 6 2.76e-04 NC NC NC

Te-127 tellurium 52 9.4e00 3.9e-01 5.6e-01 13 1.56e-04 NC NC NC

Te-127m tellurium 52 2.6e03 1.1e02 1.6e02 99 8.88e-03 1.32e-04 1.57e-03 NC

Te-129 tellurium 52 1.2e00 4.8e-02 7.0e-02 2 4.44e-05 NC NC NC

Te-129m tellurium 52 8.1e02 3.4e01 4.8e01 96 7.92e-03 2.72e-04 3.92e-03 NC

Te-131 tellurium 52 4.2e-01 1.7e-02 2.5e-02 1 3.36e-05 NC NC 3.16e-03

Te-131m tellurium 52 3.0e01 1.3e00 1.8e00 39 1.13e-03 1.26e-04 1.64e-03 4.33e-02

Te-132 tellurium 52 7.8e01 3.3e00 4.7e00 66 2.40e-03 9.90e-05 6.40e-04 3.00e-02

I-125 iodine 53 1.4e03 6.0e01 8.7e01 97 6.12e-03 5.44e-06 8.50e-05 1.20e-01

I-129 iodine 53 1.4e11 5.7e09 8.3e09 100 4.32e-02 5.66e-06 1.92e-04 8.52e-01

I-131 iodine 53 1.9e02 8.0e00 1.2e01 84 8.88e-03 2.38e-05 5.66e-04 1.80e-01

I-132 iodine 53 2.3e00 9.6e-02 1.4e-01 3 1.13e-04 1.68e-05 3.24e-04 1.68e-03

I-133 iodine 53 2.1e01 8.7e-01 1.2e00 29 1.80e-03 2.74e-05 8.64e-04 3.36e-02

I-134 iodine 53 8.8e-01 3.7e-02 5.3e-02 1 5.40e-05 7.32e-06 1.68e-04 3.12e-04

I-135 iodine 53 6.6e00 2.8e-01 4.0e-01 10 3.84e-04 2.64e-05 5.18e-04 6.84e-03

Xe-131m xenon 54 2.9e02 1.2e01 1.7e01 89 NC NC NC NC

Xe-133 xenon 54 1.3e02 5.2e00 7.6e00 77 5.19e-07 NC NC NC

Xe-133m xenon 54 5.3e01 2.2e00 3.2e00 55 NC NC NC NC

Xe-135 xenon 54 9.1e00 3.8e-01 5.5e-01 13 6.81e-07 NC NC NC

Xe-135m xenon 54 2.5e-01 1.1e-02 1.5e-02 1 NC NC NC NC

Xe-138 xenon 54 2.4e-01 9.8e-03 1.4e-02 1 NC NC NC NC

Cs-134 caesium 55 1.8e04 7.5e02 1.1e03 100 7.92e-03 2.01e-04 8.20e-04 NC

Cs-135 caesium 55 2.0e10 8.4e08 1.2e09 100 8.28e-04 1.66e-05 2.02e-04 NC

Cs-136 caesium 55 3.1e02 1.3e01 1.9e01 90 1.44e-03 2.26e-04 8.10e-04 NC

Cs-137 caesium 55 2.6e05 1.1e04 1.6e04 100 5.52e-03 1.20e-04 8.60e-04 NC

Cs-138 caesium 55 5.4e-01 2.2e-02 3.2e-02 1 2.88e-05 NC NC NC

Ba-133 barium 56 9.4e04 3.9e03 5.6e03 100 3.72e-03 NC NC NC

Ba-137m barium 56 4.3e-02 1.8e-03 2.6e-03 0 NC NC NC NC

Ba-140 barium 56 3.1e02 1.3e01 1.8e01 89 6.12e-03 1.54e-04 1.18e-03 NC

La-140 lanthanum 57 4.0e01 1.7e00 2.4e00 48 1.32e-03 2.16e-04 2.60e-03 NC

Ce-141 cerium 58 7.8e02 3.3e01 4.7e01 96 3.84e-03 2.21e-05 1.17e-03 NC

Ce-144 cerium 58 6.8e03 2.8e02 4.1e02 99 4.32e-02 1.02e-04 8.90e-03 NC

Pr-144 praseodymium 59 2.9e-01 1.2e-02 1.7e-02 1 2.16e-05 NC NC NC

Pr-144m praseodymium 59 1.2e-01 5.0e-03 7.2e-03 1 NC NC NC NC

Pm-145 promethium 61 1.6e05 6.5e03 9.3e03 100 4.32e-03 NC NC NC

Pm-147 promethium 61 2.3e04 9.6e02 1.4e03 100 6.00e-03 9.40e-06 4.40e-04 NC

Sm-147 samarium 62 9.3e14 3.9e13 5.6e13 100 1.15e01 NC NC NC

Sm-151 samarium 62 7.9e05 3.3e04 4.7e04 100 4.80e-03 2.98e-06 1.33e-04 NC

Eu-152 europium 63 1.2e05 4.9e03 7.0e03 100 5.04e-02 1.13e-04 1.31e-03 NC

Eu-154 europium 63 7.7e04 3.2e03 4.6e03 100 6.36e-02 1.38e-04 2.36e-03 NC

Eu-155 europium 63 4.3e04 1.8e03 2.6e03 100 8.28e-03 2.04e-05 4.50e-04 NC

Gd-153 gadolinium 64 5.8e03 2.4e02 3.5e02 99 2.52e-03 NC NC NC

Tb-160 terbium 65 1.7e03 7.2e01 1.0e02 98 8.40e-03 NC NC NC

Ho-166m holmium 67 1.1e07 4.4e05 6.3e05 100 1.44e-01 NC NC NC

Tm-170 thulium 69 3.1e03 1.3e02 1.9e02 99 8.40e-03 NC NC NC

Yb-169 ytterbium 70 7.7e02 3.2e01 4.6e01 95 3.00e-03 7.10e-05 9.90e-04 NC

Hf-172 hafnium 72 1.6e04 6.8e02 9.8e02 100 3.84e-02 NC NC NC

Hf-181 hafnium 72 1.0e03 4.2e01 6.1e01 96 6.00e-03 NC NC NC

Ta-182 tantalum 73 2.8e03 1.1e02 1.7e02 99 1.20e-02 NC NC NC

W-187 tungsten 74 2.4e01 1.0e00 1.4e00 33 2.28e-04 NC NC NC

Ir-192 iridium 77 1.8e03 7.4e01 1.1e02 98 7.92e-03 1.02e-04 1.77e-03 NC

Au-198 gold 79 6.5e01 2.7e00 3.9e00 61 1.03e-03 NC NC NC

Hg-203 mercury 80 1.1e03 4.7e01 6.7e01 97 2.88e-03 NC NC NC

Tl-204 thallium 81 3.3e04 1.4e03 2.0e03 100 4.68e-04 NC NC NC

Pb-210 lead 82 1.9e05 8.1e03 1.2e04 100 6.72e00 6.32e-05 1.93e-02 NC

Bi-207 bismuth 83 3.3e05 1.4e04 2.0e04 100 6.72e-03 NC NC NC

Page 107: Activitatea 1.1

A1.14

Bi-210 bismuth 83 1.2e02 5.0e00 7.2e00 76 1.12e-01 NC NC NC

Po-210 polonium 84 3.3e03 1.4e02 2.0e02 99 3.96e00 7.70e-03 3.54e-01 NC

Ra-226 radium 88 1.4e07 5.8e05 8.4e05 100 4.20e00 1.55e-03 3.18e-01 NC

Ac-227 actinium 89 1.9e05 7.9e03 1.1e04 100 2.64e02 NC NC NC

Ac-228 actinium 89 6.1e00 2.6e-01 3.7e-01 9 3.00e-02 NC NC NC

Th-227 thorium 90 4.5e02 1.9e01 2.7e01 92 1.02e01 1.91e-02 5.51e-01 NC

Th-228 thorium 90 1.7e04 7.0e02 1.0e03 100 4.80e01 3.07e-02 7.91e-01 NC

Th-230 thorium 90 6.7e08 2.8e07 4.0e07 100 1.20e02 9.80e-03 3.30e-01 NC

Th-231 thorium 90 2.6e01 1.1e00 1.5e00 34 3.72e-04 NC NC NC

Th-232 thorium 90 1.2e14 5.1e12 7.4e12 100 1.32e02 8.40e-03 2.78e-01 NC

Pa-231 protactinium 91 2.9e08 1.2e07 1.7e07 100 1.68e02 6.71e-03 3.51e-01 NC

Pa-233 protactinium 91 6.5e02 2.7e01 3.9e01 95 4.68e-03 NC NC NC

U-232 uranium 92 6.3e05 2.6e04 3.8e04 100 9.36e00 3.34e-03 3.74e-01 NC

U-233 uranium 92 1.4e09 5.8e07 8.4e07 100 4.32e00 NC NC NC

U-234 uranium 92 2.1e09 8.9e07 1.3e08 100 4.20e00 2.96e-03 3.34e-01 NC

U-235 uranium 92 6.2e12 2.6e11 3.7e11 100 3.72e00 2.80e-03 3.08e-01 NC

U-236 uranium 92 2.0e11 8.5e09 1.2e10 100 3.84e00 2.80e-03 3.14e-01 NC

U-238 uranium 92 3.9e13 1.6e12 2.3e12 100 3.48e00 2.61e-03 2.94e-01 NC

U-Depleted-Nat uranium 92 3.9e13 1.6e12 2.3e12 100 3.84e01 2.61e-03 2.94e-01 NC

U-Enriched uranium 92 2.1e09 8.9e07 1.3e08 100 4.30e01 2.96e-03 3.34e-01 NC

UF6 U-hexafluoride 0 0 0 0 0 8.65e-04 2.96e-03 0 0

Np-237 neptunium 93 1.9e10 7.8e08 1.1e09 100 2.76e01 7.32e-03 3.19e-01 NC

Np-239 neptunium 93 5.7e01 2.4e00 3.4e00 58 1.12e-03 3.70e-05 1.23e-03 NC

Pu-236 plutonium 94 2.5e04 1.0e03 1.5e03 100 4.80e01 NC NC NC

Pu-238 plutonium 94 7.7e05 3.2e04 4.6e04 100 5.52e01 8.30e-03 3.78e-01 NC

Pu-239 plutonium 94 2.1e08 8.8e06 1.3e07 100 6.00e01 7.90e-03 3.56e-01 NC

Pu-240 plutonium 94 5.7e07 2.4e06 3.4e06 100 6.00e01 7.90e-03 3.58e-01 NC

Pu-241 plutonium 94 1.3e05 5.3e03 7.6e03 100 1.08e00 1.06e-06 4.84e-05 NC

Pu-242 plutonium 94 3.3e09 1.4e08 2.0e08 100 5.76e01 7.30e-03 3.38e-01 NC

Am-241 americium 95 3.8e06 1.6e05 2.3e05 100 5.04e01 8.22e-03 3.70e-01 NC

Am-242m americium 95 1.3e06 5.5e04 8.0e04 100 4.44e01 NC NC NC

Am-243 americium 95 6.5e07 2.7e06 3.9e06 100 4.92e01 7.94e-03 3.55e-01 NC

Cm-242 curium 96 3.9e03 1.6e02 2.4e02 99 6.24e00 9.20e-03 4.08e-01 NC

Cm-243 curium 96 2.5e05 1.0e04 1.5e04 100 3.72e01 8.84e-03 3.93e-01 NC

Cm-244 curium 96 1.6e05 6.6e03 9.5e03 100 3.24e01 8.80e-03 3.92e-01 NC

Cm-245 curium 96 7.4e07 3.1e06 4.5e06 100 5.04e01 NC NC NC

Cf-252 californium 98 2.3e04 9.6e02 1.4e03 100 2.40e01 NC NC NC

RADIOLOGICAL NUCLIDE DATA (continued)

_____________________________________

11. EARLY PHASE DEPO.EXTNL.EXPOSURE RATE ECFg [(mGy/h)/(kBq/m3)]

12. EARLY PHASE DEPO.EXTNL.EDE DOSE RATE DCFg [(mSv/h)/(kBq/m2)]

13. DEPO.4-DAY DOSE EXT.& NON-ARID DCFepgna [(mSv/7d)/(kBq/m2)]

14. DEPO.4-DAY DOSE EXT.& ARID RSPN. DCFepga [(mSv/7d)/(kBq/m2)]

15. AIR IMMERSION EXTERNAL EDE DOSE RATE DCFa [((mSv/h)/(kBq/m3)]

16. INTERMEDIATE PHASE EFF.EXPOSURE PERIOD Tipeep [eff.hrs/1year]

17. INTERMD.PH.DCF DEPO 1st year NORMAL [(mSv in 1st y)/(kBq/m2)]

18. INTERMD.PH.DCF DEPO 1st month NON-ARID [(mSv in 1st mnt)/(kBq/m2)]

19. INTERMD.PH.DCF DEPO 2nd month NORMAL [(mSv 2nd mnt)/(kBq/m2)]

20. INTERMD.PH.DCF DEPO 50 y NORMAL [(mSv 50 y)/(kBq/m2)]

__________________________________________________________________

11 12 13 14 15 16 17 18 19 20

_____________________________________________________________________________________________________________________________________________________________________

H-3 0.0 0.0 NC NC 0.0 8501 NC NC NC NC

C-14 5.68e-11 4.57e-11 1.20e-07 1.14e-05 9.36e-09 8743 4.70e-06 5.03e-07 4.75e-07 1.01e-04

Na-22 7.41e-06 7.38e-06 8.93e-04 2.02e-03 3.67e-04 7675 3.08e-02 3.67e-03 3.39e-03 8.38e-02

Na-24 1.27e-05 1.29e-05 2.01e-04 4.85e-04 7.49e-04 22 1.98e-04 1.94e-04 0.0 1.98e-04

P-32 1.03e-08 3.07e-07 1.76e-06 7.34e-05 1.93e-06 494 5.89e-06 4.59e-06 1.01e-06 5.89e-06

Page 108: Activitatea 1.1

A1.15

P-33 1.57e-10 1.31e-10 1.32e-07 1.15e-05 5.22e-08 878 7.11e-07 4.15e-07 1.73e-07 7.11e-07

S-35 5.93e-11 4.79e-11 1.38e-07 1.31e-05 1.12e-08 2855 2.04e-06 5.28e-07 3.93e-07 2.11e-06

Cl-36 2.37e-09 4.03e-08 1.48e-06 1.20e-04 5.98e-07 8744 5.76e-05 6.15e-06 5.81e-06 1.23e-03

K-40 5.15e-07 7.34e-07 6.29e-05 2.11e-04 2.85e-05 8744 2.44e-03 2.60e-04 2.46e-04 5.22e-02

K-42 9.38e-07 1.43e-06 1.21e-05 2.84e-05 5.33e-05 18 1.19e-05 1.19e-05 0.0 1.19e-05

Ca-45 1.63e-10 1.36e-10 3.74e-07 3.55e-05 5.51e-08 4435 8.05e-06 1.49e-06 1.24e-06 9.35e-06

Sc-46 6.81e-06 6.77e-06 8.01e-04 1.93e-03 3.37e-04 2755 1.14e-02 3.30e-03 2.23e-03 1.17e-02

Ti-44 7.76e-06 4.25e-07 9.63e-04 7.57e-03 1.69e-05 8680 3.81e-02 4.08e-03 3.88e-03 6.05e-01

V-48 9.81e-06 9.79e-06 1.02e-03 2.33e-03 4.90e-04 561 3.73e-03 2.76e-03 7.11e-04 3.73e-03

Cr-51 1.09e-07 1.07e-07 1.21e-05 2.76e-05 4.97e-06 957 6.95e-05 3.84e-05 1.71e-05 6.95e-05

Mn-54 2.86e-06 2.85e-06 3.44e-04 7.88e-04 1.38e-04 5995 9.54e-03 1.39e-03 1.23e-03 1.40e-02

Mn-56 5.57e-06 5.83e-06 1.50e-05 3.43e-05 2.94e-04 4 1.48e-05 1.48e-05 0.0 1.48e-05

Fe-55 0.0 0.0 1.46e-07 1.46e-05 0.0 7711 5.08e-06 6.04e-07 5.59e-07 1.42e-05

Co-58 3.53e-06 3.33e-06 NC NC 1.60e-04 2378 NC NC NC NC

Fe-59 3.59e-06 3.96e-06 4.53e-04 1.10e-03 2.02e-04 1537 3.59e-03 1.58e-03 9.38e-04 3.89e-03

Co-60 8.29e-06 8.28e-06 1.01e-03 3.45e-03 4.28e-04 8193 3.70e-02 4.17e-03 3.90e-03 1.66e-01

Ni-63 0.0 0.0 1.69e-07 1.69e-05 0.0 8712 6.57e-06 7.03e-07 6.64e-07 1.21e-04

Cu-64 6.60e-07 6.59e-07 8.70e-06 1.88e-05 3.06e-05 18 8.59e-06 8.60e-06 0.0 8.59e-06

Zn-65 1.95e-06 1.95e-06 2.35e-04 6.32e-04 9.79e-05 5447 6.00e-03 9.40e-04 8.16e-04 7.95e-03

Ga-68 3.32e-06 3.60e-06 NC NC 1.54e-04 2 NC NC NC NC

Ge-68 3.32e-06 2.37e-06 3.96e-04 1.13e-03 1.65e-04 5818 1.08e-02 1.61e-03 1.42e-03 1.53e-02

Se-75 1.33e-06 1.30e-06 1.58e-04 3.85e-04 6.05e-05 3639 2.86e-03 6.15e-04 4.88e-04 3.08e-03

Kr-85 9.31e-09 0.0 NC NC 9.17e-07 8467 NC NC NC NC

Kr-85m 5.36e-07 0.0 NC NC 2.46e-05 6 NC NC NC NC

Kr-87 2.58e-06 0.0 NC NC 1.42e-04 2 NC NC NC NC

Kr-88 8.22e-06 0.0 NC NC 3.50e-04 4 NC NC NC NC

Rb-86 3.28e-07 6.01e-07 3.53e-05 1.09e-04 1.78e-05 645 1.46e-04 1.00e-04 3.11e-05 1.46e-04

Rb-87 3.10e-10 2.63e-10 NC NC 1.19e-07 8744 NC NC NC NC

Rb-88 2.10e-06 2.67e-06 NC NC 1.20e-04 1 NC NC NC NC

Sr-89 8.01e-09 2.47e-07 3.06e-06 2.16e-04 1.57e-06 1734 2.95e-05 1.10e-05 6.88e-06 2.95e-05

Sr-90 1.00e-09 5.90e-09 7.20e-05 7.07e-03 3.54e-07 8640 2.84e-03 3.05e-04 2.89e-04 3.78e-02

Sr-91 2.39e-06 2.62e-06 3.40e-05 6.29e-05 1.18e-04 14 3.41e-05 3.38e-05 8.05e-08 3.41e-05

Y-90 1.88e-08 3.96e-07 1.25e-06 2.31e-05 2.85e-06 92 1.48e-06 1.48e-06 5.87e-10 1.48e-06

Y-91 2.03e-08 2.69e-07 4.90e-06 2.60e-04 2.24e-06 1995 5.30e-05 1.79e-05 1.19e-05 5.35e-05

Y-91m 1.85e-06 1.84e-06 1.60e-06 3.42e-06 8.53e-05 1 NC NC NC NC

Zr-93 0.0 0.0 1.75e-05 1.75e-03 0.0 8744 6.84e-04 7.28e-05 6.89e-05 1.55e-02

Zr-95 2.55e-06 2.53e-06 3.18e-04 7.88e-04 1.21e-04 2170 6.68e-03 1.38e-03 1.30e-03 6.81e-03

Nb-94 5.40e-06 5.36e-06 6.75e-04 3.68e-04 2.59e-04 8743 2.61e-02 2.80e-03 2.64e-03 5.59e-01

Nb-95 2.64e-06 2.62e-06 2.97e-04 6.79e-04 1.26e-04 1214 2.09e-03 9.98e-04 5.21e-04 2.09e-03

Mo-99 9.53e-07 6.41e-07 5.05e-05 1.23e-04 2.52e-05 95 6.05e-05 6.05e-04 3.08e-08 6.05e-05

Tc-99 2.75e-10 2.33e-10 4.86e-07 4.54e-05 1.03e-07 8744 1.89e-05 2.03e-06 1.92e-06 4.05e-04

Tc-99m 4.27e-07 4.10e-07 2.68e-06 5.74e-06 1.89e-05 9 2.65e-06 2.65e-06 5.75e-15 2.65e-06

Ru-103 1.63e-03 1.62e-06 1.86e-04 4.44e-04 7.49e-05 1355 1.44e-03 6.39e-04 3.56e-04 1.45e-03

Ru-105 2.71e-06 2.82e-06 1.37e-05 2.84e-05 1.28e-04 6 1.36e-05 1.36e-05 1.82e-12 1.36e-05

Rh-106 7.48e-07 1.24e-06 NC NC 3.82e-05 1 NC NC NC NC

Ru-106 7.48e-07 1.24e-06 1.15e-04 2.77e-03 3.82e-05 6324 3.35e-03 4.69e-04 4.19e-04 5.30e-03

Ag-110m 9.35e-06 9.29e-06 1.12e-03 2.90e-03 4.57e-04 5498 2.89e-02 4.51e-03 3.92e-03 3.86e-02

Cd-109 1.14e-07 8.11e-08 1.97e-05 6.35e-04 1.75e-06 6740 6.11e-04 8.09e-05 7.31e-05 1.08e-03

Cd-113m 9.28e-10 6.37e-09 8.33e-05 8.32e-03 3.26e-07 8525 3.19e-03 3.47e-04 3.26e-04 2.86e-02

In-114m 3.23e-07 3.11e-07 4.28e-05 5.38e-04 1.40e-05 1701 4.03e-04 1.52e-04 9.46e-05 4.05e-04

Sn-113 9.88e-07 7.06e-07 1.14e-04 2.93e-04 4.49e-05 3536 2.03e-03 4.64e-04 3.53e-04 2.18e-03

Sn-123 2.95e-08 2.34e-07 5.23e-06 1.81e-04 2.51e-06 3835 9.89e-05 2.05e-05 1.65e-05 1.09e-04

Sn-126 5.29e-06 1.09e-05 7.16e-04 3.40e-03 7.70e-04 8744 3.22e-02 3.15e-03 3.23e-03 6.97e-01

Sb-124 6.03e-06 6.12e-06 7.02e-04 1.72e-03 3.10e-04 2049 7.73e-03 2.56e-03 1.71e-03 7.81e-03

Sb-126 9.81e-06 9.79e-06 9.81e-04 2.17e-03 4.61e-04 429 2.92e-03 2.40e-03 4.24e-04 2.92e-03

Sb-126m 5.36e-06 5.58e-06 NC NC 2.52e-04 1 NC NC NC NC

Sb-127 2.38e-06 2.43e-06 1.65e-04 3.75e-04 1.12e-04 133 2.28e-04 2.26e-04 1.12e-06 2.28e-04

Sb-129 4.87e-06 4.93e-06 2.32e-05 5.03e-05 2.42e-04 6 2.31e-05 2.30e-05 4.79e-08 2.31e-05

Te-127 1.83e-08 3.71e-08 1.80e-07 5.12e-07 1.20e-06 13 1.77e-07 1.78e-07 0.0 1.78e-07

Te-127m 3.99e-08 3.08e-08 7.74e-06 1.22e-04 4.03e-07 3397 1.36e-04 3.07e-05 2.41e-05 1.45e-04

Te-129 2.12e-07 4.10e-07 2.56e-07 5.36e-07 1.03e-05 2 2.53e-07 2.53e-07 3.15e-16 2.53e-07

Te-129m 1.33e-07 2.05e-07 3.10e-05 1.91e-04 5.62e-06 1161 2.11e-04 1.03e-04 5.27e-05 2.11e-04

Te-131 1.45e-06 1.71e-06 8.84e-07 1.63e-06 6.91e-05 0 NC 1.14e-06 3.73e-08 1.18e-06

Page 109: Activitatea 1.1

A1.16

Te-131m 4.83e-06 4.82e-06 1.72e-04 3.58e-04 2.36e-04 43 1.99e-04 1.96e-04 3.17e-06 1.99e-04

Te-132 8.04e-07 8.89e-06 5.31e-04 6.12e-04 4.21e-04 113 6.89e-04 6.87e-04 1.13e-06 6.89e-04

I-125 1.51e-07 1.13e-07 1.86e-05 1.49e-04 1.34e-06 2047 2.08e-04 6.87e-05 4.60e-05 2.09e-04

I-129 9.10e-08 7.02e-08 2.04e-05 9.61e-04 1.01e-06 8744 7.95e-04 8.50e-05 8.03e-05 1.70e-02

I-131 1.33e-06 1.31e-06 1.21e-04 3.92e-04 6.08e-05 278 2.61e-04 2.42e-04 1.72e-05 2.61e-04

I-132 7.80e-06 7.92e-06 1.87e-05 4.10e-05 3.78e-04 3 1.85e-05 1.85e-05 0.0 1.85e-05

I-133 2.11e-06 2.22e-06 4.55e-05 1.04e-04 9.94e-05 30 4.51e-05 4.51e-05 0.0 4.51e-05

I-134 8.93e-06 9.11e-06 8.16e-06 1.80e-05 4.39e-04 1 8.05e-06 8.06e-06 0.0 8.05e-06

I-135 5.40e-06 5.29e-06 3.58e-05 8.35e-05 2.71e-04 10 3.54e-05 3.53e-05 0.0 3.54e-05

Xe-131m 7.27e-08 0.0 NC NC 1.33e-06 411 NC NC NC NC

Xe-133 1.63e-07 0.0 NC NC 5.00e-06 181 NC NC NC NC

Xe-133m 1.44e-07 0.0 NC NC 4.58e-06 76 NC NC NC NC

Xe-135 8.54e-07 0.0 NC NC 4.00e-05 13 NC NC NC NC

Xe-135m 1.50e-06 0.0 NC NC 6.67e-05 1 NC NC NC NC

Xe-138 3.63e-06 0.0 NC NC 1.96e-04 1 NC NC NC NC

Cs-134 5.36e-06 5.33e-06 6.47e-04 1.65e-03 2.54e-04 7426 2.17e-02 2.65e-03 2.44e-03 5.11e-02

Cs-135 1.17e-10 9.68e-11 NC NC 3.42e-08 8744 NC NC NC NC

Cs-136 7.37e-06 7.31e-06 7.46e-04 1.67e-03 3.58e-04 453 2.32e-03 1.87e-03 3.63e-04 2.32e-03

Cs-137 2.07e-06 1.98e-06 2.38e-04 7.00e-04 9.18e-05 8643 9.14e-03 9.86e-04 9.30e-04 1.24e-01

Cs-138 7.73e-06 8.14e-06 NC NC 4.14e-04 1 NC NC NC NC

Ba-133 1.40e-06 1.34e-06 1.69e-04 3.90e-04 5.83e-05 8467 6.38e-03 7.00e-04 6.58e-04 4.78e-02

Ba-137m 2.07e-06 2.08e-06 NC NC 9.68e-05 1 NC NC NC NC

Ba-140 6.35e-07 6.84e-07 5.93e-04 6.81e-04 2.91e-05 442 2.52e-03 1.98e-03 4.36e-04 2.52e-03

La-140 7.62e-06 7.78e-06 3.01e-04 6.93e-04 4.00e-04 58 3.14e-04 3.14e-04 1.19e-09 3.14e-04

Ce-141 2.60e-07 2.49e-07 2.96e-05 1.06e-04 1.12e-05 1123 1.95e-04 9.79e-05 4.88e-05 1.95e-04

Ce-144 2.01e-07 6.55e-07 4.47e-05 2.07e-03 1.23e-05 5790 1.21e-03 1.81e-04 1.59e-04 1.70e-03

Pr-144 1.33e-07 5.87e-07 4.02e-08 8.92e-08 9.54e-06 1 NC 3.97e-08 0.0 3.97e-08

Pr-144m 4.59e-08 3.78e-08 2.23e-08 2.52e-08 7.92e-07 1 NC 2.22e-08 0.0 2.22e-08

Pm-145 1.15e-07 9.40e-08 1.54e-05 1.87e-04 1.98e-06 8575 5.89e-04 6.42e-05 6.04e-05 6.22e-03

Pm-147 1.20e-10 1.01e-10 2.14e-06 2.13e-04 3.12e-08 7684 NC 8.86e-06 8.19e-06 NC

Sm-147 0.0 0.0 NC NC 0.0 8744 7.46e-05 NC NC 2.04e-04

Sm-151 1.77e-11 1.27e-11 1.63e-06 1.63e-04 8.86e-11 8710 6.35e-05 6.81e-06 6.43e-06 1.15e-03

Eu-152 3.88e-06 3.89e-06 4.81e-04 2.24e-03 1.90e-04 8520 1.82e-02 1.99e-03 1.87e-03 1.62e-01

Eu-154 4.20e-06 4.21e-06 5.23e-04 2.68e-03 2.07e-04 8408 1.95e-02 2.16e-03 2.03e-03 1.29e-01

Eu-155 2.08e-07 1.93e-07 2.73e-05 2.75e-04 7.70e-06 8160 9.97e-04 1.13e-04 1.06e-04 4.27e-03

Gd-153 3.74e-07 3.32e-07 4.58e-05 2.10e-04 1.12e-05 5420 1.17e-03 1.84e-04 1.60e-04 1.54e-03

Tb-160 3.81e-06 3.82e-06 4.47e-04 1.11e-03 1.87e-04 2423 5.68e-03 1.67e-03 1.18e-03 5.78e-03

Ho-166m 6.00e-06 5.94e-06 7.66e-04 5.78e-03 2.82e-04 8741 2.97e-02 3.17e-03 3.00e-03 6.27e-01

Tm-170 2.09e-08 9.50e-08 3.87e-06 1.45e-04 1.32e-06 3823 7.30e-05 1.51e-05 1.22e-05 8.03e-05

Yb-169 1.07e-06 1.00e-06 1.20e-04 2.81e-04 4.07e-05 1104 7.84e-04 3.97e-04 1.96e-04 7.84e-04

Hf-172 3.99e-07 3.57e-07 NC NC 1.22e-05 7306 NC NC NC NC

Hf-181 1.93e-06 1.89e-06 2.21e-04 5.48e-04 8.71e-05 1461 1.83e-03 7.67e-04 4.44e-04 1.83e-03

Ta-182 4.34e-06 4.32e-06 5.16e-04 1.38e-03 2.16e-04 3528 9.05e-03 2.00e-03 1.58e-03 9.73e-03

W-187 1.56e-06 1.68e-06 4.07e-05 8.80e-05 7.67e-05 34 4.05e-05 4.05e-05 7.21e-05 4.05e-05

Ir-192 2.83e-06 2.80e-06 3.33e-04 8.60e-04 1.30e-04 2474 4.32e-03 1.24e-03 8.88e-04 4.41e-03

Au-198 1.41e-06 1.47e-06 7.92e-05 1.78e-04 6.52e-05 93 9.35e-05 9.34e-05 3.90e-08 9.35e-05

Hg-203 8.18e-07 7.99e-07 9.42e-05 2.40e-04 3.74e-05 1603 8.43e-04 3.32e-04 2.01e-04 8.46e-04

Tl-204 5.22e-09 3.89e-08 7.59e-07 1.43e-05 6.16e-07 7989 2.73e-05 3.14e-06 2.92e-06 9.57e-05

Pb-210 8.75e-09 7.67e-09 7.41e-04 7.39e-02 1.61e-07 8609 3.84e-02 3.22e-03 3.30e-03 5.70e-01

Bi-207 5.22e-06 5.22e-06 6.32e-04 1.50e-03 2.53e-04 8664 2.42e-02 2.62e-03 2.47e-03 3.43e-01

Bi-210 3.70e-09 1.26e-07 7.12e-06 6.83e-04 9.29e-07 173 3.65e-04 6.64e-05 6.05e-05 4.08e-04

Po-210 2.92e-11 2.91e-11 5.02e-04 5.02e-02 1.40e-09 4014 9.92e-03 1.98e-03 1.61e-03 1.11e-02

Ra-226 2.27e-08 2.20e-08 7.67e-04 4.70e-02 1.02e-06 8742 4.51e-02 4.33e-03 4.61e-03 9.78e-01

Ac-227 5.54e-10 5.08e-10 3.64e-01 3.64e+01 1.84e-08 8606 1.41e+01 1.52e+00 1.43e+00 1.66e+02

Ac-228 3.27e-06 3.38e-06 2.19e-05 1.35e-04 1.62e-04 9 2.57e-04 5.02e-05 2.68e-05 5.49e-04

Th-227 3.67e-07 3.53e-07 8.53e-04 7.77e-02 1.59e-05 647 5.35e-03 3.18e-03 1.42e-03 5.35e-03

Th-228 8.29e-09 7.67e-09 1.88e-02 1.85e+00 2.92e-07 7335 6.43e-01 7.90e-02 7.31e-02 1.44e+00

Th-230 2.65e-09 2.29e-09 1.77e-02 1.77e+00 5.33e-08 8744 6.92e-01 7.40e-02 6.99e-02 1.48e+01

Th-231 6.53e-08 5.58e-08 NC NC 1.65e-06 37 NC NC NC NC

Th-232 1.94e-09 1.64e-09 8.92e-02 8.92e+00 2.61e-08 8744 3.49e+00 3.72e-01 3.52e-01 8.68e+01

Pa-231 1.44e-07 1.36e-07 6.96e-02 6.96e+00 5.65e-06 8744 2.92e+00 2.92e-01 2.80e-01 1.99e+02

Pa-233 6.88e-07 6.70e-07 NC NC 3.08e-05 933 NC NC NC NC

U-232 3.56e-09 2.91e-09 3.58e-02 3.58e+00 4.21e-08 8744 1.50e+00 1.51e-01 1.44e-01 3.65e+01

Page 110: Activitatea 1.1

A1.17

U-233 2.53e-09 2.16e-09 7.34e-03 7.34e-01 5.11e-08 8744 2.86e-01 3.06e-02 2.89e-02 6.35e+00

U-234 2.64e-09 2.11e-09 7.18e-03 7.18e-01 2.20e-08 8744 2.81e-01 2.99e-02 2.83e-02 6.00e+00

U-235 5.22e-07 5.04e-07 6.76e-03 6.69e-01 2.33e-05 8702 2.64e-01 2.82e-02 2.66e-02 5.65e+00

U-236 2.29e-09 1.81e-09 6.85e-03 6.85e-01 1.39e-08 8744 NC 2.86e-02 2.70e-02 5.73e+00

U-238 1.94e-09 1.52e-09 6.42e-03 6.42e-01 9.00e-09 8744 2.51e-01 2.68e-02 2.53e-02 5.38e+00

U-Depleted-Nat 1.94e-09 1.39e-09 6.42e-03 6.42e-01 1.23e-08 8744 2.51e-01 2.68e-02 2.53e-02 5.38e+00

U-Enriched 2.64e-09 1.88e-09 7.18e-03 7.18e-01 2.74e-08 8744 2.81e-01 2.99e-02 2.83e-02 6.00e+00

UF6 2.64e-09 1.88e-09 1.49e-04 1.48e-02 2.74e-08 0 NC 6.21e-04 5.87e-04 1.27e-01

Np-237 1.01e-07 9.07e-08 2.94e-02 2.94e+00 3.19e-06 8744 1.15e+00 1.23e-01 1.16e-01 2.46e+01

Np-239 5.75e-07 5.54e-07 2.95e-05 6.79e-05 2.50e-05 81 3.35e-05 3.34e-05 1.17e-08 3.49e-05

Pu-236 3.46e-09 2.65e-09 7.87e-03 7.87e-01 1.68e-08 7762 2.81e-01 3.26e-02 3.03e-02 2.08e+00

Pu-238 2.96e-09 2.25e-09 2.13e-02 2.13e+00 1.26e-08 8709 8.30e-01 8.89e-02 8.40e-02 1.50e+01

Pu-239 1.29e-09 1.02e-09 2.33e-02 2.33e+00 1.25e-08 8744 9.11e-01 9.73e-02 9.20e-02 1.95e+01

Pu-240 2.83e-09 2.16e-09 2.33e-02 2.33e+00 1.23e-08 8743 9.11e-01 9.73e-02 9.20e-02 1.95e+01

Pu-241 6.81e-12 6.19e-12 4.48e-04 4.48e-02 2.28e-10 8537 1.78e-02 1.87e-03 1.78e-03 5.35e-01

Pu-242 2.35e-09 1.79e-09 2.24e-02 2.24e+00 1.04e-08 8744 8.73e-01 9.32e-02 8.81e-02 1.87e+01

Am-241 9.70e-08 8.39e-08 2.42e-02 2.41e+00 2.43e-06 8737 9.41e-01 1.01e-01 9.52e-02 1.95e+01

Am-242m 1.07e-08 8.14e-09 2.32e-02 2.32e+00 8.96e-08 8724 9.16e-01 9.69e-02 9.18e-02 1.81e+01

Am-243 1.89e-07 1.72e-07 2.40e-02 2.39e+00 6.66e-06 8743 9.38e-01 1.00e-01 9.47e-02 2.01e+01

Cm-242 3.37e-09 2.53e-09 9.27e-04 9.27e-02 1.45e-08 4443 2.19e-02 3.72e-03 3.14e-03 9.73e-02

Cm-243 4.41e-07 4.25e-07 1.67e-02 1.67e+00 1.91e-05 8638 6.46e-01 6.98e-02 6.58e-02 8.59e+00

Cm-244 3.10e-09 2.32e-09 1.35e-02 1.35e+00 1.22e-08 8578 5.16e-01 5.62e-02 5.29e-02 5.54e+00

Cm-245 3.07e-07 2.90e-07 2.48e-02 2.47e+00 1.26e-05 8743 9.68e-01 1.03e-01 9.77e-02 2.12e+01

Cf-252 2.55e-09 1.89e-09 8.52e-03 8.52e-01 1.31e-08 7690 2.97e-01 3.52e-02 3.26e-02 8.14e-01

RADIOLOGICAL NUCLIDE DATA (continued)

_____________________________________

21. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 1 hr

22. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 6 hrs

23. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 12 hrs

24. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 24 hrs

25. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 3 d

26. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 7 d

27. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 15 d

28. ISOTOPE/Cs-137 RATIO FOR REACTOR CORE DAMAGE ACCIDENTS 30 d

29. INTERMD.PH.DCF INHL.RESPND.MAT.DCFipa [(mSv 1st mnt)/(kBq/m3)]

30. INTERMD.PH.DCF SKIN DOSE FROM DEPO [(mSv in 1st y)/(kBq/m2)]

__________________________________________________________________

21 22 23 24 25 26 27 28 29 30

_____________________________________________________________________________________________________________________________________________________________________

H-3 NC NC NC NC NC NC NC NC 2.96e-02 NC

C-14 NC NC NC NC NC NC NC NC 4.86e-01 NC

Na-22 NC NC NC NC NC NC NC NC 1.77e+00 NC

Na-24 NC NC NC NC NC NC NC NC 8.48e-03 NC

P-32 NC NC NC NC NC NC NC NC 1.90e+00 NC

P-33 NC NC NC NC NC NC NC NC 3.69e-01 NC

S-35 NC NC NC NC NC NC NC NC 5.13e-01 NC

Cl-36 NC NC NC NC NC NC NC NC 5.11e+00 NC

K-40 NC NC NC NC NC NC NC NC 2.88e+00 NC

K-42 NC NC NC NC NC NC NC NC 7.84e-03 NC

Ca-45 NC NC NC NC NC NC NC NC 1.45e+00 NC

Sc-46 NC NC NC NC NC NC NC NC 6.12e+00 NC

Ti-44 NC NC NC NC NC NC NC NC 2.37e+02 NC

V-48 NC NC NC NC NC NC NC NC 1.34e+00 NC

Cr-51 NC NC NC NC NC NC NC NC 5.48e-02 NC

Mn-54 NC NC NC NC NC NC NC NC 1.51e+00 NC

Mn-56 NC NC NC NC NC NC NC NC 4.54e-04 NC

Fe-55 NC NC NC NC NC NC NC NC 6.20e-01 NC

Page 111: Activitatea 1.1

A1.18

Co-58 NC NC NC NC NC NC NC NC 2.20e+00 1.20e-01

Fe-59 NC NC NC NC NC NC NC NC 2.76e+00 NC

Co-60 NC NC NC NC NC NC NC NC 5.07e+01 4.20e-01

Ni-63 NC NC NC NC NC NC NC NC 7.23e-01 NC

Cu-64 NC NC NC NC NC NC NC NC 1.64e-03 NC

Zn-65 NC NC NC NC NC NC NC NC 4.56e+00 NC

Ga-68 NC NC NC NC NC NC NC NC 7.32e-05 NC

Ge-68 NC NC NC NC NC NC NC NC 1.16e+01 NC

Se-75 NC NC NC NC NC NC NC NC 1.81e+00 NC

Kr-85 NC NC NC NC NC NC NC NC 1.42e-04 NC

Kr-85m NC NC NC NC NC NC NC NC 8.16e-07 NC

Kr-87 NC NC NC NC NC NC NC NC 7.72e-07 NC

Kr-88 NC NC NC NC NC NC NC NC 4.11e-06 NC

Rb-86 NC NC NC NC NC NC NC NC 9.31e-01 6.30e01

Rb-87 NC NC NC NC NC NC NC NC 7.54e-01 NC

Rb-88 NC NC NC NC NC NC NC NC 1.16e-05 NC

Sr-89 2.4e00 2.4e00 2.4e00 2.4e00 2.3e00 2.2e00 2.0e00 1.6e-01 7.92e+00 1.50e02

Sr-90 1.0e-01 1.0e-01 1.0e-01 1.0e-01 1.0e-01 1.0e-01 1.0e-01 1.0e-01 3.02e+02 1.20e01

Sr-91 2.60e00 1.80e00 1.20e00 5.00e-01 0 0 0 0 7.37e-03 NC

Y-90 0 0 0 0 1.00e-01 1.00e-01 1.00e-01 1.00e-01 2.52e-01 2.20e02

Y-91 2.00e-01 2.00e-01 2.00e-01 2.00e-01 2.00e-01 2.00e-01 2.00e-01 2.00e-01 9.58e+00 1.60e02

Y-91m NC NC NC NC NC NC NC NC 1.41e-05 NC

Zr-93 NC NC NC NC NC NC NC NC 7.48e+01 NC

Zr-95 3.0e-01 3.0e-01 3.0e-01 3.0e-01 3.0e-01 2.0e-01 2.0e-01 2.0e-01 4.65e+00 7.20e-01

Nb-94 NC NC NC NC NC NC NC NC 9.66e+01 NC

Nb-95 3.0e-01 3.0e-01 3.0e-01 3.0e-01 3.0e-01 3.0e-01 3.0e-01 2.0e-01 1.02e+00 6.10e-01

Mo-99 1.1e00 1.0e00 1.0e00 8.0e-01 5.0e-01 2.0e-01 0.0 0.0 1.22e-01 4.40e00

Tc-99 NC NC NC NC NC NC NC NC 1.94e+00 NC

Tc-99m 1.0e00 9.0e-01 9.0e-01 8.0e-01 5.0e-01 2.0e-01 0.0 0.0 9.15e-05 7.70e-03

Ru-103 7.0e-01 7.0e-01 7.0e-01 7.0e-01 7.0e-01 7.0e-01 6.0e-01 4.0e-01 1.62e+00 6.80e-01

Ru-105 4.0e-01 2.0e-01 1.0e-01 0.0 0.0 0.0 0.0 0.0 9.44e-04 NC

Rh-106 NC NC NC NC NC NC NC NC NC NC

Ru-106 2.0e-01 2.0e-01 2.0e-01 2.0e-01 2.0e-01 2.0e-01 2.0e00 2.0e-01 1.08e+02 6.40e-01

Ag-110m NC NC NC NC NC NC 0.0 NC 1.80e+01 NC

Cd-109 NC NC NC NC NC NC NC NC 2.61e+01 NC

Cd-113m NC NC NC NC NC NC NC NC 3.55e+02 NC

In-114m NC NC NC NC NC NC NC NC 1.69e+01 NC

Sn-113 NC NC NC NC NC NC NC NC 2.27e+00 NC

Sn-123 NC NC NC NC NC NC NC NC 7.00e+00 NC

Sn-126 NC NC NC NC NC NC NC NC 2.32e+01 NC

Sb-124 NC NC NC NC NC NC NC NC 4.96e+00 NC

Sb-126 NC NC NC NC NC NC NC NC 1.33e+00 NC

Sb-126m NC NC NC NC NC NC NC NC 5.02e-06 NC

Sb-127 8.0e-01 7.0e-01 7.0e-01 7.0e-01 5.0e-01 2.0e-01 1.0e-01 0.0 2.59e-01 NC

Sb-129 3.6e00 1.6e00 6.0e-01 1.0e-01 0.0 0.0 0.0 0.0 1.30e-03 NC

Te-127 8.0e-01 8.0e-01 8.0e-01 7.0e-01 6.0e-01 3.0e-01 2.0e-01 1.0e-01 1.39e-03 1.00e00

Te-127m 1.0e-01 1.0e-01 1.0e-01 1.0e-01 1.0e-01 1.0e-01 1.0e-01 1.0e-01 4.56e+00 7.80e-01

Te-129 3.8e00 2.2e00 1.1e00 5.0e-01 4.0e-01 3.0e-01 3.0e-01 2.0e-01 4.85e-05 5.00e-01

Te-129m 7.0e-01 7.0e-01 7.0e-01 7.0e-01 6.0e-01 6.0e-01 5.0e-01 4.0e-01 4.16e+00 3.40e01

Te-131 NC NC NC NC NC NC NC NC 9.29e-05 NC

Te-131m 1.6e00 1.4e00 1.3e00 1.0e00 3.0e-01 0.0 0.0 0.0 8.97e-02 2.90e-01

Te-132 14.2e00 14.5e00 13.8e00 12.4e00 8.1e00 3.5e00 6.0e-01 0.0 3.44e-01 5.40e-03

I-125 NC NC NC NC NC NC NC NC 4.76e+00 NC

I-129 NC NC NC NC NC NC NC NC 4.04e+01 NC

I-131 24.2e00 24.8e00 24.3e00 23.2e00 19.6e00 3.9 7.0e00 1.9e00 2.74e+00 8.50e-01

I-132 30.4e00 18.2e00 14.7e00 12.8e00 8.3e00 3.6e00 7.0e-01 0.0 4.09e-04 5.00e01

I-133 49.0e00 41.5e00 34.0e00 22.8e00 4.6e00 2.0e-01 0.0 0.0 5.68e-02 NC

I-134 25.7e00 5.0e-01 0.0 0.0 0.0 0.0 0.0 0.0 5.38e-05 NC

I-135 40.2e00 23.8e00 12.7e00 3.6e00 0.0 0.0 0.0 0.0 3.79e-03 NC

Xe-131m NC NC NC NC NC NC NC NC NC NC

Xe-133 NC NC NC NC NC NC NC NC 9.23e-05 NC

Xe-133m NC NC NC NC NC NC NC NC NC NC

Xe-135 NC NC NC NC NC NC NC NC 8.92e-06 NC

Page 112: Activitatea 1.1

A1.19

Xe-135m NC NC NC NC NC NC NC NC NC NC

Xe-138 NC NC NC NC NC NC NC NC NC NC

Cs-134 1.6e00 1.6e00 1.6e00 1.6e00 1.6e00 1.6e00 1.6e00 1.6e00 1.06e+01 2.60e01

Cs-135 NC NC NC NC NC NC NC NC 1.06e+00 NC

Cs-136 6.0e-01 6.0e-01 6.0e-01 6.0e-01 5.0e-01 4.0e-01 3.0e-01 1.0e-01 8.56e-01 1.40e-01

Cs-137 1.0e00 1.0e00 1.0e00 1.0e00 1.0e00 1.0e00 1.0e00 1.0e00 7.44e+00 2.10e01

Cs-138 NC NC NC NC NC NC NC NC 2.54e-05 NC

Ba-133 NC NC NC NC NC NC NC NC 1.81e+00 NC

Ba-137m NC NC NC NC NC NC NC NC NC NC

Ba-140 5.4e00 5.4e00 5.3e00 4.2e00 4.6e00 3.7e00 2.4e00 1.1e00 4.30e-01 9.10e00

La-140 4.0e-01 8.0e-01 1.2e00 2.0e00 3.6e00 4.0e00 2.8e00 1.2e00 9.12e-02 1.20e01

Ce-141 1.3e00 1.3e00 1.3e00 1.2e00 1.2e00 1.1e00 9.0e-01 7.0e-01 1.54e+00 6.60e-01

Ce-144 7.0e-01 7.0e-01 7.0e00 7.0e-01 7.0e-01 7.0e-01 7.0e-01 7.0e-01 8.40e+01 8.70e-01

Pr-144 NC NC NC NC NC NC NC NC 5.82e-06 NC

Pr-144m NC NC NC NC NC NC NC NC NC NC

Pm-145 NC NC NC NC NC NC NC NC 7.09e+00 NC

Pm-147 NC NC NC NC NC NC NC NC 9.04e+00 NC

Sm-147 NC NC NC NC NC NC NC NC 1.74e+04 NC

Sm-151 NC NC NC NC NC NC NC NC 6.98e+00 NC

Eu-152 NC NC NC NC NC NC NC NC 5.14e+01 NC

Eu-154 NC NC NC NC NC NC NC NC 6.64e+01 NC

Eu-155 NC NC NC NC NC NC NC NC 9.60e+00 NC

Gd-153 NC NC NC NC NC NC NC NC 5.31e+00 NC

Tb-160 NC NC NC NC NC NC NC NC 5.06e+00 NC

Ho-166m NC NC NC NC NC NC NC NC 1.80e+02 NC

Tm-170 NC NC NC NC NC NC NC NC 5.66e+00 NC

Yb-169 NC NC NC NC NC NC NC NC 1.38e+00 NC

Hf-172 NC NC NC NC NC NC NC NC 7.30e+01 NC

Hf-181 NC NC NC NC NC NC NC NC 2.84e+00 NC

Ta-182 NC NC NC NC NC NC NC NC 9.54e+00 NC

W-187 NC NC NC NC NC NC NC NC 6.90e-03 NC

Ir-192 NC NC NC NC NC NC NC NC 5.72e+00 NC

Au-198 NC NC NC NC NC NC NC NC 9.91e-02 NC

Hg-203 NC NC NC NC NC NC NC NC 1.38e+00 NC

Tl-204 NC NC NC NC NC NC NC NC 5.56e-01 NC

Pb-210 NC NC NC NC NC NC NC NC 3.16e+03 NC

Bi-207 NC NC NC NC NC NC NC NC 4.66e+00 NC

Bi-210 NC NC NC NC NC NC NC NC 1.08e+01 NC

Po-210 NC NC NC NC NC NC NC NC 2.03e+03 NC

Ra-226 NC NC NC NC NC NC NC NC 2.00e+03 NC

Ac-227 NC NC NC NC NC NC NC NC 1.56e+06 NC

Ac-228 NC NC NC NC NC NC NC NC 8.82e-01 NC

Th-227 NC NC NC NC NC NC NC NC 2.28e+03 NC

Th-228 NC NC NC NC NC NC NC NC 7.84e+04 NC

Th-230 NC NC NC NC NC NC NC NC 7.59e+04 NC

Th-231 NC NC NC NC NC NC NC NC 1.05e-02 NC

Th-232 NC NC NC NC NC NC NC NC 3.82e+05 NC

Pa-231 NC NC NC NC NC NC NC NC 2.99e+05 NC

Pa-233 NC NC NC NC NC NC NC NC 1.55e+00 NC

U-232 NC NC NC NC NC NC NC NC 2.86e+04 NC

U-233 NC NC NC NC NC NC NC NC 2.92e+04 NC

U-234 NC NC NC NC NC NC NC NC 2.76e+04 NC

U-235 NC NC NC NC NC NC NC NC 2.76e+04 NC

U-236 NC NC NC NC NC NC NC NC 3.09e+04 NC

U-238 NC NC NC NC NC NC NC NC 6.22e-01 NC

U-Depleted-Nat NC NC NC NC NC NC NC NC 1.54e+05 NC

U-Enriched NC NC NC NC NC NC NC NC 3.09e+04 NC

UF6 0 0 0 0 0 0 0 0 0 0

Np-237 NC NC NC NC NC NC NC NC 1.26e+05 NC

Np-239 13.8e00 13.0e00 12.0e00 10.4e00 5.8e00 1.8 2.0e-01 0.0 6.62e-02 3.40e-02

Pu-236 NC NC NC NC NC NC NC NC 3.34e+04 NC

Pu-238 NC NC NC NC NC NC NC NC 9.14e+04 .00

Pu-239 NC NC NC NC NC NC NC NC 1.00e+05 .00

Page 113: Activitatea 1.1

A1.20

Pu-240 NC NC NC NC NC NC NC NC 1.00e+05 .00

Pu-241 NC NC NC NC NC NC NC NC 1.92e+03 .00

Pu-242 NC NC NC NC NC NC NC NC 9.57e+04 NC

Am-241 NC NC NC NC NC NC NC NC 1.03e+05 4.60e-02

Am-242m NC NC NC NC NC NC NC NC 9.92e+04 NC

Am-243 NC NC NC NC NC NC NC NC 1.03e+05 NC

Cm-242 NC NC NC NC NC NC NC NC 3.78e+03 .00

Cm-243 NC NC NC NC NC NC NC NC 7.15e+04 NC

Cm-244 NC NC NC NC NC NC NC NC 5.77e+04 0

Cm-245 NC NC NC NC NC NC NC NC 1.06e+05 NC

Cf-252 NC NC NC NC NC NC NC NC 3.62e+04 NC

RADIOLOGICAL NUCLIDE DATA (continued)

_____________________________________

31. COW TRANSFER FACTOR [(kBq/L)/(kBq/d)]

32. INGESTION CRITICAL ORGAN

33. CHILD INGESTION DOSE CONVERSION FACTOR DCFingch [mSv/kBq]

34. INFANT INGESTION DOSE CONVERSION FACTOR DCFingch [mSv/kBq]

35. INFANT INGESTION CEDE CONVERSION FACTOR [mSv/kBq]

36. ISOTOPE SPECIFIC ACTIVITY [Ci/g]

37. LWR TYPICAL CORE INVENTORY [Ci/MWe]

38. BWR TYPICAL COOLANT CONTAMINATION [Ci/g]

39. PWR TYPICAL COOLANT CONTAMINATION [Ci/g]

40. LWR CORE RELEASE FRACTIONS AT 650 C

__________________________________________________________________

31 32 33 34 35 36 37 38 39 40

_____________________________________________________________________________________________________________________________________________________________________

H-3 1.4e-02 All/1 1.90e-05 4.10e-05 1.60e-05 9.729000e3 0 0.99999997e-8 0.99999999e-6 0

C-14 1.5e-02 All/1 7.70e-04 1.50e-03 5.60e-03 4e0 0 0 0 0

Na-22 3.5e-02 Bone-S/2 1.10e-02 2.70e-02 3.10e-03 6.216000e3 0 0 0 0

Na-24 3.5e-02 Stomch/2 2.50e-03 6.60e-03 3.70e-04 2.44e01 1.7e01 8.648648e6 0 0

P-32 1.6e-02 Bone-M/2 1.90e-02 5.70e-02 2.10e-03 2.972970e5 0 0 0 0

P-33 1.6e-02 NC NC NC NC 1.567560e5 0 0 0 0

S-35 NC LLI/2 1.30e-03 4.00e-03 1.20e-04 4.324300e4 0 0 0 0

Cl-36 NC Stomch/2 2.60e-03 7.80e-03 8.20e-04 3.243243e-2 0 0 0 0

K-40 7.2e-03 NC NC NC NC 7.027027e-6 0 0 0 0

K-42 7.2e-03 Stomch/2 4.20e-03 1.20e-02 2.90e-04 5.945945e6 0 0 0 0

Ca-45 1.1e-02 Bone-S/2 1.20e-02 3.40e-02 8.10e-04 1.783700e4 0 0 0 0

Sc-46 NC LLI/2 2.20e-02 5.70e-02 1.50e-03 3.513500e4 0 0 0 0

Ti-44 NC LLI/2 8.40e-02 2.40e-01 5.70e-03 1.720000e2 0 0 0 0

V-48 NC LLI/2 2.80e-02 7.20e-02 2.10e-03 1.675670e5 0 0 0 0

Cr-51 2.0e-03 LLI/2 6.90e-04 1.90e-03 3.90e-05 9.189100e4 0 0 0 0

Mn-54 8.4e-05 LLI/2 4.00e-03 8.60e-03 7.20e-04 7.837000e3 0 0.69999997e-10 0.15999997e-8 0

Mn-56 8.4e-05 ULI/2 3.10e-03 8.90e-03 2.50e-04 2.162162e7 0 0 0 0

Fe-55 5.9e-05 Spleen/2 1.00e-03 3.00e-03 1.60e-04 2.405000e3 0 0 0 0

Co-58 2.0e-03 LLI/2 1.40e-01 3.20e-01 7.30e-01 3.243200e4 0 0.19999997e-9 0.45945943e-8 0

Fe-59 5.9e-05 NC 1.80e-02 4.90e-02 1.80e-03 4.864800e4 0 0 0 0

Co-60 2.0e-03 LLI/2 2.50e-02 5.90e-02 7.00e-03 1.135000e3 0 0.39999997e-9 0.5297297e-9 0

Ni-63 1.0e-02 LLI/2 2.10e-03 6.20e-03 1.50e-04 5.900000e1 0 0 0 0

Cu-64 1.7e-03 LLI/2 1.70e-03 5.00e-03 1.20e-04 3.783783e6 0 0 0 0

Zn-65 1.0e-02 LLI/2 8.60e-03 1.80e-02 3.90e-03 8.108000e3 0 0 0 0

Ga-68 NC Stomch/2 1.40e-03 3.90e-03 8.90e-05 4.054054e7 0 0 0 0

Ge-68 NC Kidney/2 1.60e-03 4.70e-03 2.90e-04 6.756000e3 0 0 0 0

Se-75 NC LLI/2 1.40e-02 3.30e-02 2.50e-02 1.459400e4 0 0 0 0

Kr-85 2.0e-02 NC NC NC NC 4.050000e2 559.45933 0 0.4297297e-6 .05

Kr-85m 2.0e-02 NC NC NC NC 8.108108e6 24000 0 0.15999999e-6 .05

Kr-87 2.0e-02 NC NC NC NC 2.702703e7 47027.016 0 0.14999999e-6 .05

Kr-88 2.0e-02 NC NC NC NC 1.243243e7 68108.1 0 0.28108106e-6 .05

Page 114: Activitatea 1.1

A1.21

Rb-86 1.2e-02 Bone-S/2 1.60e-02 4.70e-02 2.50e-03 8.108100e4 26 0 0 0

Rb-87 1.2e-02 Bone-S/2 8.70e-03 2.60e-02 1.30e-03 8.648648e-8 0 0 0 0

Rb-88 1.2e-02 Stomch/2 1.70e-03 5.10e-03 4.40e-05 1.189189e8 0 0 0 0

Sr-89 1.4e-03 LLI/2 6.80e-02 2.00e-01 2.30e-03 2.972900e4 94054.043 0.99999997e-10 0.13999997e-9 0

Sr-90 1.4e-03 Bone-S/1 5.50e-01 7.40e-01 3.50e-02 1.370000e2 3702.7017 0.69999997e-11 0.11999997e-10 0

Sr-91 1.40e-03 LLI/2 1.20e-02 2.40e-02 8.10e-04 3.51e06 110000 4.00e-09 9.59E-10 0

Y-90 2.00e-05 LLI/2 7.40e-02 2.20e-01 2.70e-01 5.41e05 3891.8908 0 0 0

Y-91 2.00e-05 LLI/2 7.10e-02 2.10e-01 2.40e-03 2.46e04 120000 4.00E-11 5.19E-12 0

Y-91m 2.0e-05 Stomch/2 9.70e-05 2.40e-04 1.00e-05 4.054054e7 0 0 0 0

Zr-93 8.0e-02 Bone-S/2 1.10e-02 1.80e-02 4.20e-04 2.513514e7 0 0 0 0

Zr-95 8.0e-02 LLIW/1 1.60e-02 5.20e-02 1.10e-03 2.135100e4 150000 0 0 0

Nb-94 2.0e-02 LLI/2 7.50e-02 2.00e-01 1.80e-02 1.864865e-1 0 0 0 0

Nb-95 2.0e-02 LLIW/1 8.10e-03 2.40e-02 6.80e-04 3.783700e4 150000 0 0 0

Mo-99 1.4e-03 LLI/2 3.20e-02 9.40e-02 1.20e-03 4.864860e5 160000 0.19999997e-8 0.64054052e-8 0

Tc-99 9.9e-03 Stomch/2 8.00e-03 2.40e-02 3.50e-04 1.702703e-2 0 0.19999997e-8 0.47027025e-8 0

Tc-99m 9.9e-03 Thyroid/2 1.90e-04 5.40e-04 1.60e-05 5.135135e6 140000 0 0 0

Ru-103 6.1e-07 LLIW/1 1.40e-02 4.50e-02 8.10e-04 3.243200e4 110000 0.19999997e-10 0.75135133e-8 0

Ru-105 6.1e-07 ULI/2 3.60e-03 1.00e-02 2.80e-04 6.756756e6 71891.883 0 0 0

Rh-106 NC LLIW/1 1.50e-01 5.20e-01 7.50e-03 3.513514e9 0 0 0 0

Ru-106 NC LLI/2 1.70e-01 4.90e-01 5.80e-03 3.243000e3 25000 0.29999997e-11 0.95945943e-7 0

Ag-110m NC LLI/2 2.10e-02 5.30e-02 2.90e-03 4.864000e3 0 0 0 0

Cd-109 NC Kidney/2 7.80e-02 2.30e-01 3.00e-03 2.594000e3 0 0 0 0

Cd-113m NC Kidney/2 7.20e-01 1.70e+00 4.00e-02 2.320000e2 0 0 0 0

In-114m NC LLI/2 1.00e-01 3.00e-01 4.00e-03 2.324300e4 0 0 0 0

Sn-113 NC LLI/2 1.80e-02 5.30e-02 7.40e-04 1e4 0 0 0 0

Sn-123 NC LLI/2 6.10e-02 1.80e-01 2.10e-03 8.108000e3 0 0 0 0

Sn-126 NC LLI/2 9.90e-02 2.90e-01 4.70e-03 2.972973e-2 0 0 0 0

Sb-124 2.0e-05 LLI/2 5.20e-02 1.50e-01 2.60e-03 1.756700e4 0 0 0 0

Sb-126 2.0e-05 NC NC NC NC 8.378300e4 0 0 0 0

Sb-126m 2.0e-05 NC NC NC NC 7.837838e7 0 0 0 0

Sb-127 2.0e-05 LLI/2 4.50e-02 1.30e-01 1.80e-03 2.675670e5 6108.1072 0 0 0

Sb-129 2.0e-05 ULI/2 7.50e-03 2.00e-02 4.70e-04 5.675675e6 32972.964 0 0 0

Te-127 2.0e-04 LLI/2 2.90e-03 8.70e-03 1.80e-04 2.648648e6 5891.8909 0 0 0

Te-127m 2.0e-04 Bone-S/2 4.70e-02 1.40e-01 2.20e-03 9.459000e3 1100 0 0 0

Te-129 2.0e-04 Stomch/2 9.30e-04 2.80e-03 5.20e-05 2.081081e7 31081.072 0 0 0

Te-129m 2.0e-04 LLI/2 5.80e-02 1.70e-01 2.70e-03 2.972900e4 5297.2964 0.39999997e-10 0.18999997e-9 0

Te-131 2.0e-04 Thyroid/2 2.50e-03 7.60e-03 5.10e-05 5.675675e7 0 0 0 0

Te-131m 2.0e-04 Thyroid/2 4.00e-02 1.20e-01 1.50e-03 8.108100e5 13000 0.99999997e-10 0.14999997e-8 0

Te-132 2.0e-04 Thyroid/2 6.00e-02 2.20e-01 2.00e-03 2.972970e5 120000 0.99999997e-11 0.16999997e-8 0

I-125 9.9e-03 Thyroid/2 7.60e-01 1.30e+00 9.20e-03 1.729700e4 0 0 0 .05

I-129 9.9e-03 Thyroid/2 3.80e+00 4.30e+00 6.40e-02 1.756757e-4 0 0 0 .05

I-131 9.9e-03 Thyroid/2 1.10e+00 3.60e+00 1.30e-02 1.243240e5 85135.126 0.21999997e-8 0.45135133e-7 .05

I-132 9.9e-03 Thyroid/2 8.50e-03 3.60e-02 1.70e-04 1.027027e7 120000 0.21999997e-7 0.20999999e-6 .05

I-133 9.9e-03 Thyroid/2 2.30e-01 8.60e-01 2.50e-03 1.135135e6 170000 0.14999997e-7 0.13999989e-6 .05

I-134 9.9e-03 Thyroid/2 1.50e-03 5.60e-03 5.00e-05 2.675676e7 190000 0.4297297e-7 0.34054052e-6 .05

I-135 9.9e-03 Thyroid/2 4.40e-02 1.60e-01 4.80e-04 3.513513e6 150000 0.21999997e-7 0.25999997e-6 .05

Xe-131m NC NC NC NC NC 8.378300e4 1000 0 0.7297297e-6 .05

Xe-133 NC NC NC NC NC 1.864860e5 170000 0 0.25999999e-5 .05

Xe-133m NC NC NC NC NC 4.594590e5 6000 0 0.69999999e-7 .05

Xe-135 NC NC NC NC NC 2.540540e6 34054.044 0 0.85135133e-6 .05

Xe-135m NC NC NC NC NC 9.189189e7 0 0 0 .05

Xe-138 NC NC NC NC NC 9.729730e7 170000 0 0.11999989e-6 .05

Cs-134 7.1e-03 Pancrs/1 1.60e-02 1.70e-02 1.90e-02 1.297000e3 7513.5126 0.29999997e-10 0.71081079e-8 .05

Cs-135 7.1e-03 Stomch/2 2.10e-03 3.00e-03 1.70e-03 1.162162e-3 0 0 0 .05

Cs-136 7.1e-03 Uterus/2 5.80e-03 1.00e-02 2.80e-03 7.297200e4 3000 0.19999997e-10 0.87027025e-9 .05

Cs-137 7.1e-03 St.wll/1 1.00e-02 1.20e-02 1.30e-02 8.600000e1 4702.7016 0.79999997e-10 0.94054052e-8 .05

Cs-138 7.1e-03 Stomch/2 1.60e-03 4.60e-03 4.20e-05 4.324324e7 0 0 0 .05

Ba-133 NC LLI/2 8.20e-03 2.20e-02 8.50e-04 2.510000e2 0 0 0 0

Ba-137m NC NC NC NC NC 5.405406e8 0 0 0 0

Ba-140 NC Stomch/2 6.00e-02 1.80e-01 2.30e-03 7.297200e4 160000 0.39999997e-10 0.12999997e-7 0

La-140 NC LLI/2 3.90e-02 1.10e-01 2.10e-03 5.675670e5 160000 0.39999997e-9 0.24999997e-7 0

Ce-141 NC LLI/2 2.00e-002 1.60e-02 7.00e-04 2.972900e4 150000 0 0 0

Ce-144 NC LLIW/1 1.50e-01 4.97e-01 5.80e-03 3.243000e3 85135.126 0.29999997e-11 0.39999997e-8 0

Page 115: Activitatea 1.1

A1.22

Pr-144 NC Stomch/2 9.60e-04 2.90e-03 3.00e-05 7.567567e7 0 0 0 0

Pr-144m NC NC NC NC NC 1.810811e8 0 0 0 0

Pm-145 NC NC NC NC NC 1.400000e2 0 0 0 0

Pm-147 NC NC NC NC NC 9.180000e2 0 0 0 0

Sm-147 NC Bone-S/2 1.10e+00 2.50e+00 4.80e-02 2.297297e-8 0 0 0 0

Sm-151 NC LLI/2 2.40e-03 7.10e-03 9.20e-05 2.600000e1 0 0 0 0

Eu-152 NC LLI/2 2.20e-02 6.00e-02 1.60e-03 1.750000e2 0 0 0 0

Eu-154 NC LLI/2 4.00e-02 1.20e-01 2.50e-03 2.640000e2 0 0 0 0

Eu-155 NC LLI/2 8.00e-03 2.30e-02 3.70e-04 4.590000e2 0 0 0 0

Gd-153 NC LLI/2 6.00e-03 1.70e-02 2.90e-04 3.513000e3 0 0 0 0

Tb-160 NC NC NC NC NC 1.135100e4 0 0 0 0

Ho-166m NC NC NC NC NC 1e0 0 0 0 0

Tm-170 NC NC 3.90e-02 1.20e-01 1.40e-03 5.945000e3 0 0 0 0

Yb-169 NC LLI/2 1.60e-02 4.70e-02 7.60e-04 2.405400e4 0 0 0 0

Hf-172 NC NC NC NC NC 1.108000e3 0 0 0 0

Hf-181 NC LLI/2 2.60e-02 7.60e-02 4.40e-04 1.702700e4 0 0 0 0

Ta-182 2.8e-06 LLI/2 3.10e-02 8.80e-02 1.60e-03 6.216000e3 0 0 0 0

W-187 2.9e-04 LLI/2 1.50e-02 4.30e-02 7.40e-04 7.027020e5 0 0 0 0

Ir-192 5.0e-06 LLI/2 2.90e-02 8.40e-02 1.40e-03 9.189000e3 0 0 0 0

Au-198 5.0e-06 LLI/2 2.50e-02 7.20e-02 1.10e-03 2.459450e5 0 0 0 0

Hg-203 9.7e-06 LLI/2 4.10e-02 1.20e-01 2.70e-03 1.378300e4 0 0 0 0

Tl-204 1.3e-03 Kidney/2 1.10e-02 3.20e-02 8.70e-04 4.590000e2 0 0 0 0

Pb-210 2.6e-04 Bone-S/2 2.70e+01 5.60e+01 1.40e+00 7.500000e1 0 0 0 0

Bi-207 5.0e-04 LLI/2 2.00e-02 5.30e-02 1.30e-03 4.500000e1 0 0 0 0

Bi-210 5.0e-04 LLI/2 3.60e-02 1.10e-01 1.60e-03 1.243240e5 0 0 0 0

Po-210 1.4e-02 Spleen/2 9.90e+00 3.00e+01 4.30e-01 4.594000e3 0 0 0 0

Ra-226 4.5e-04 Bone-S/2 9.00e+00 2.00e+01 3.00e-01 1e0 0 0 0 0

Ac-227 2.0e-05 Bone-S/2 8.20e+01 1.60e+02 3.80e+00 7.200000e1 0 0 0 0

Ac-228 2.0e-05 Bone-S/2 5.50e-03 1.60e-02 5.60e-04 2.243243e6 0 0 0 0

Th-227 5.0e-06 LLI/2 2.10e-01 6.30e-01 9.80e-03 2.972900e4 0 0 0 0

Th-228 5.0e-06 Bone-S/2 4.30e+00 1.30e+01 1.00e-01 8.100000e2 0 0 0 0

Th-230 5.0e-06 Bone-S/2 4.40e+00 8.10e+00 1.40e-01 2.027027e-2 0 0 0 0

Th-231 5.0e-06 LLI/2 7.90e-03 2.40e-02 3.50e-04 5.405400e5 0 0 0 0

Th-232 5.0e-06 Bone-S/2 2.10e+01 3.10e+01 7.40e-01 1.108108e-7 0 0 0 0

Pa-231 5.0e-06 Bone-S/2 9.30e+01 1.30e+02 2.90e+00 4.594594e-2 0 0 0 0

Pa-233 5.0e-06 LLI/2 2.40e-02 7.00e-02 9.00e-04 2.081000e4 0 0 0 0

U-232 6.1e-04 Bone-S/2 7.80e+00 1.50e+01 3.40e-01 3.513514e-7 0 0 0 0

U-233 6.1e-04 Bone-S/2 1.50e+00 3.10e+00 7.10e-02 6.756757e-7 0 0 0 0

U-234 6.1e-04 Bone-S/2 1.40e+00 3.10e+00 7.00e-02 2.405406e-6 0 0 0 0

U-235 6.1e-04 Bone-S/2 1.30e+00 2.80e+00 6.60e-02 2.100000e1 0 0 0 0

U-236 6.1e-04 Bone-S/2 1.40e+00 2.90e+00 6.60e-02 9.729730e-3 0 0 0 0

U-238 6.1e-04 Bone-S/2 1.30e+00 2.70e+00 6.30e-02 6.216216e-3 0 0 0 0

U-Depleted-Nat 6.1e-04 LLI/2 1.30e+00 2.70e+00 6.30e-02 2.162162e-6 0 0 0 0

U-Enriched 6.1e-04 Bone-S/2 1.40e+00 3.10e+00 7.00e-02 3.243243e-7 0 0 0 0

UF6 0 0 0 0 0 0 0 0 0 0

Np-237 5.0e-06 Bone-S/1 9.90e+00 8.90e+00 4.50e-01 7.027027e-4 0 0 0 0

Np-239 5.0e-06 LLIW/1 1.90e-02 6.40e-02 8.70e-02 2.324320e5 1600000 0.79999997e-8 0.21999997e-8 0

Pu-236 2.7e-09 LLI/2 4.70e+00 1.20e+01 1.80e+01 5.400000e2 0 0 0 0

Pu-238 2.7e-09 LLI/2 1.90e+01 3.40e+01 8.60e-01 1.700000e1 57.027017 0 0 0

Pu-239 2.7e-09 LLI/2 2.20e+01 3.70e+01 9.50e-01 6.216216e-2 21 0 0 0

Pu-240 2.7e-09 LLI/2 2.20e+01 3.70e+01 9.50e-01 2.270270e-1 21 0 0 0

Pu-241 2.7e-09 Bone-M/1 3.70e-01 3.40e-01 1.90e-02 1.020000e2 3405.4045 0 0 0

Pu-242 2.7e-09 LLI/2 2.10e+01 3.50e+01 9.00e-01 4.054054e-3 0 0 0 0

Am-241 2.0e-05 Bone-S/1 1.90e+01 1.90e+01 8.90e-01 3e0 1.6999998 0 0 0

Am-242m 2.0e-05 Bone-S/2 2.10e+01 3.50e+01 9.50e-01 9e0 0 0 0 0

Am-243 2.0e-05 Bone-S/2 2.20e+01 3.80e+01 9.80e-01 2e-1 0 0 0 0

Cm-242 2.0e-05 Bone-S/2 8.90e-01 2.60e+00 3.00e-02 3.243000e3 500 0 0 0

Cm-243 2.0e-05 Bone-S/2 1.50e+01 2.90e+01 6.70e-01 5.100000e1 0 0 0 0

Cm-244 2.0e-05 Bone-S/2 1.20e+01 2.50e+01 5.40e-01 8.100000e1 23 0 0 0

Cm-245 2.0e-05 Bone-S/2 2.30e+01 3.90e+01 1.00e+00 1.729730e-1 0 0 0 0

Cf-252 2.0e-05 Bone-S/2 4.90e+00 1.40e+01 1.40e-01 5.400000e2 0 0 0 0

Page 116: Activitatea 1.1

A1.23

RADIOLOGICAL NUCLIDE DATA (continued)

_____________________________________

41. LWR CORE RELEASE FRACTIONS AT 1250 C

42. LWR CORE RELEASE FRACTIONS AT 1650 C

43. ISOTOPE DECAY MODES

44. TARGET NUCLIDE FOR NEUTRON ACTIVATION

45. TARGET MATERIAL FOR NUCLIDE ACTIVATION

46. NEUTRON TARGET NUCLIDE ABUNDANCE IN TARGET MATERIAL [%]

47. NEUTRON ACTIVATION CROSS-SECTION OF TARGET NUCLIDE [cm2]

48. ELEMENT DENSITY [g/cm3]

49. DEPOSITION VELOCITY [m/s]

50. WASHOUT RATE [1/s]

__________________________________________________________________

41 42 43 44 45 46 47 48 49 50

_____________________________________________________________________________________________________________________________________________________________________

H-3 0 0 b- Ho-165 HO2 100.00 6.00e-23 8.80 0.001 0.00012

C-14 0 0 ba- N-14 KNO3 99.63 1.75e-24 1.25 0.001 0.00012

Na-22 0 0 EC,b+ Mg-24 Mg 78.60 6.30e-26 1.74 0.001 0.00012

Na-24 0 0 b- Na-23 Na2CO3,NaCl,NaH100.00 5.30e-25 0.97 0.001 0.00012

P-32 0 0 b- P-31 S 95.018 5.20e-25 1.82 0.001 0.00012

P-33 0 0 b- NC NC NC NC NC 0.001 0.00012

S-35 0 0 b- S-34 S 4.215 2.60e-25 2.07 0.001 0.00012

Cl-36 0 0 EC,b+,b- Cl-35 KCl 75.4 3.38e-23 1.56 0.001 0.00012

K-40 0 0 EC K-39 K 100.0 7.0e-23 0.86 0.001 0.00012

K-42 0 0 b- K-41 KCl,K2Co3 6.91 2.07e-24 0.86 0.001 0.00012

Ca-45 0 0 b- Ca-44 CaCO3 2.06 7.2e-25 1.55 0.001 0.00012

Sc-46 0 0 b- Sc-45 Sc2O3 100.00 22.3e-24 3.0 0.001 0.00012

Ti-44 0 0 EC NC NC NC NC NC 0.001 0.00012

V-48 0 0 EC,b+ Cr-50 Cr 4.31 NC 5.8 0.001 0.00012

Cr-51 0 0 EC Cr-50 Cr,Cr2O3 4.31 NC 7.19 0.001 0.00012

Mn-54 0 0 EC Fe-56 Fe,Cr 91.68 NC 7.43 0.001 0.00012

Mn-56 0 0 b- Mn-55 Mn 100.00 13.3e-24 7.43 0.001 0.00012

Fe-55 0 0 EC Fe-54 Fe,Fe2O3 5.84 2.8e-24 7.86 0.001 0.00012

Co-58 0 0 EC,b+ Ni-58 Ni 67.76 NC 8.9 0.001 0.00012

Fe-59 0 0 b- Fe-58 Fe,Fe2O3 0.31 1.01e-24 7.86 0.001 0.00012

Co-60 0 0 b- Co-59 Co 100.00 36.3e-24 8.9 0.001 0.00012

Ni-63 0 0 b- Ni-62 Ni 3.66 21.0e-24 8.9 0.001 0.00012

Cu-64 0 0 b-,EC,b+ Cu-63 Cu 69.1 4.51e-24 8.96 0.001 0.00012

Zn-65 0 0 EC,b+ Zn-64 Zn 48.89 4.7e-25 7.14 0.001 0.00012

Ga-68 0 0 EC,b+ NC NC NC NC 5.91 0.001 0.00012

Ge-68 0 0 EC NC NC NC NC 5.32 0.001 0.00012

Se-75 .15 .44 EC Se-74 Se 0.87 26.0e-24 4.79 0.001 0.00012

Kr-85 .95 .95 b- Kr-84 Kr,U 56.90 0.060e-24 2.6 0.001 0.00012

Kr-85m .95 .95 IT,b- Kr-84 Kr 56.90 0.10e-24 2.6 0.001 0.00012

Kr-87 .95 .95 b- NC NC NC NC 2.6 0.001 0.00012

Kr-88 .95 .95 b- NC NC NC NC 2.6 0.001 0.00012

Rb-86 .25 .64 b- Rb-85 RbCl 72.15 0.91e-24 1.53 0.001 0.00012

Rb-87 .25 .64 b- NC NC NC NC 1.53 0.001 0.00012

Rb-88 .25 .64 b- NC NC NC NC 1.53 0.001 0.00012

Sr-89 .03 .15 b- Sr-88 SrCO3 82.56 0.005e-24 2.6 0.001 0.00012

Sr-90 .03 .15 b- NC NC NC NC 2.6 0.001 0.00012

Sr-91 .03 .15 b- NC NC NC NC 2.6 0.001 0.00012

Y-90 .002 .017 b- Y-89 Y2O3 100 1.26E-24 4.5 0.001 0.00012

Y-91 .002 .017 b- NC NC NC NC 4.5 0.001 0.00012

Y-91m .002 .017 IT NC NC NC NC 4.5 0.001 0.00012

Zr-93 .002 .017 b- NC NC NC NC 6.49 0.001 0.00012

Zr-95 .002 .017 b- Zr-94 ZrO2 17.40 0.076e-24 6.49 0.001 0.00012

Nb-94 .002 .017 b- NC NC NC NC 8.4 0.001 0.00012

Nb-95 .002 .017 b- Zr-94 ZrO2 17.40 0.076e-24 8.4 0.001 0.00012

Mo-99 .008 .012 b- Mo-98 MoO3 23.75 0.51e-24 10.2 0.001 0.00012

Page 117: Activitatea 1.1

A1.24

Tc-99 .008 .012 b- Mo-98 MoO3,U 23.75 0.51e-24 11.5 0.001 0.00012

Tc-99m .008 .012 IT NC NC NC NC 11.5 0.001 0.00012

Ru-103 .008 .012 b- Ru-102 Ru,U 31.3 1.44e-24 12.2 0.001 0.00012

Ru-105 .008 .012 b- Ru-104 Ru 18.3 0.7e-24 12.2 0.001 0.00012

Rh-106 .008 .012 b- NC NC NC NC 12.0 0.001 0.00012

Ru-106 .008 .012 b- NC NC NC NC 12.2 0.001 0.00012

Ag-110m 0 0 IT,b- Ag-109 Ag 48.65 3.2e-24 10.49 0.001 0.00012

Cd-109 0 0 EC Ag-109 Ag 48.65 3.2e-24 8.65 0.001 0.00012

Cd-113m 0 0 b- NC NC NC NC 8.65 0.001 0.00012

In-114m 0 0 EC,IT In-113 In 4.23 56e-24 7.31 0.001 0.00012

Sn-113 0 0 EC Sn-112 Sn 0.95 1.3e-24 7.30 0.001 0.00012

Sn-123 0 0 b- NC NC NC NC 7.30 0.001 0.00012

Sn-126 0 0 b- NC NC NC NC 7.30 0.001 0.00012

Sb-124 .15 .44 b- Sb-123 Sb 42.75 2.5e-24 6.62 0.001 0.00012

Sb-126 .15 .44 b- NC NC NC NC 6.62 0.001 0.00012

Sb-126m .15 .44 IT,b- NC NC NC NC 6.62 0.001 0.00012

Sb-127 .15 .44 b- NC NC NC NC 6.62 0.001 0.00012

Sb-129 .15 .44 b- NC NC NC NC 6.62 0.001 0.00012

Te-127 .15 .44 b- NC NC NC NC 6.24 0.001 0.00012

Te-127m .15 .44 IT,b- Te-126 Te,U 18.7 0.090e-24 6.24 0.001 0.00012

Te-129 .15 .44 b- NC NC NC NC 6.24 0.001 0.00012

Te-129m .15 .44 IT.b- NC NC NC NC 6.24 0.001 0.00012

Te-131 .15 .44 b- NC NC NC NC 6.24 0.001 0.00012

Te-131m .15 .44 IT,b- NC NC NC NC 6.24 0.001 0.00012

Te-132 .15 .44 b- NC NC NC NC 6.24 0.001 0.00012

I-125 .35 .64 EC NC NC NC NC 4.94 0.010 0.00008

I-129 .35 .64 b- NC NC NC NC 4.94 0.010 0.00008

I-131 .35 .64 b- Te-130 TeO2,U 34.49 0.22e-24 4.94 0.010 0.00008

I-132 .35 .64 b- NC NC NC NC 4.94 0.010 0.00008

I-133 .35 .64 b- NC NC NC NC 4.94 0.010 0.00008

I-134 .35 .64 b- NC NC NC NC 4.94 0.010 0.00008

I-135 .35 .64 b- NC NC NC NC 4.94 0.010 0.00008

Xe-131m .95 0 IT NC NC NC NC 5.89 0.001 0.00012

Xe-133 .95 .95 b- NC NC NC NC 5.89 0.001 0.00012

Xe-133m .95 .95 IT Xe-132 Xe,U 26.89 5e-24 5.89 0.001 0.00012

Xe-135 .95 .95 b- NC NC NC NC 5.89 0.001 0.00012

Xe-135m .95 .95 IT NC NC NC NC 5.89 0.001 0.00012

Xe-138 .95 .95 b- NC NC NC NC 5.89 0.001 0.00012

Cs-134 .25 .64 EC,b- Cs-133 Cs2CO3 100.00 33e-24 1.90 0.001 0.00012

Cs-135 .25 .64 b- NC NC NC NC 1.90 0.001 0.00012

Cs-136 .25 .64 b- NC NC NC NC 1.90 0.001 0.00012

Cs-137 .25 .64 b- NC NC NC NC 1.90 0.001 0.00012

Cs-138 .25 .64 b- NC NC NC NC 1.90 0.001 0.00012

Ba-133 .04 .14 EC Ba-132 Ba(NO3)2 0.097 7e-24 3.5 0.001 0.00012

Ba-137m .04 .14 IT NC NC NC NC 3.5 0.001 0.00012

Ba-140 .04 .14 b- NC NC NC NC 3.5 0.001 0.00012

La-140 .002 .017 b- La-139 La2O3 99.91 8.4e-24 6.17 0.001 0.00012

Ce-141 .01 .03 b- Ce-140 Ce,CeO2 88.48 0.31e-24 7.14 0.001 0.00012

Ce-144 .01 .03 b- NC NC NC NC 7.14 0.001 0.00012

Pr-144 .002 .017 b- NC NC NC NC 6.77 0.001 0.00012

Pr-144m .002 .017 IT,b- NC NC NC NC 6.77 0.001 0.00012

Pm-145 .002 .017 b- NC NC NC NC 6.47 0.001 0.00012

Pm-147 .002 .017 b- Nd-146 Nd2O3 17.18 1.8e-24 6.47 0.001 0.00012

Sm-147 .002 .017 a NC NC NC NC 7.54 0.001 0.00012

Sm-151 .002 .017 b- NC NC NC NC 7.54 0.001 0.00012

Eu-152 .002 .017 b-,EC,b+ Eu-151 Eu2O3 47.77 7000e-24 5.26 0.001 0.00012

Eu-154 .002 .017 EC,b- Eu-153 Eu2O3 52.53 420e-24 5.26 0.001 0.00012

Eu-155 .002 .017 b- Sm-154 Sm2O3 22.53 5.5e-24 5.26 0.001 0.00012

Gd-153 0 0 EC Gd-152 Gd2O3 0.200 125e-24 7.87 0.001 0.00012

Tb-160 0 0 b- Tb-159 Tb4O7,Tb2O3 100.00 22e-24 8.27 0.001 0.00012

Ho-166m 0 0 b- NC NC NC NC 8.80 0.001 0.00012

Tm-170 0 0 EC,b- Tm-169 Tm2O3 100.00 130e-24 9.33 0.001 0.00012

Yb-169 0 0 EC Yb-168 Yb2O3 0.140 11000e-24 6.98 0.001 0.00012

Page 118: Activitatea 1.1

A1.25

Hf-172 0 0 EC NC NC NC NC 13.1 0.001 0.00012

Hf-181 0 0 b- Hf-180 HfO2 35.44 10e-24 13.1 0.001 0.00012

Ta-182 0 0 b- Ta-181 Ta,Ta2O5 100.00 19e-24 16.6 0.001 0.00012

W-187 0 0 b- W-186 W,WO3 30.6 34e-24 19.3 0.001 0.00012

Ir-192 0 0 b-,EC Ir-191 Ir 38.5 960e-24 22.5 0.001 0.00012

Au-198 0 0 b- Au-197 Au 100.00 96e-24 19.3 0.001 0.00012

Hg-203 0 0 b- Hg-202 Hg,HgO 29.80 3.8e-24 13.6 0.001 0.00012

Tl-204 0 0 EC,b- Tl-203 TlNO3 29.50 8e-24 11.85 0.001 0.00012

Pb-210 0 0 b- NC NC NC NC 11.34 0.001 0.00012

Bi-207 0 0 EC,b+ NC NC NC NC 9.8 0.001 0.00012

Bi-210 0 0 b- Bi-209 Bi2O3 100.00 0.019e-24 9.8 0.001 0.00012

Po-210 0 0 a Bi-209 Bi2O3 100.00 0.019e-24 9.2 0.001 0.00012

Ra-226 0 0 a NC NC NC NC 5.0 0.001 0.00012

Ac-227 0 0 b-,a NC NC NC NC NC 0.001 0.00012

Ac-228 0 0 b- NC NC NC NC NC 0.001 0.00012

Th-227 0 0 a NC NC NC NC 11.7 0.001 0.00012

Th-228 0 0 a NC NC NC NC 11.7 0.001 0.00012

Th-230 0 0 a NC NC NC NC 11.7 0.001 0.00012

Th-231 0 0 b- NC NC NC NC 11.7 0.001 0.00012

Th-232 0 0 a NC NC NC NC 11.7 0.001 0.00012

Pa-231 .008 .012 a NC NC NC NC 15.4 0.001 0.00012

Pa-233 .008 .012 b- Th-232 ThO2 100.00 7.3e-24 15.4 0.001 0.00012

U-232 0 0 a NC NC NC NC 18.90 0.001 0.00012

U-233 0 0 a NC NC NC NC 18.90 0.001 0.00012

U-234 0 0 a NC NC NC NC 18.90 0.001 0.00012

U-235 0 0 a NC NC NC NC 18.90 0.001 0.00012

U-236 0 0 a NC NC NC NC 18.90 0.001 0.00012

U-238 0 0 SF,a NC NC NC NC 18.90 0.001 0.00012

U-Depleted-Nat 0 0 SF,a NC NC NC NC 18.90 0.001 0.00012

U-Enriched 0 0 a NC NC NC NC 18.90 0.001 0.00012

UF6 0 0 0 0 0 0 0 0 0 0

Np-237 .01 .03 a NC NC NC NC NC 0.001 0.00012

Np-239 .01 .03 b- NC NC NC NC NC 0.001 0.00012

Pu-236 .01 .03 SF,a NC NC NC NC 19.84 0.001 0.00012

Pu-238 .01 .03 SF,a NC NC NC NC 19.84 0.001 0.00012

Pu-239 .01 .03 a NC NC NC NC 19.84 0.001 0.00012

Pu-240 .01 .03 SF,a NC NC NC NC 19.84 0.001 0.00012

Pu-241 .01 .03 a,b- NC NC NC NC 19.84 0.001 0.00012

Pu-242 .01 .03 SF,a NC NC NC NC 19.84 0.001 0.00012

Am-241 0 0 a NC NC NC NC 11.87 0.001 0.00012

Am-242m 0 0 a,IT NC NC NC NC 11.87 0.001 0.00012

Am-243 0 0 a NC NC NC NC 11.87 0.001 0.00012

Cm-242 0 0 SF,a NC NC NC NC NC 0.001 0.00012

Cm-243 0 0 a,EC NC NC NC NC NC 0.001 0.00012

Cm-244 0 0 SF,a NC NC NC NC NC 0.001 0.00012

Cm-245 0 0 a NC NC NC NC NC 0.001 0.00012

Cf-252 0 0 SF,a NC NC NC NC 15.04 0.001 0.00012

A.1.4. Source term specific data A. SOURCE TERM-RELEVANT DATA

____________________________

1 - Nuclide

2 - Halflife(d

3 - Reactore Core Inventory (Ci/MWe)

4 - BWR Coolant Inventory (Ci)

5 - PWR Coolant Inventory (Ci)

6 - Core Release Fraction 650 C

7 - Core Release Fraction 1250 C

Page 119: Activitatea 1.1

A1.26

8 - Core Release Fraction 1650 C

9 - Fire Release Fraction

10 - Isotope/Cs-137 ratios for reactor core damage accidents,

for the following hours since shutdown: 1,6,12,24,72,168,360,720

_____________________________________________________________________

1 2 3 4 5 6 7 8 9 10

______________________________________________________________________________________________________

H-3 4.5e03 0 1.00e-8 1.00e-6 0 0 0 5.0e-1 NC,NC,NC,NC,NC,NC,NC,NC !

C-14 2.1e06 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Na-22 9.5e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Na-24 6.3e-01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

P-32 1.4e01 0 0 0 0 0 0 5.0e-1 NC,NC,NC,NC,NC,NC,NC,NC !

P-33 2.5e01 0 0 0 0 0 0 5.0e-1 NC,NC,NC,NC,NC,NC,NC,NC !

S-35 8.7e01 0 0 0 0 0 0 5.0e-1 NC,NC,NC,NC,NC,NC,NC,NC !

Cl-36 1.1e08 0 0 0 0 0 0 5.0e-1 NC,NC,NC,NC,NC,NC,NC,NC !

K-40 4.7e11 0 0 0 0 0 0 5.0e-1 NC,NC,NC,NC,NC,NC,NC,NC !

K-42 5.2e-01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ca-45 1.6e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sc-46 8.4e01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ti-44 1.7e04 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

V-48 1.6e01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Cr-51 2.8e01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Mn-54 3.1e02 0 0.70e-10 0.16e-8 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Mn-56 1.1e-01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Fe-55 9.9e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Co-58 7.1e01 0 0.20e-9 0.46e-8 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Fe-59 4.5e01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Co-60 1.9e03 0 0.40e-9 0.53e-9 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Ni-63 3.5e04 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Cu-64 5.3e-01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Zn-65 2.4e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ga-68 4.7e-02 0 0 0 0 0 0 NC NC,NC,NC,NC,NC,NC,NC,NC !

Ge-68 2.9e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Se-75 1.2e02 0 0 0 0 .15 .44 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Kr-85 3.9e03 559.45933 0 0.43e-6 .05 .95 .95 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Kr-85m 1.9e-01 24000 0 0.16e-6 .05 .95 .95 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Kr-87 5.3e-02 47027.016 0 0.15e-6 .05 .95 .95 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Kr-88 1.2e-01 68108.1 0 0.28e-6 .05 .95 .95 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Rb-86 1.9e01 26 0 0 0 .25 .64 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Rb-87 1.7e13 0 0 0 0 .25 .64 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Rb-88 1.2e-02 0 0 0 0 .25 .64 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sr-89 5.1e01 94054.043 1.00e-10 0.14e-9 0 .03 .15 1.0e-2 2.4e00,2.4e00,2.4e00,2.4e00,2.3e00,2.2e00,2.0e00,1.6e-01 !

Sr-90 1.1e04 3702.7017 0.70e-11 0.12e-10 0 .03 .15 1.0e-2 1.0e-01,1.0e-01,1.0e-01,1.0e-01,1.0e-01,1.0e-01,1.0e-01,1.0e-01 !

Sr-91 4.0e-01 110000 0.40e-8 0.96e-9 0 .03 .15 1.0e-2 2.6e00,1.8e00,1.2e00,5.0e-01,0.0,0.0,0.0,0.0 !

Y-90 2.7e00 3891.8908 0 0 0 .002 .017 1.0e-2 0.0,0.0,0.0,0.0,1.0e-01,1.0e-01,1.0e-01,1.0e-01 !

Y-91 5.9e01 120000 0.40e-10 0.52e-11 0 .002 .017 1.0e-2 2.0e-01,2.0e-01,2.0e-01,2.0e-01,2.0e-01,2.0e-01,2.0e-01,2.0e-01 !

Y-91m 3.5e-02 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Zr-93 5.6e08 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Zr-95 6.4e01 150000 0 0 0 .002 .017 1.0e-2 3.0e-01,3.0e-01,3.0e-01,3.0e-01,3.0e-01,2.0e-01,2.0e-01,2.0e-01 !

Nb-94 7.4e06 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Nb-95 3.5e01 150000 0 0 0 .002 .017 1.0e-2 3.0e-01,3.0e-01,3.0e-01,3.0e-01,3.0e-01,3.0e-01,3.0e-01,2.0e-01 !

Mo-99 2.8e00 160000 0.20e-8 0.64e-8 0 .008 .012 1.0e-2 1.1e00,1.0e00,1.0e00,8.0e-01,5.0e-01,2.0e-01,0.0,0.0 !

Tc-99 7.8e07 0 0.20e-8 0.47e-8 0 .008 .012 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Tc-99m 2.5e-01 140000 0 0 0 .008 .012 1.0e-2 1.0e00,9.0e-01,9.0e-01,8.0e-01,5.0e-01,2.0e-01,0.0,0.0 !

Ru-103 3.9e01 110000 0.20e-10 0.75e-8 0 .008 .012 1.0e-2 7.0e-01,7.0e-01,7.0e-01,7.0e-01,7.0e-01,7.0e-01,6.0e-01,4.0e-01 !

Ru-105 1.9e-01 71891.883 0 0 0 .008 .012 1.0e-2 4.0e-01,2.0e-01,1.0e-01,0.0,0.0,0.0,0.0,0.0 !

Rh-106 3.5e-04 0 0 0 0 .008 .012 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ru-106 3.7e02 25000 0.30e-11 0.96e-7 0 .008 .012 1.0e-2 2.0e-01,2.0e-01,2.0e-01,2.0e-01,2.0e-01,2.0e-01,2.0e00,2.0e-01 !

Ag-110m 2.5e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,0.0,NC !

Cd-109 4.6e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Cd-113m 5.0e03 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Page 120: Activitatea 1.1

A1.27

In-114m 5.0e01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sn-113 1.2e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sn-123 1.3e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sn-126 3.7e07 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sb-124 6.0e01 0 0 0 0 .15 .44 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sb-126 1.2e01 0 0 0 0 .15 .44 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sb-126m 1.3e-02 0 0 0 0 .15 .44 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sb-127 3.9e00 6108.1072 0 0 0 .15 .44 1.0e-2 8.0e-01,7.0e-01,7.0e-01,7.0e-01,5.0e-01,2.0e-01,1.0e-01,0.0 !

Sb-129 1.8e-01 32972.964 0 0 0 .15 .44 1.0e-2 3.6e00,1.6e00,6.0e-01,1.0e-01,0.0,0.0,0.0,0.0 !

Te-127 3.9e-01 5891.8909 0 0 0 .15 .44 1.0e-2 8.0e-01,8.0e-01,8.0e-01,7.0e-01,6.0e-01,3.0e-01,2.0e-01,1.0e-01 !

Te-127m 1.1e02 1100 0 0 0 .15 .44 1.0e-2 1.0e-01,1.0e-01,1.0e-01,1.0e-01,1.0e-01,1.0e-01,1.0e-01,1.0e-01 !

Te-129 4.8e-02 31081.072 0 0 0 .15 .44 1.0e-2 3.8e00,2.2e00,1.1e00,5.0e-01,4.0e-01,3.0e-01,3.0e-01,2.0e-01 !

Te-129m 3.4e01 5297.2964 0.40e-10 0.19e-9 0 .15 .44 1.0e-2 7.0e-01,7.0e-01,7.0e-01,7.0e-01,6.0e-01,6.0e-01,5.0e-01,4.0e-01 !

Te-131 1.7e-02 0 0 0 0 .15 .44 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Te-131m 1.3e00 13000 1.00e-10 0.15e-8 0 .15 .44 1.0e-2 1.6e00,1.4e00,1.3e00,1.0e00,3.0e-01,0.0,0.0,0.0 !

Te-132 3.3e00 120000 1.00e-11 0.17e-8 0 .15 .44 1.0e-2 14.2e00,14.5e00,13.8e00,12.4e00,8.1e00,3.5e00,6.0e-01,0.0 !

I-125 6.0e01 0 0 0 .05 .35 .64 5.0e-1 NC,NC,NC,NC,NC,NC,NC,NC !

I-129 5.7e09 0 0 0 .05 .35 .64 5.0e-1 NC,NC,NC,NC,NC,NC,NC,NC !

I-131 8.0e00 85135.126 0.22e-8 0.45e-7 .05 .35 .64 5.0e-1 24.2e00,24.8e00,24.3e00,23.2e00,19.6e00,13.9e00,7.0e00,1.9e00 !

I-132 9.6e-02 120000 0.22e-7 0.21e-6 .05 .35 .64 5.0e-1 30.4e00,18.2e00,14.7e00,12.8e00,8.3e00,3.6e00,7.0e-01,0.0 !

I-133 8.7e-01 170000 0.15e-7 0.14e-6 .05 .35 .64 5.0e-1 49.0e00,41.5e00,34.0e00,22.8e00,4.6e00,2.0e-01,0.0,0.0 !

I-134 3.7e-02 190000 0.43e-7 0.34e-6 .05 .35 .64 5.0e-1 25.7e00,5.0e-01,0.0,0.0,0.0,0.0,0.0,0.0 !

I-135 2.8e-01 150000 0.22e-7 0.26e-6 .05 .35 .64 5.0e-1 40.2e00,23.8e00,12.7e00,3.6e00,0.0,0.0,0.0,0.0 !

Xe-131m 1.2e01 1000 0 0.73e-6 .05 .95 0 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Xe-133 5.2e00 170000 0 0.26e-5 .05 .95 .95 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Xe-133m 2.2e00 6000 0 0.70e-7 .05 .95 .95 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Xe-135 3.8e-01 34054.044 0 0.85e-6 .05 .95 .95 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Xe-135m 1.1e-02 0 0 0 .05 .95 .95 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Xe-138 9.8e-03 170000 0 0.12e-6 .05 .95 .95 1.0e0 NC,NC,NC,NC,NC,NC,NC,NC !

Cs-134 7.5e02 7513.5126 0.30e-10 0.71e-8 .05 .25 .64 1.0e-2 1.6e00,1.6e00,1.6e00,1.6e00,1.6e00,1.6e00,1.6e00,1.6e00 !

Cs-135 8.4e08 0 0 0 .05 .25 .64 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Cs-136 1.3e01 3000 0.20e-10 0.87e-9 .05 .25 .64 1.0e-2 6.0e-01,6.0e-01,6.0e-01,6.0e-01,5.0e-01,4.0e-01,3.0e-01,1.0e-01 !

Cs-137 1.1e04 4702.7016 0.80e-10 0.94e-8 .05 .25 .64 1.0e-2 1.0e00,1.0e00,1.0e00,1.0e00,1.0e00,1.0e00,1.0e00,1.0e00 !

Cs-138 2.2e-02 0 0 0 .05 .25 .64 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ba-133 3.9e03 0 0 0 0 .04 .14 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ba-137m 1.8e-03 0 0 0 0 .04 .14 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ba-140 1.3e01 160000 0.40e-10 0.13e-7 0 .04 .14 1.0e-2 5.4e00,5.4e00,5.3e00,4.2e00,4.6e00,3.7e00,2.4e00,1.1e00 !

La-140 1.7e00 160000 0.40e-9 0.25e-7 0 .002 .017 1.0e-2 4.0e-01,8.0e-01,1.2e00,2.0e00,3.6e00,4.0e00,2.8e00,1.2e00 !

Ce-141 3.3e01 150000 0 0 0 .01 .03 1.0e-2 1.3e00,1.3e00,1.3e00,1.2e00,1.2e00,1.1e00,9.0e-01,7.0e-01 !

Ce-144 2.8e02 85135.126 0.30e-11 0.40e-8 0 .01 .03 1.0e-2 7.0e-01,7.0e-01,7.0e-01,7.0e-01,7.0e-01,7.0e-01,7.0e-01,7.0e-01 !

Pr-144 1.2e-02 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Pr-144m 5.0e-03 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Pm-145 6.5e03 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Pm-147 9.6e02 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sm-147 3.9e13 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Sm-151 3.3e04 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Eu-152 4.9e03 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Eu-154 3.2e03 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Eu-155 1.8e03 0 0 0 0 .002 .017 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Gd-153 2.4e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Tb-160 7.2e01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ho-166m 4.4e05 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Tm-170 1.3e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Yb-169 3.2e01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Hf-172 6.8e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Hf-181 4.2e01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ta-182 1.1e02 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

W-187 1.0e00 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ir-192 7.4e01 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Au-198 2.7e00 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Hg-203 4.7e01 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Tl-204 1.4e03 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Pb-210 8.1e03 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Page 121: Activitatea 1.1

A1.28

Bi-207 1.4e04 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Bi-210 5.0e00 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Po-210 1.4e02 0 0 0 0 0 0 1.0e-2 NC,NC,NC,NC,NC,NC,NC,NC !

Ra-226 5.8e05 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Ac-227 7.9e03 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Ac-228 2.6e-01 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Th-227 1.9e01 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Th-228 7.0e02 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Th-230 2.8e07 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Th-231 1.1e00 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Th-232 5.1e12 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Pa-231 1.2e07 0 0 0 0 .008 .012 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Pa-233 2.7e01 0 0 0 0 .008 .012 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

U-232 2.6e04 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

U-233 5.8e07 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

U-234 8.9e07 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

U-235 2.6e11 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

U-236 8.5e09 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

U-238 1.6e12 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

U-Depleted 1.6e12 0 0 0 0 0 0 NC NC,NC,NC,NC,NC,NC,NC,NC !

U-Natural 1.6e12 0 0 0 0 0 0 NC NC,NC,NC,NC,NC,NC,NC,NC !

U-Enriched 8.9e07 0 0 0 0 0 0 NC NC,NC,NC,NC,NC,NC,NC,NC !

Np-237 7.8e08 0 0 0 0 .01 .03 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Np-239 2.4e00 1600000 0.80e-8 0.22e-8 0 .01 .03 1.0e-3 13.8e00,13.0e00,12.0e00,10.4e00,5.8e00,1.8,2.0e-01,0.0 !

Pu-236 1.0e03 0 0 0 0 .01 .03 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Pu-238 3.2e04 57.027017 0 0 0 .01 .03 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Pu-239 8.8e06 21 0 0 0 .01 .03 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Pu-240 2.4e06 21 0 0 0 .01 .03 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Pu-241 5.3e03 3405.4045 0 0 0 .01 .03 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Pu-242 1.4e08 0 0 0 0 .01 .03 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Am-241 1.6e05 1.6999998 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Am-242m 5.5e04 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Am-243 2.7e06 0 0 0 0 0 0 1.0e-3 NC,NC,NC,NC,NC,NC,NC,NC !

Cm-242 1.6e02 500 0 0 0 0 0 NC NC,NC,NC,NC,NC,NC,NC,NC !

Cm-243 1.0e04 0 0 0 0 0 0 NC NC,NC,NC,NC,NC,NC,NC,NC !

Cm-244 6.6e03 23 0 0 0 0 0 NC NC,NC,NC,NC,NC,NC,NC,NC !

Cm-245 3.1e06 0 0 0 0 0 0 NC NC,NC,NC,NC,NC,NC,NC,NC !

Cf-252 9.6e02 0 0 0 0 0 0 NC NC,NC,NC,NC,NC,NC,NC,NC !

B. PARTICULATE/AEROSOL RELEASE REDUCTION FACTORS

_________________________________________________

Standby Gas Treatment System Filters:

- Dry-low pressure flow: 0.01

- Wet-high pressure flow (blowout): 1

Other Filters:

- Other dry-low pressure: 1

- Other wet-high pressure flow (blowout): 1

Suppression Pool Scrubbing:

- Pool sub-cooled 0.5-1.0 m: 0.5

- Pool sub-cooled 1.0-2.0 m: 0.1

- Pool sub-cooled >2.0 m: 0.05

- Pool saturated: 1

- Pool bypass: 1

Removal of Suspended Aerosols and Particulate:

- Natural processes, no sprays, <1 hour holdup time: 0.75

- Natural processes, no sprays, 1 to 12 hour holdup time: 0.36

- Natural processes, no sprays, >12 hour holdup time: 0.03

- Sprays on, <1 hour holdup time: 0.03

- Sprays on, 1 to 12 hour holdup time: 0.02

Page 122: Activitatea 1.1

A1.29

- Sprays on, >12 hour holdup time: 0.01

Ice Condenser:

- One pass through condenser: 0.5

- Continual recirculation through condenser: 0.25

- Ice bed exhausted before core damage: 1

Primary System Retention (plate-out):

- Plate-out in bypass accidents: 0.2

Steam generator partitioning, liquid release from reactor cooling system:

- Steam generator partitioned: 0.02

- Steam generator not partitioned: 0.5

- Air ejector: 0.02

C. ESCAPE FRACTIONS

___________________

Primary containment failure leakage:

- PWR large dry or subatmospheric containment, design leakage: 0.00004

- PWR ice condenser, design leakage: 0.0001

- BWR, at 0.5%/day, design leakage: 0.0002

- Failure to isolate, 100%/day - via compromised isolation valve seal: 0.04

- Catastrophic failure, 100%/hour puff: 1

Steam generator tube rupture:

- SGTR 1 tube at full pressure, coolant leak 500 gpm (110 m3/h): 0.35

- SGTR 1 tube at low pressure single charging pump flow, coolant leak 50 gpm (11 m3/h): 0.03

A.1.5. Reference data in N-WATCHDOG dosimetry The User-interface format

THE MIX

_______

Build mix by

(i) discarding unnecessary lines,

(ii) entering the appropriate values for nuclide 'Activity'; and, if appropriate,

(iii) adjusting the dose conversion factors.

__________________________________________________________________________________

NUCLIDE ACTIVITY Halflife DCFe,50 DCFbone DCFlung DCFthyd DCFgi DCFai

. (mSv/h)/ (mSv/h)/ (mSv/h)/ (mSv/h)/ (mSv/h)/ (mSv/h)/

. (kBq) (d) (kBq/m3) (kBq/m3) (kBq/m3) (kBq/m3) (kBq/m2) (kBq/m3)

_______________________________________________________________________________________________________

H-3 1.0 4.5e03 5.40e-05 2.58e-06 2.58e-06 0.00e00 0.00e00 0.00e00

C-14 1.0 2.1e06 2.40e-03 2.27e-05 2.27e-05 0.00e00 4.57e-11 9.36e-09

Na-22 1.0 9.5e02 1.56e-03 0.00e00 0.00e00 0.00e00 7.38e-06 3.67e-04

Na-24 1.0 6.3e-01 3.24e-04 1.72e-04 1.34e-03 0.00e00 1.29e-05 7.49e-04

P-32 1.0 1.4e01 4.08e-03 4.50e-04 4.30e-03 0.00e00 3.07e-07 1.93e-06

P-33 1.0 2.5e01 1.80e-03 0.00e00 0.00e00 0.00e00 1.31e-10 5.22e-08

S-35 1.0 8.7e01 1.68e-03 7.50e-06 3.28e-04 0.00e00 4.79e-11 1.12e-08

Cl-36 1.0 1.1e08 8.76e-03 0.00e00 0.00e00 0.00e00 4.03e-08 5.98e-07

Page 123: Activitatea 1.1

A1.30

K-40 1.0 4.7e11 2.52e-03 0.00e00 0.00e00 0.00e00 7.34e-07 2.85e-05

K-42 1.0 5.2e-01 1.44e-04 0.00e00 0.00e00 0.00e00 1.43e-06 5.33e-05

Ca-45 1.0 1.6e02 3.24e-03 0.00e00 0.00e00 0.00e00 1.36e-10 5.51e-08

Sc-46 1.0 8.4e01 8.16e-03 0.00e00 0.00e00 0.00e00 6.77e-06 3.37e-04

Ti-44 1.0 1.7e04 1.44e-01 0.00e00 0.00e00 0.00e00 4.25e-07 1.69e-05

V-48 1.0 1.6e01 2.88e-03 0.00e00 0.00e00 0.00e00 9.79e-06 4.90e-04

Cr-51 1.0 2.8e01 4.44e-05 3.56e-06 4.30e-05 0.00e00 1.07e-07 4.97e-06

Mn-54 1.0 3.1e02 1.02e-03 9.20e-05 3.00e-04 0.00e00 2.85e-06 1.38e-04

Mn-56 1.0 1.1e-01 1.44e-04 0.00e00 0.00e00 0.00e00 5.83e-06 2.94e-04

Fe-55 1.0 9.9e02 4.56e-04 1.11e-06 3.76e-05 0.00e00 0.00e00 0.00e00

Co-58 1.0 7.1e01 1.92e-03 6.90e-05 5.70e-04 0.00e00 3.33e-06 1.60e-04

Fe-59 1.0 4.5e01 4.44e-03 1.29e-04 1.21e-03 0.00e00 3.96e-06 2.02e-04

Co-60 1.0 1.9e03 1.20e-02 1.66e-04 1.46e-03 0.00e00 8.28e-06 4.28e-04

Ni-63 1.0 3.5e04 1.56e-03 3.16e-06 1.14e-04 0.00e00 0.00e00 0.00e00

Cu-64 1.0 5.3e-01 1.44e-04 0.00e00 0.00e00 0.00e00 6.59e-07 3.06e-05

Zn-65 1.0 2.4e02 1.92e-03 4.80e-05 2.60e-04 0.00e00 1.95e-06 9.79e-05

Ga-68 1.0 4.7e-02 5.88e-05 2.50e-06 2.52e-04 0.00e00 3.60e-06 1.54e-04

Ge-68 1.0 2.9e02 1.68e-02 0.00e00 0.00e00 0.00e00 2.37e-6 1.65e-4

Se-75 1.0 1.2e02 1.56e-03 5.30e-05 2.80e-04 0.00e00 1.30e-06 6.05e-05

Kr-85 1.0 3.9e03 1.98e-07 0.00e00 0.00e00 0.00e00 0.00e00 9.17e-07

Kr-85m 1.0 1.9e-01 1.26e-07 0.00e00 0.00e00 0.00e00 0.00e00 2.46e-05

Kr-87 1.0 5.3e-02 4.22e-07 0.00e00 0.00e00 0.00e00 0.00e00 1.42e-04

Kr-88 1.0 1.2e-01 1.01e-06 0.00e00 0.00e00 0.00e00 0.00e00 3.50e-4

Rb-86 1.0 1.9e01 1.12e-03 2.17e-04 1.88e-03 0.00e00 6.01e-07 1.78e-05

Rb-87 1.0 1.7e13 6.00e-04 0.00e00 0.00e00 0.00e00 2.63e-10 1.19e-07

Rb-88 1.0 1.2e-02 1.92e-05 0.00e00 0.00e00 0.00e00 2.67e-06 1.20e-04

Sr-89 1.0 5.1e01 7.32e-03 2.20e-04 3.92e-03 0.00e00 2.47e-07 1.57e-06

Sr-90 1.0 1.1e04 4.32e-02 2.36e-04 3.30e-03 0.00e00 5.90e-09 3.54e-07

Sr-91 1.0 4.00e-01 4.92e-04 0.00e00 0.00e00 0.00e00 2.62e-06 1.18e-04

Y-90 1.0 2.70e00 1.80e-03 9.30e-05 4.52e-03 0.00e00 3.96e-07 2.85e-06

Y-91 1.0 5.90e01 1.07e-02 9.90e-05 4.10e-03 0.00e00 2.69e-07 2.24e-06

Y-91m 1.0 3.5e-02 1.32e-05 0.00e00 0.00e00 0.00e00 1.84e-06 8.53e-05

Zr-93 1.0 5.6e08 3.00e-02 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00

Zr-95 1.0 6.4e01 5.76e-03 2.05e-04 1.06e-03 0.00e00 2.53e-06 1.21e-04

Nb-94 1.0 7.4e06 5.88e-02 0.00e00 0.00e00 0.00e00 5.36e-06 2.59e-04

Nb-95 1.0 3.5e01 1.80e-03 7.00e-05 5.40e-04 0.00e00 2.62e-06 1.26e-04

Mo-99 1.0 2.8e00 1.07e-03 1.24e-04 2.04e-03 0.00e00 6.41e-07 2.52e-05

Tc-99 1.0 7.8e07 4.80e-03 1.20e-05 6.80e-04 0.00e00 2.33e-10 1.03e-07

Tc-99m 1.0 2.5e-01 2.28e-05 3.62e-06 3.52e-05 0.00e00 4.10e-07 1.89e-05

Ru-103 1.0 3.9e01 2.88e-03 6.10e-05 9.10e-04 0.00e00 1.62e-06 7.49e-05

Ru-105 1.0 1.9e-01 2.04e-04 0.00e00 0.00e00 0.00e00 2.82e-06 1.28e-04

Rh-106 1.0 3.5e-04 0.00e00 0.00e00 0.00e00 0.00e00 1.24e-06 3.82e-05

Ru-106 1.0 3.7e02 3.36e-02 2.39e-04 9.80e-03 0.00e00 1.24e-6 3.82e-5

Ag-110m 1.0 2.5e02 9.12e-03 2.30e-04 1.51e-03 0.00e00 9.29e-06 4.57e-04

Cd-109 1.0 4.6e02 9.72e-03 0.00e00 0.00e00 0.00e00 8.11e-8 1.75e-6

Cd-113m 1.0 5.0e03 1.32e-01 0.00e00 0.00e00 0.00e00 6.37e-09 3.26e-07

In-114m 1.0 5.0e01 1.12e-02 0.00e00 0.00e00 0.00e00 3.11e-07 1.40e-05

Sn-113 1.0 1.2e02 3.24e-03 0.00e00 0.00e00 0.00e00 7.06e-7 4.49e-5

Sn-123 1.0 1.3e02 9.72e-03 0.00e00 0.00e00 0.00e00 2.34e-07 2.51e-06

Sb-124 1.0 6.0e01 7.68e-03 2.82e-04 3.10e-03 0.00e00 6.12e-06 3.10e-04

Sb-126 1.0 1.2e01 3.36e-03 0.00e00 0.00e00 0.00e00 9.79e-06 4.61e-04

Sb-126m 1.0 1.3e-02 2.28e-05 0.00e00 0.00e00 0.00e00 5.58e-06 2.52e-04

Sb-127 1.0 3.9e00 2.04e-03 0.00e00 0.00e00 0.00e00 2.43e-06 1.12e-04

Sb-129 1.0 1.8e-01 2.76e-04 0.00e00 0.00e00 0.00e00 4.93e-06 2.42e-04

Te-127 1.0 3.9e-01 1.56e-04 0.00e00 0.00e00 0.00e00 3.71e-08 1.20e-06

Page 124: Activitatea 1.1

A1.31

Te-127m 1.0 1.1e02 8.88e-03 1.32e-04 1.57e-03 0.00e00 3.08e-08 4.03e-07

Te-129 1.0 4.8e-02 4.44e-05 0.00e00 0.00e00 0.00e00 4.10e-07 1.03e-05

Te-129m 1.0 3.4e01 7.92e-03 2.72e-04 3.92e-03 0.00e00 2.05e-07 5.62e-06

Te-131 1.0 1.7e-02 3.36e-05 0.00e00 0.00e00 3.16e-03 1.71e-06 6.91e-05

Te-131m 1.0 1.3e00 1.13e-03 1.26e-04 1.64e-03 4.33e-02 4.82e-06 2.36e-04

Te-132 1.0 3.3e00 2.40e-03 9.90e-05 6.40e-04 3.00e-02 8.89e-06 4.21e-04

I-125 1.0 6.0e01 6.12e-03 5.44e-06 8.50e-05 1.20e-01 1.13e-07 1.34e-06

I-129 1.0 5.7e09 4.32e-02 5.66e-06 1.92e-04 8.52e-01 7.02e-08 1.01e-06

I-131 1.0 8.0e00 8.88e-03 2.38e-05 5.66e-04 1.80e-01 1.31e-06 6.08e-05

I-132 1.0 9.6e-02 1.13e-04 1.68e-05 3.24e-04 1.68e-03 7.92e-06 3.78e-04

I-133 1.0 8.7e-01 1.80e-03 2.74e-05 8.64e-04 3.36e-02 2.22e-06 9.94e-05

I-134 1.0 3.7e-02 5.40e-05 7.32e-06 1.68e-04 3.12e-04 9.11e-06 4.39e-04

I-135 1.0 2.8e-01 3.84e-04 2.64e-05 5.18e-04 6.84e-03 5.29e-6 2.71e-4

Xe-131m 1.0 1.2e01 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00 1.33e-06

Xe-133 1.0 5.2e00 5.19e-07 0.00e00 0.00e00 0.00e00 0.00e00 5.00e-06

Xe-133m 1.0 2.2e00 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00 4.58e-06

Xe-135 1.0 3.8e-01 6.81e-07 0.00e00 0.00e00 0.00e00 0.00e00 4.00e-05

Xe-135m 1.0 1.1e-02 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00 6.67e-05

Xe-138 1.0 9.8e-03 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00 1.96e-04

Cs-134 1.0 7.5e02 7.92e-03 2.01e-04 8.20e-04 0.00e00 5.33e-06 2.54e-04

Cs-135 1.0 8.4e08 8.28e-04 1.66e-05 2.02e-04 0.00e00 9.68e-11 3.42e-08

Cs-136 1.0 1.3e01 1.44e-03 2.26e-04 8.10e-04 0.00e00 7.31e-06 3.58e-04

Cs-137 1.0 1.1e04 5.52e-03 1.20e-04 8.60e-04 0.00e00 1.98e-06 9.18e-05

Cs-138 1.0 2.2e-02 2.88e-05 0.00e00 0.00e00 0.00e00 8.14e-06 4.14e-04

Ba-133 1.0 3.9e03 3.72e-03 0.00e00 0.00e00 0.00e00 1.34e-06 5.83e-05

Ba-137m 1.0 1.8e-03 0.00e00 0.00e00 0.00e00 0.00e00 2.08e-06 9.68e-05

Ba-140 1.0 1.3e01 6.12e-03 1.54e-04 1.18e-03 0.00e00 6.84e-07 2.91e-05

La-140 1.0 1.7e00 1.32e-03 2.16e-04 2.60e-03 0.00e00 7.78e-06 4.00e-04

Ce-141 1.0 3.3e01 3.84e-03 2.21e-05 1.17e-03 0.00e00 2.49e-07 1.12e-05

Ce-144 1.0 2.8e02 4.32e-02 1.02e-04 8.90e-03 0.00e00 6.55e-7 1.23e-5

Pr-144 1.0 1.2e-02 2.16e-05 0.00e00 0.00e00 0.00e00 5.87e-07 9.54e-06

Pr-144m 1.0 5.0e-03 0.00e00 0.00e00 0.00e00 0.00e00 3.78e-08 7.92e-07

Pm-145 1.0 6.5e03 4.32e-03 0.00e00 0.00e00 0.00e00 9.40e-08 1.98e-06

Pm-147 1.0 9.6e02 6.00e-03 9.40e-06 4.40e-04 0.00e00 1.01e-10 3.12e-08

Sm-147 1.0 3.9e13 1.15e01 0.00e00 0.00e00 0.00e00 0.00e00 0.00e00

Sm-151 1.0 3.3e04 4.80e-03 2.98e-06 1.33e-04 0.00e00 1.27e-11 8.86e-11

Eu-152 1.0 4.9e03 5.04e-02 1.13e-04 1.31e-03 0.00e00 3.89e-06 1.90e-04

Eu-154 1.0 3.2e03 6.36e-02 1.38e-04 2.36e-03 0.00e00 4.21e-06 2.07e-04

Eu-155 1.0 1.8e03 8.28e-03 2.04e-05 4.50e-04 0.00e00 1.93e-07 7.70e-06

Gd-153 1.0 2.4e02 2.52e-03 0.00e00 0.00e00 0.00e00 3.32e-07 1.12e-05

Tb-160 1.0 7.2e01 8.40e-03 0.00e00 0.00e00 0.00e00 3.82e-06 1.87e-04

Ho-166m 1.0 4.4e05 1.44e-01 0.00e00 0.00e00 0.00e00 5.94e-06 2.82e-04

Tm-170 1.0 1.3e02 8.40e-03 0.00e00 0.00e00 0.00e00 9.50e-08 1.32e-06

Yb-169 1.0 3.2e01 3.00e-03 7.10e-05 9.90e-04 0.00e00 1.00e-06 4.07e-05

Hf-172 1.0 6.8e02 3.84e-02 0.00e00 0.00e00 0.00e00 3.57e-07 1.22e-05

Hf-181 1.0 4.2e01 6.00e-03 0.00e00 0.00e00 0.00e00 1.89e-06 8.71e-05

Ta-182 1.0 1.1e02 1.20e-02 0.00e00 0.00e00 0.00e00 4.32e-06 2.16e-04

W-187 1.0 1.0e00 2.28e-04 0.00e00 0.00e00 0.00e00 1.68e-06 7.67e-05

Ir-192 1.0 7.4e01 7.92e-03 1.02e-04 1.77e-03 0.00e00 2.80e-06 1.30e-04

Au-198 1.0 2.7e00 1.03e-03 0.00e00 0.00e00 0.00e00 1.47e-06 6.52e-05

Hg-203 1.0 4.7e01 2.88e-03 0.00e00 0.00e00 0.00e00 7.99e-07 3.74e-05

Tl-204 1.0 1.4e03 4.68e-04 0.00e00 0.00e00 0.00e00 3.89e-08 6.16e-07

Pb-210 1.0 8.1e03 6.72e00 6.32e-05 1.93e-02 0.00e00 7.67e-09 1.61e-07

Bi-207 1.0 1.4e04 6.72e-03 0.00e00 0.00e00 0.00e00 5.22e-06 2.53e-04

Bi-210 1.0 5.0e00 1.12e-01 0.00e00 0.00e00 0.00e00 1.26e-07 9.29e-07

Page 125: Activitatea 1.1

A1.32

Po-210 1.0 1.4e02 3.96e00 7.70e-03 3.54e-01 0.00e00 2.91e-11 1.40e-09

Ra-226 1.0 5.8e05 4.20e00 1.55e-03 3.18e-01 0.00e00 2.20e-08 1.02e-06

Ac-227 1.0 7.9e03 2.64e02 0.00e00 0.00e00 0.00e00 5.08e-10 1.84e-08

Ac-228 1.0 2.6e-01 3.00e-02 0.00e00 0.00e00 0.00e00 3.38e-06 1.62e-04

Th-227 1.0 1.9e01 1.02e01 1.91e-02 5.51e-01 0.00e00 3.53e-07 1.59e-05

Th-228 1.0 7.0e02 4.80e01 3.07e-02 7.91e-01 0.00e00 7.67e-09 2.92e-07

Th-230 1.0 2.8e07 1.20e02 9.80e-03 3.30e-01 0.00e00 2.29e-09 5.33e-08

Th-231 1.0 1.1e00 3.72e-04 0.00e00 0.00e00 0.00e00 5.58e-08 1.65e-06

Th-232 1.0 5.1e12 1.32e02 8.40e-03 2.78e-01 0.00e00 1.64e-09 2.61e-08

Pa-231 1.0 1.2e07 1.68e02 6.71e-03 3.51e-01 0.00e00 1.36e-07 5.65e-06

Pa-233 1.0 2.7e01 4.68e-03 0.00e00 0.00e00 0.00e00 6.70e-07 3.08e-05

U-232 1.0 2.6e04 9.36e00 3.34e-03 3.74e-01 0.00e00 2.91e-09 4.21e-08

U-233 1.0 5.8e07 4.32e00 0.00e00 0.00e00 0.00e00 2.16e-09 5.11e-08

U-234 1.0 8.9e07 4.20e00 2.96e-03 3.34e-01 0.00e00 2.11e-09 2.20e-08

U-235 1.0 2.6e11 3.72e00 2.80e-03 3.08e-01 0.00e00 5.04e-07 2.33e-05

U-236 1.0 8.5e09 3.84e00 2.80e-03 3.14e-01 0.00e00 1.81e-09 1.39e-08

U-238 1.0 1.6e12 3.48e00 2.61e-03 2.94e-01 0.00e00 1.52e-09 9.00e-09

Udepleted/na 1.0 1.6e12 3.84e01 2.61e-03 2.94e-01 0.00e00 1.39e-09 1.23e-08

Uenriched 1.0 8.9e07 4.30e01 2.96e-03 3.34e-01 0.00e00 1.88e-09 2.74e-08

UF6 1.0 8.9e07 8.65e-04 2.96e-03 0.00e00 0.00e00 1.88e-09 2.74e-08

NP-237 1.0 7.8e08 2.76e01 7.32e-03 3.19e-01 0.00e00 9.07e-08 3.19e-06

NP-239 1.0 2.4e00 1.12e-03 3.70e-05 1.23e-03 0.00e00 5.54e-07 2.50e-05

Pu-236 1.0 1.0e03 4.80e01 0.00e00 0.00e00 0.00e00 2.65e-09 1.68e-08

Pu-238 1.0 3.2e04 5.52e01 8.30e-03 3.78e-01 0.00e00 2.25e-09 1.26e-08

Pu-239 1.0 8.8e06 6.00e01 7.90e-03 3.56e-01 0.00e00 1.02e-09 1.25e-08

Pu-240 1.0 2.4e06 6.00e01 7.90e-03 3.58e-01 0.00e00 2.16e-09 1.23e-08

Pu-241 1.0 5.3e03 1.08e00 1.06e-06 4.84e-05 0.00e00 6.19e-12 2.28e-10

Pu-242 1.0 1.4e08 5.76e01 7.30e-03 3.38e-01 0.00e00 1.79e-09 1.04e-08

Am-241 1.0 1.6e05 5.04e01 8.22e-03 3.70e-01 0.00e00 8.39e-08 2.43e-06

Am-242m 1.0 5.5e04 4.44e01 0.00e00 0.00e00 0.00e00 8.14e-09 8.96e-08

Am-243 1.0 2.7e06 4.92e01 7.94e-03 3.55e-01 0.00e00 1.72e-07 6.66e-06

Cm-242 1.0 1.6e02 6.24e00 9.20e-03 4.08e-01 0.00e00 2.53e-09 1.45e-08

Cm-243 1.0 1.0e04 3.72e01 8.84e-03 3.93e-01 0.00e00 4.25e-07 1.91e-05

Cm-244 1.0 6.6e03 3.24e01 8.80e-03 3.92e-01 0.00e00 2.32e-09 1.22e-08

Cm-245 1.0 3.1e06 5.04e01 0.00e00 0.00e00 0.00e00 2.90e-07 1.26e-05

Cf-252 1.0 9.6e02 2.40e01 0.00e00 0.00e00 0.00e00 1.89e-09 1.31e-08

A.1.6. Nuclear emergency-oriented knowledge elements and guides Primary source: U.S. NRC, DOE, EPA, FRMAC

1. EVENT DIAGNOSE GUIDES

_________________________________________________________________________

IDENTIFY WHERE Color BASIS - DRLs CAUTION-NOTES

_________________________________________________________________________

Emergency Worker Exposure rate and Limits based on expo

Limits are inhalation dose rates - valid only

Exceeded estimates (Manual's for releases with

Method 2.1) substantial gamma

emitters.

__________________________________________________________________________

Page 126: Activitatea 1.1

A1.33

Early Health Effects Red Exposure rate Based on expo rates

Possible > 1000 R/h only and valid only

(Method 3.1 & 3.2) for accidents where

inhalation is not

important. Area may

expand once addi-

tional data becomes

available.

Isotopic analysis This may change as

considering external additional analysis

exposure and inhala- is performed

lation (Method 3.1 &

3.2)

Early Phase PAG Red Exposure rate Based on expo rates

exceeded > 10 mR/h only expo rates only

(Method 3.1 & 3.2) and valid only for

accidents where

inhalation is not

important. Area may

expand as additional

information becomes

available.

Isotopic analysis

considering external

exposure and inhalation

(Method 3.1 & 3.2)

_________________________________________________________________________

Intermediate Phase Blue Exposure rate Based on expo rates

Relocation PAGs > 0.2 mR/h or LWR only and valid only

Exceeded curves for accidents where

( Restricted Zone) (Method 4.1) resuspension is not

important. This may

change as additional

analysis performed.

Isotopic analysis This may change as

considering external additional analysis

exposure and inhala- is performed.

tion. (Method 4.2)

Short term Blue Exposure rate Areas identified

consumption of food > background or LWR based on expo rates.

produced in these curves Most likely to be

areas may exceed (Method 5.1) expanded as additio-

Ingestion PAGs. nal analysis availbl.

Isotopic analysis of Areas may change

ground contamination based on food & water

(Method 5.2 & 5.3) sample analysis.

Food & water samples This may change as

(Method 5.4 & 5.5) additional analysis

Page 127: Activitatea 1.1

A1.34

is performed.

_________________________________________________________________________

Detectable contamina- Green Isotopic analysis. No person exceeding

tion but no identi- All concentrations any of the Federal

fiable short term below DRLs indicating or State PAG. May

concern PAGs exceeded change on more info.

_________________________________________________________________________

Monitored -- no iden- Black May change on more

tifiable contamination information.

__________________________________________________________________________

2. GUIDANCE ON DOSE LIMITS FOR WORKERS PERFORMING EMERGENCY SERVICES

_________________________________________________________________________

TEDE EYE Other Organ

Dose Limit(a) Dose Limit Thyroid Activity Condition

(mrem) (mrem) Skin Limit (mrem)

_________________________________________________________________________

5,000 15,000 50,000 All

10,000 30,000 100,000 Protecting Lower dose

valuable not practicable

property

25,000 75,000 250,000 Life saving Lower dose

or protectn. not practicable

of large

populations

>25,000 >75,000 >250,000 Life saving Only on a

or protectn. voluntary basis

of large by persons

populations fully aware of

the risks

involved.

(Table 2.2, 2.3)

_________________________________________________________________________

a) Summ of External Effective Dose Equivalent and Committed Effective

Dose Equivalent to nonpregnant adults from exposure and intake

during an emergency situation. Workers performing services during

emergencies should limit dose to the lens of the eye to three times

the listed value and doses to any other organ (including skin and

body extremities) to ten times the listed value. Limits apply to all

doses from an incident, except those received in unrestricted areas

as members of the public during the Intermediate Phase (Chaptrs 3,4).

Source: EPA92

Page 128: Activitatea 1.1

A1.35

3. HEALTH EFFECTS ASSOCIATED WITH WHOLE BODY ABSORBED DOSES OVER A FEW HOURS

________________________________________________________________________

Whole Body Early Whole Body Prodromal

Absorbed Dose Fatalities (a) Absorbed Dose Effects (b)

(rad) (percent) (rad) (percent affected)

_________________________________________________________________________

140 5 50 2

200 15 100 15

300 50 150 50

400 85 200 85

460 95 250 98

_________________________________________________________________________

N.B. Risks will be lower for protracted exposure periods.

a) Supportive medical treatment may increase the dose at which these

frequencies occur by approximately 50%.

b) Forwarning symptoms of more serious health effects associated with

large doses of radiation.

Source: EPA92

4. APPX.CANCER RISK TO AVERAGE INDIVIDUAL FROM 25 REM EDE DELIVERED PROMPTLY

_________________________________________________________________________

Age at Appropriate risk Average Years of Life Lost

Exposure of premature death if premature death occurs

(years) (deaths per 1,000 (years)

persons exposed)

_________________________________________________________________________

20 to 30 9.1 24

30 to 40 7.2 19

40 to 50 5.3 15

50 to 60 3.5 11

_________________________________________________________________________

Source: EPA92

5. LWR ACCIDENT INTEGRATED EXPOSURE EMERGENCY WORKER TURN BACK LIMITS

__________________________________________________________________________

Turn Back Limit

___________________________________________

Integrated Exposure Reading on Self Reading

Dosimeter That Must Not Be Exceeded

Emergency Activity -------------------------------------------

KI not taken KI taken Certified

(a) before respiratory pro-

exposure tection used or

(b) confirmation of

no inhalation dose

Page 129: Activitatea 1.1

A1.36

possible (c)

_________________________________________________________________________

mR mR mR

_________________________________________________________________________

All 250 - 500 1000 5000

Protecting valuable 500 - 1000 2000 10000

property

Life saving or 1250 - 2500 5000 25000

protecting large

populations

Life saving or >1250 - 2500 >5000 >25000

protecting large

populations

Voluntary (d)

_________________________________________________________________________

Note: These are the readings on a self-reading dosimeter (integrated

exposure) that indicate that the Emergency Worker Limits for TEDE

listed in Manual's Table 2.1 may be exceeded from external exposure

and inhalation. The limits only apply to LWR accidents involving

core damage.

-------------------------

a) Based on the thyroid dose and limit; use the lower limit if core

damage and a substantial release of iodine is confirmed.

b) Based on TEDE limit.

c) Assume no inhalation dose.

d) On a voluntary basis by persons fully aware of the risks. Use

Manual's Tables 2.3, 2.4, and 3.1 to illustrate risks.

6. EARLY PHASE PRIORITIZED TASKS I

_________________________________________________________________________

CRUCIAL TASKS NECESSARY INFORMATION METHOD

_________________________________________________________________________

Determine if Early Isotopic mix (relative abun- M.3.1 Calculate the

Effects Thresholds dance) based on in-situ mea- Early Phase Dose from

or Early Phase PAGs surements, references, or Exposure Rates, Air

may be exceeded. information provided by Concentrations or

operator Depositions.

AND

Maximum Exposure Rate (mR/h)

in the plume @ 1m AGL

AND/OR

Airborne concentrations &

Depositions

Project the distance Results from Method 3.1 M.3.4 Project Expo-

to which PAGs or sure, Dose or Con-

Early Phase Effects centrations downwind

Page 130: Activitatea 1.1

A1.37

may be exceeded. from a measurement.

Early Phase PAG

exceeded

After plume passage, Isotopic mix (relative abun- M.3.2 Calculate Expo-

evaluate deposition dance) based on in-situ mea- sure rate DRL or

and develop DRLs to surements, references or Marker Isotope Con-

determine if Early information provided by centration DRL for

Phase PAGs may be operator Deposition.

exceeded. AND

BASED ON ACCIDENT TYPE

CHOOSE ONE:

Accidents where exposure rate

measurements identify the

area of concern. Maximum

exposure rate (mR/h) in the

plume @ 1m AGL

OR

Accidents where resuspension

is a concern and exposure

rates are insufficient to

identify the area of concern.

* Deposition of a gamma-

emitting 'Marker Isotope'

easily identified in the

field or lab

OR

* When no gamma emitter is

detectable, comprehensive

isotopic analysis of depo-

sition.

_________________________________________________________________________

7. EARLY PHASE PRIORITIZED TASKS II (CONTINUED)

_________________________________________________________________________

CRUCIAL TASKS NECESSARY INFORMATION METHOD

_________________________________________________________________________

--- continued ---

Recalculate or con- Resuspension air concentra- M.3.7 Estimate re-

firm resuspension tions relative to deposition suspension factors

factors based on (uCi/m3)/(uCi/m2) based on samples.

actual data to ad-

just DRL or dose.

Estimate or confirm Airborne Concentrations M.3.8 Estimate release

reelease rates for rates based on Air-

input into model borne Concentrations.

calculations or to

characterize an

unmonitored release.

Estimate release M.3.9 Project release

mixture or doses and environmental

Page 131: Activitatea 1.1

A1.38

before field concentrations for

measurements are reactors, facilities

available and point sources.

Estimate future Maximum Exposure Rate M.3.6 Estimate future

dose rates to the (mR/h) @ 1m AGL. Exposure (or Dose)

public or emergency Rates from Deposition

workers remaining

on deposition.

Consideration of Comprehensive isotopic M.3.3 Calculate Early

isotopes not con- analysis of deposition. Phase Deposition DCF

tained in Table Resuspension air concen- for unlisted isotopes

3.4 or to consider trations relative to or different resuspen-

different resus- deposition sion factors.

pension factors. (uCi/m3)/(uCi/m2)

Estimate dose reduc- Maximum exposure rate M.3.5 Calculate Dose

tion due to shiel- (mR/h) in the plume or @ reduction due to

ding from the plume 1m AGL. Sheltering.

and ground contami-

nation.

Consideration of M.3.10 Calculate air

isotopes not con- Submersion, Ground

tained in Tables Shine and Inhalation

3.3 or 3.4 or to DCF for unlisted iso-

consider different topes or to adjust

assumptions. assumptions.

_________________________________________________________________________

8. HEALTH EFFECTS OF EXPOSURE TO RADIATION

_________________________________________________________________________

Dose Dose

Organ Rate Threshold (e) Acute Health Effects

(rem/h) (rem)

_________________________________________________________________________

External >6 50 Vomiting might occur

Effective (c) 100 Diarrhea might occur

External >6 150 50% vomiting occurs

Effective (c) 300 50% diarrhea occurs

(high dose rates - in 1-3 hrs (a)

Thyroid >6 >3,000 Hypothyroidism (within 6 months)

Lung 1,000 700 Deaths might occur

Lung 100 2,000 Deaths might occur

Lung 50 4,000 Deaths might occur

Lung 10 16,000 Deaths might occur

Page 132: Activitatea 1.1

A1.39

Marrow/WB(c) 1,000 150 Deaths might occur (d,e)

Marrow/WB(c) 5 220 Deaths might occur (d,e)

Marrow/WB(c) 5 440 50% deaths (d)

Marrow/WB(c) 1 500 Deaths might occur (d,e)

Marrow/WB(c) 1 1,000 50% deaths (d)

Skin short,one 300-1,000 Erythema (in approximately 18 d)

exposure

Skin short,one 2,000-3,000 Erythema (in approximately 2-6 d)

exposure

Skin 200 rem/d 2,000-4,000 Erythema (in approx. 12-17 d)

Tissue short,one 3,000 rem + Tissue killed,

exposure must be surgically removed (b)

_________________________________________________________________________

N.B. Source: NRC89 except where noted: (a) IAEA74; (b) NRC82

(c) EDE from external sources (cloud and ground shine) is approximately

equal to Bone Marrow and Whole Body (WB) dose.

(d) For minimal treatment which involves no medical treatment beyond basic

first aid. Thresholds will be about 50% higher for supportive treat-

ment which involves the maximum medical treatment available in a nor-

mal hospital, but does not include bone marrow transplants.

(e) This is a threshold. Actual occurences at this level are unlikely.

(f) Thresholds are dose rate dependent.

9. EARLY PHASE PAGS

_________________________________________________________________________

Protective PAG (Pep) Comments

Action Projected Dose

_________________________________________________________________________

Evacuation (a) 1-5 rem TEDE (b) Evacuation (or for some situations

or Sheltering 5-25 rem thyroid sheltering (a)) should normally be

50-500 rem skin initiated at 1 rem.

Administration 25 rem (c) Requires approval of State Medical

of stable iodine (25,000 mrem) Officials.

_________________________________________________________________________

N.B. Source: EPA92

a) Sheltering may be the preferred protective action when it will

provide protection equal to or greater than evacuation, based on

consideration of factors such as source term characteristics, and

temporal or other site-specific conditions.

b) The sum of the Effective Dose Equivalent (EDE) from exposure to

external sources and the Commited Effective Dose Equivalent (CEDE)

Page 133: Activitatea 1.1

A1.40

incurred from all significant inhalation pathways during the early

phase. Committed dose equivalents (CDE) to the thyroid and skin

may be 5 and 50 times larger, respectively.

c) Committed Dose Equivalent (CDE) to the Thyroid from radioiodine.

10. STABILITY CLASSES & RELATIONSHIP TO STANDARD DEVIATION OF WIND DIRECTION

_________________________________________________________________________

Standard deviation Delta T

Class Description of horizontal wind (Lapse Rate)

direction (degrees) deg.C/100m

(sigma-theta)

_________________________________________________________________________

A Extremely unstable conditions 25 < -0.19

B Moderately unstable conditions 20 -1.9 to -1.7

C Slightly unstable conditions 15 -1.7 to -1.5

D Neutral conditions 10 -1.5 to -0.5

E Slightly stable Conditions 5 -0.5 to 1.5

F Moderately stable conditions 2.5 1.5 to 4.0

_________________________________________________________________________

Source: DOE84, page 591.

11. RELATIONSHIP OF STABILITY TO WEATHER CONDITIONS

________________________________________________________________________

Daytime insolation Nighttime

Surface (Solar radiation) conditions Day or night

winds ---------------------- -------------------------- Heavy

(m/s) Strong Moderate Slight Thin overcast <3/8 clouds overcast

or >4/8 clouds

_________________________________________________________________________

<2 A A-B B - - D

2 A-B B C E F D

4 B B-C C D E D

6 C C-D D D D D

>6 C D D D D D

________________________________________________________________________

Source: DOE84, page 221.

12. DILUTION FACTORS (DF XU/Q 1/M2)

_________________________________________________________________________

Page 134: Activitatea 1.1

A1.41

STABILITY

-------------------------------------------------------------------------

Miles class A class B class C class D class E class F

_________________________________________________________________________

<=.25 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03 1.0E-03

1.0 1.0E-06 6.0E-06 1.7E-05 5.4E-05 1.1E-04 2.5E-04

2.0 7.0E-07 1.5E-06 5.0E-06 2.0E-05 4.0E-05 1.0E-04

3.0 4.5E-07 6.5E-07 2.2E-06 1.2E-05 2.5E-05 6.0E-05

4.0 3.5E-07 4.5E-07 1.2E-06 8.0E-06 1.6E-05 4.0E-05

5.0 3.0E-07 4.0E-07 9.5E-07 5.0E-06 1.1E-05 3.0E-05

10.0 1.7E-07 2.2E-07 3.0E-07 2.0E-06 5.0E-06 1.2E-05

15.0 1.2E-07 1.5E-07 2.0E-07 1.0E-06 2.6E-06 7.0E-06

20.0 9.5E-08 1.1E-07 1.7E-07 7.0E-07 2.0E-06 5.0E-06

25.0 8.0E-08 9.0E-08 1.3E-07 4.5E-07 1.4E-06 4.0E-06

_________________________________________________________________________

Source: EPA70, Figures 3-5a through 3-5f

at a vertical dispersion limit of 1000 m

and a ground level release.

a) These factors are dominated by building wake. They are based on

an interpretation of NRC88, Figures 5, 6 and 7, pp 25-27.

13. REPRESENTATIVE SHIELDING FACTORS FROM GAMMA CLOUD SOURCE

_______________________________________________

Structure or location Shielding factor(a)

_______________________________________________

Outside 1.0

Vehicles 1.0

Wood-frame house (b) 0.9

(no basement)

Basement of wood house 0.6

Masonry house 0.6

(no basement)

Basement of masonry house 0.4

Large office 0.2

of industrial building

a) The ratio of the interior dose

to the exterior dose.

b) A wood frame house with brick or stone

veneer is approximately equivalent to a

masonry house, for shielding purposes.

_______________________________________________

Page 135: Activitatea 1.1

A1.42

Source: EGG75

14. REPRESENTATIVE SHIELDING FACTORS FROM SURFACE DEPOSITION

_________________________________________________________________________

Structure or location Representative shielding factor (a)

_________________________________________________________________________

Cars on fully contaminated road 0.50

Cars on fully decontaminated 50-ft road 0.25

Trains 0.40

One- and two-story wood frame house 0.40 (b)

(no basement) 0.20 (b)

One- and two-story block and brick 0.1 (b)

house (no basement)

House basement, one or two walls

fully exposed:

- One story, less than 2 ft of basement, 0.05 (b)

wall exposed

- Two stories, less than 2 ft of basement, 0.03 (b)

wall exposed

Three- or four-story structures,

5,000 to 10,000 sq.ft. per floor:

- First and second floors 0.05 (b)

- Basement 0.01 (b)

Multi-story structures,

> 10,000 sq.ft. per floor:

- Upper floors 0.01 (b)

- Basement 0.005 (b)

_________________________________________________________________________

a) The ratio of the interior dose to the exterior dose.

b) Away from doors and windows.

Source: EGG75

15. PRINCIPAL DOSE CONTRIBUTORS (90%) FROM SEVERE CORE DAMAGE ACCIDENTS

_________________________________________________________________________

Principal Dose-Contributing Isotopes

for a LWR Core Damage Accident

Page 136: Activitatea 1.1

A1.43

-------------------------------------------------------------------------

External (a) External (a) Bone (a) Ingestion (b) 1st yr from

exposure Exposure Marrow @ Day 7 Deposition

from plume from Plume External &

Deposition Inhalation Resuspension

(1st day) (c)

_________________________________________________________________________

I-132 Te-132 Te-132 I-131 Cs-134

I-135 I-133 Sr-89 Ba-140 Cs-137

I-133 I-135 Ba-140 Te-132 Ba-140

Kr-88 I-132 Cs-134 La-140 I-131

Te-132 I-131 I-131 Sr-89 Te-132

I-131 Te-131m I-133 Ce-144 Zr-95

Sb-129 Ba-140 Cs-137 Sr-90 La-140

Xe-135 La-140 I-135 I-133 Cs-136

Te-131m Sb-129 Cs-136 Te-129m Ru-103

I-134 Np-239 I-132 Np-239 Nb-95

Xe-133 Ru-103 I-132 Ru-106

Sr-90 Cs-134 Ce-144

Te-131m Ru-106 Pu-241

Y-91 Ce-141 Pu-238

Te-129m Y-91 Ce-141

_________________________________________________________________________

a) Source: WASH1400

b) Principal isotopes contributing to ingestion dose from those remaining

on Day 7 after shutdown.

c) Principal isotopes contributing to the 1st year dose from external

exposure and resuspension.

Listed are the isotopes that are projected to be the principal

contributors (>90%) to dose resulting from a severe core damage accident

and a major release.

16. ICRP-RECOMMENDED BREATHING RATES FOR THE REFERENCE MAN

_________________________________________________________________________

Minute Volume for Reference Man

----------------------------------------------------------

Adult man Adult woman Child(10 y) Infant(1 y) Newborn

_________________________________________________________________________

Resting 7.5 6.0 4.8 1.5 0.5

(L/min)

Light 20.0 19.0 13.0 4.2 1.5

Activity

(L/min)

Liters of air breathed for Reference Man

----------------------------------------

8 hr light 9600 9100 6240 2500 (10h) 90 (1h)

activity (L)

Page 137: Activitatea 1.1

A1.44

8 hr resting 3600 2900 2300 1300 (14) 690 (23h)

(L)

24 hr (L) (a) 23000 21000 15000 3800 800

_________________________________________________________________________

Source: ICRP74 (ICRP-23)

a) Includes 16 hr light activity and 8 hr resting except where noted.

17. RELOCATION ASSESSMENT PRIORITIZED TASKS I

_________________________________________________________________________

CRUCIAL TASKS NECESSARY INFORMATION METHOD

_________________________________________________________________________

For LWR and other Exposure Rates (mR/h) M.4.1 Evaluate depo-

accidents where in- @ 1m AGL sition exposure rates.

halation is not im-

portant, identify

where are relocation

concerns.

For accidents where Isotopic mix (relative M.4.2 Calculate expo-

inhalation may be abundance) based on in- sure rate DRLs for

important & with situ measurements, refe- deposition.

gamma emitters, rences or information

identify where there provided by operator

are relocation AND

concerns. BASED ON ACCIDENT TYPE

CHOOSE ONE

Accidents where exposure

rates identify the area

of concern - maximum expo-

sure rates (mR/h) @ 1 m AGL

OR

Accidents where resuspension

is a concern and exposure

rates are insufficient to

identify the area of concern -

deposition of a gamma-emitting

'Marker Isotope' easily iden-

tified in the field or lab.

For accidents where Resuspension air concentra- M.4.8 Estimate Inter-

resuspension is cri- tions relative to deposi- mediate Phase Resus-

tical, recalculate tions (uCi/m3)/(uCi/m2) pension Factors based

or confirm DRLs or on samples.

dose based on mea-

sured (vs assumed)

resuspension factors.

For accidents where Air concentrations in M.4.6 Calculate

inhalation is impor- populated areas Intermediate Phase

tant & with no dis- AND (Relocation) Dose

Page 138: Activitatea 1.1

A1.45

cernable gamma emit- Comprehensive isotopic from deposition.

ter in deposition, analysis of deposition.

identify where there

are relocation

concerns.

_________________________________________________________________________

18. RELOCATION ASSESSMENT PRIORITIZED TASKS II (CONTINUED)

_________________________________________________________________________

CRUCIAL TASKS NECESSARY INFORMATION METHOD

_________________________________________________________________________

--- continued ---

Consider isotopes Rsuspension air concentra- M.4.3 Calculate DCFs

not listed in the tions relative to ground for deposition for un-

Tables or consider concentrations listed isotopes or

different resuspen- (uCi/m3)/(uCi/m2). different resuspension

sion factors. Deposition. factors.

Estimate future Isotopic concentration M.4.4 Calculate future

deposition mix to (relative abundance) based isotopic activity.

calculate DRL curves on in-situ measurements,

as a function of references or information

time. provided by operator.

Estimate dose reduc- Maximum exposure rates M.4.5 Calculate dose

tion due to partial (mR/h @ 1m AGL) reduction due to par-

occupancy and decon- tial occupancy and

tamination. decontamination.

Calculate Inter- Isotopic concentration M.4.6 Calculate the

mediate Phase dose (relative abundance) based Intermediate Phase

from deposited on in-situ measurements, (Relocation) dose

material. references or information from deposition.

provided by operator

This method should AND

not be used for ge- BASED ON ACCIDENT TYPE

neral assessment of CHOOSE ONE

environmental data; Accidents where exposure

DRLs should be used rates identify the area of

(Method 4.2). concern - maximum exposure

rates (mR/h @ 1m AGL)

For accidents where OR

resuspension is cri- Accidents where resuspen-

tical, recalculate sion is a concern and

or confirm DRLs or exposure rates are insuf-

dose based on mea- ficient to identify the

sured (vs assumed) area of concern.

resuspension factors. * Deposition of a gamma

emitting 'Marker Iso-

For accidents where tope' easily identi-

inhalation is impor- fied in the field or

tant & with no dis- lab

Page 139: Activitatea 1.1

A1.46

cernable gamma emit- OR

ter in deposition, * When no gamma emitter

identify where there is detectable perform

are relocation comprehensive isotopic

concerns. analysis of deposition.

Y and Sr accidents: Deposition isotopic con- M.4.7 Calculate the

estimate skin dose centration based on in-situ skin dose from depo-

and see if Relocation measurements, references or sition resuspension.

PAGs are exceeded. information by operator.

_________________________________________________________________________

19. PAG & LTO FOR EXP.TO DEPOSITED RADIOACTIVE MATERIAL INTERMEDIATE PHASE

_________________________________________________________________________

Protective Action PAG (Pr) Comments

(Projected 1st year dose)

_________________________________________________________________________

Relocate the >= 2000 mrem EDE (a)

general population. (b)

> 100,000 mrem beta skin dose

Apply simple dose < 2000 mrem These protective

reduction techniques (c) actions should

be taken to re-

duce doses to as

low as practica-

ble levels.

_________________________________________________________________________

Source: EPA92

a) The projected sum of effective dose equivalent from external gamma

radiation and committed effective dose equivalent from inhalation of

resuspended materials, from exposure or intake during the first year.

Projected dose refers to the dose that would be received in the ab-

sence of shielding from structures or the application of dose reduc-

tion techniques. These PAG may not provide adequate protection from

some long-lived radionuclides; therefore, 1) doses in any single year

after the first will not exceed 0.5 rem, and 2) the cumulative dose

over 50 years (including the 1st and 2nd years) will not exceed 5 rem.

b) Persons previously evacuated from areas outside the relocation zone

defined by this PAG may return to occupy their residences. Cases in-

volving relocation of persons at high risk from such action (e.g.

patients under intensive care) should be evaluated individually.

c) Simple dose reduction techniques include scrubbing and/or flushing

hard surfaces, soaking or plowing soil, minor removal of soil from

spots where radioactive materials have concentrated, and spending

more time than usual indoors or in other low exposure rate areas.

_________________________________________________________________________

Page 140: Activitatea 1.1

A1.47

LONG TERM OBJECTIVES

-------------------------------------------------------------------------

Period Objective (b)

2nd year (a) ............................. 500 mrem

50 years ................................. 5000 mrem

_________________________________________________________________________

Source: EPA92

a) Any single year after the first year.

b) The projected sum of Effective Dose Equivalent from external gamma

radiation and Committed Effective Dose Equivalent from inhalation

of resuspended materials.

20. REDUCTION IN CS-137 EXTERNAL GAMMA DOSES FROM DECONTAMINATION

_________________________________________________________________________

Technique Time applied % Dose reduction (a)

1 year 50 years

_________________________________________________________________________

LOW IMPACT

Washing/vacuuming indoor 7 d neg neg

surfaces

Ammonium nitrate on buildings 30 d - 1 yr 1 1

Firehosing on buildings 1 - 7 d

MED IMPACT

Sweeping roads 7 d 10 5

Sandblasting buildings 30 d - 1 yr 5 5

Roof replacement 30 d - 1 yr 5 5

Grass cutting 7 d 10 10

Road planning 1 yr -- 10

HIGH IMPACT

Vacuum-sweeping roads 7 d 25 15

Firehosing roads 1 - 7 d 25 15

Soil removal to 10 cm 30 d - 1 yr 30 55

Ploughing soil to 30 cm 30 d - 1 yr 35 55

Road planning 30 d 45 25

_________________________________________________________________________

a) The dose reduction indicates the amount by which the total dose from

urban surfaces is reduced by the technique indicated.

Source: IAEA93, based on Chernobyl experience.

21. DECON EFFECTIVENESS - WEAPONS - TEMPERATE WEATHER

_________________________________________________________________________

Method Rate DF

Page 141: Activitatea 1.1

A1.48

(100 ft2/h)

_________________________________________________________________________

1. Roofs

a. Firehosing

1. Composition shingle 12 - 60 10 - 35

2. Tar and gravel 7 - 35 8 - 100

b. Firehosing and scrubbing

1. Tar and gravel 5 50

2. Composition shingle 5 50

3. Wood shingle 5 10

4. Corrugated sheet metal 5 100

2. Paved areas

a. Motorized flushers 100 - 300 25 - 50

b. Street sweepers 25 - 100 6 - 25

c. Vacuumized sweepers 25 - 100 4 - 50

d. Firehosing 5 - 25 15 - 50

3. Unpaved land areas

a. Grading (few inch.) 60 15

b. Ploughing 25 5

c. Scraping (several in.) 9 50

d. Bulldozing (several in.) 8.5 15

e. Filling

1. 6-in. fill 4 7

2. 12-in. fill 2 50

_________________________________________________________________________

Source: IAEA74

22. TYPICAL DECON EFFECTIVENESS - WEAPONS

_________________________________________________________________________

Material 1 2 3 4 5

_________________________________________________________________________

Glass 98 98 100 100 97

Painted wood 99 98 99 100 91

Asphalt 72 92 98 92 22

Concrete 74 98 96 100 21

Unpainted wood 36 85 99 99 85

_________________________________________________________________________

Notes:

1 = Vacuum method

2 = High pressure water

3 = High pressure water plus detergent

4 = Sandblasting

5 = Steam cleaning

Source: IAEA74

23. DECON EFFECTIVENESS - WEAPONS - COLD WEATHER

Page 142: Activitatea 1.1

A1.49

_________________________________________________________________________

Method Rate DF

(100 ft2/h)

_________________________________________________________________________

1. Bared sloped asphalt shingles

fireshosing (lobbing)

25 deg.F 8 3

0 deg.F 8 2

2. Undisturbed snow

a. Snow plough (blade) 330 10 - 35

b. Grading 125 2 - 20

c. Scraping 72 5 - 7

d. Snow plough (rotary) 53 7 - 50

3. Packed snow

a. Grading (0 - 30 deg.F) 70 5 - 6

b. Mechanical sweeping 60 15

(below 20 deg.F)

c. Vacuum sweeping 30 6

(10 - 30 deg.F)

d. Firehosing 30 deg.F 13 10

15 deg.F 13 5

0 deg.F 13 4

4. Paved areas

a. Mechanical sweeping 65 15

b. Firehosing (0 deg.F) 20 10 - 15

5. Bare frozen ground

a. Mechanical sweeping 70 10 - 35

b. Vacuum sweeping 70 8

c. Firehosing 20 2

_________________________________________________________________________

Source: IAEA74

24. 0.5 POWERS

_____________________________________________________________

0.5**M.N

-------------------------------------------------------------

M.Nes M.0 M.2 M.4 M.6 M.8

_____________________________________________________________

0.N 1.000 0.871 0.758 0.660 0.574

1.N 0.500 0.435 0.379 0.330 0.287

2.N 0.250 >>> 0.218 0.189 0.165 0.144

3.N 0.125 0.109 0.095 0.082 0.072

4.N 0.063 0.054 0.047 0.041 0.036

5.N 0.031 0.027 0.024 0.021 0.018

6.N 0.016 0.014 0.012 0.010 0.009

Page 143: Activitatea 1.1

A1.50

7.N 0.008 0.007 0.006 0.005 0.004

8.N 0.004 0.003 0.003 0.003 0.002

9.N 0.002 0.002 0.001 0.001 0.001

_____________________________________________________________

As an example:

0.5**2.2 = 0.218

25. ISOTOPIC RATIOS FOR PU ACCIDENTS

_________________________________________________________________________

Weapons Grade Plutonium

15 yr

Plutonium

------------------------------------------------------------------------

Isotope Initial Fraction Ci/g of Pu Fraction of

by Weight Total Activity

_________________________________________________________________________

Pu-238 4.0E-04 6.09E-03 1.61E-02

Pu-239 9.3E-01 5.80E-02 1.53E-01

Pu-240 6.0E-02 1.37E-02 3.61E-02

Pu-241 5.8E-03 2.91E-01 7.68E-01

Pu-242 4.0E-04 1.57E-06 4.15E-06

_________________________________________________________________________

Americium

------------------------------------------------------------------------

Isotope Initial Fraction Ci/g of Pu Fraction of

by Weight Total Activity

_________________________________________________________________________

Am-241 0.0 1.01E-02 2.67E-02

_________________________________________________________________________

TOTAL 1.0 3.79E-01

Total alpha activity in one gram of Pu = 0.088

Pu/Am ratio = 7.686

Total alpha activity/Am ratio = 8.686

26. INGESTION ASSESSMENT PRIORITIZED TASKS I

_________________________________________________________________________

CRUCIAL TASKS NECESSARY INFORMATION METHOD

_________________________________________________________________________

For a LWR accident, Exposure Rates (mR/h) M.5.1 Evaluate expo-

evaluate exposure @ 1m AGL sure rates for LWR

rate to determine accidents.

where the Ingestion

PAGs may be exceeded.

For accidents with Isotopic mix (relative M.5.2 Evaluate depo-

Page 144: Activitatea 1.1

A1.51

gamma emitters, abundance) based on in- sition marker isotope

develop DRLs for situ measurements, refe- concentration.

a deposition marker rences or information

isotope concentration provided by operator

to determine where AND

the Ingestion PAGs Deposition of marker

may be exceeded. isotope.

For accidents with no Isotopic concentration M.5.3 Evaluate depo-

gamma emitters, eva- (relative abundance) based sition comprehensive

luate entire isotopic on in-situ measurements, isotopic concentration

mix of the deposition references or information

to determine where provided by operator

the Ingestion PAGs AND

may be exceeded. Comprehensive isotopic

analysis of deposition

Assess food concen- Isotopic analysis of meat, M.5.4 Evaluate Food

trations to confirm eggs, fish, and fresh and drinking water

where the PAGs are produce. samples.

exceeded.

Assess milk concen- Isotopic analysis of milk. M.5.5 Evaluate Milk

trations to confirm samples.

where the PAGs are

exceeded.

Estimate the dose Isotopic concentration M.5.13 Calculate

from ingestion of of deposition. Ingestion dose from

surface contamina- dirt (surface conta-

tion (dirt). mination).

Assess forage & water Isotopic analysis of M.5.6 Evaluate Cow &

being feed to milk- cow forage and drinking Goat Forage or Water

producing animals to water. for Milk Pathway.

determine if milk may

exceed the PAGs.

_________________________________________________________________________

27. INGESTION ASSESSMENT PRIORITIZED TASKS II (CONTINUED)

_________________________________________________________________________

CRUCIAL TASKS NECESSARY INFORMATION METHOD

_________________________________________________________________________

Assess milk of ani- Isotopic analysis of M.5.7 Evaluate Milk

mals on stored feed milk samples. contamination for cows

in areas where other or goats on stored

pathways may result feed.

in milk contamination.

Develop food, water M.5.8 Calculate food

and milk concentra- concentration DRLs for

tion DRLs for iso- unlisted isotopes or

topes not listed in different assumptions.

Page 145: Activitatea 1.1

A1.52

Table 5.4 or to use

different assump-

tions (e.g. consider

processes to reduce

contamination or dif-

ferent PAG levels.

Develop DRLs for cow M.5.9 Calculate Cow &

forage and water for Goat Forage & Water

isotopes not listed concentration DRLs for

in Table 5.9 or to unlisted isotopes or

use different assump- different assumptions.

tions.

Develop DRL for depo- M.5.10 Calculate depo-

sitions that may be sition DRLs for unlis-

an ingestion concern ted isotopes or dif-

for isotopes not lis- ferent assumptions.

ted in Table 5.3 or

to use different

assumptions.

Estimate potential Isotopic analysis of M.5.11 Estimate the

peak concentration cow's milk samples. concentration in cow's

in milk. milk after cow's in-

take.

Calculate the dose Isotopic analysis of food, M.5.12 Calculate in-

from ingestion of milk and water samples. gestion dose for food,

contaminated food. milk or water concen-

exceeded. trations.

Develop DCFs for M.5.14 Calculate

isotopes not lis- Ingestion DCF for iso-

ted in Table 5.7 or topes not listed or

to use different to use different

assumptions. assumptions.

_________________________________________________________________________

28. INGESTION PHASE PAGs

_________________________________________________________________________

PAG Organ of interest Projected dose commitment

(mrem)

_________________________________________________________________________

Preventive (a) Whole Body, Bone Marrow, 500

(Lower impact) or any other organ

Thyroid 1,500

Emergency (b) Whole Body, Bone Marrow, 5,000

or any other organ

Thyroid 15,000

Page 146: Activitatea 1.1

A1.53

_________________________________________________________________________

Source: EPA92

a) Preventive PAGs are applicable to situations where protective actions

causing minimal impact on the food supply are appropriate. A preven-

tive PAG establishes a level at which responsible officials should

take protective actions having minimal impact to prevent or reduce

the radioactive contamination of food or animal feed.

b) Emergency PAGs are applicable to incidents where protective actions of

greater impact on the food supply are justified because of the projec-

ted health hazards. An Emergency PAG establishes a level at which res-

ponsible officials should isolate food containing radioactivity to

prevent its introduction into commerce, and at which responsible offi-

cials must determine whether condemnation or other disposition

is appropriate.

29. INGESTION PROTECTIVE ACTIONS

HHS has published guidance (EPA92) on the protective actions that should

be considered if the ingestion of contaminated food may exceed the PAGs.

This guidance is summarized below.

PREVENTIVE PAG

Pasture:

- Removal of lactating (milk-producing) dairy animals from pasture and

substitution of uncontaminated feed.

- Substitute uncontaminated water.

Milk:

- Withhold contaminated milk from market to allow decay.

- Diversion of fluid milk for production of dry whole milk, non-fat dry

milk, butter, cheese or evaporated milk.

Fruits and vegetables:

- Wash, brush, scrub or peal to remove surface contamination.

- Preserve by canning, freezing, dehydration or storage to permit decay.

Grains:

- Milling

- Polishing

Other foods:

- Processing to remove surface contamination.

EMERGENCY PAG

All food:

Isolate food to prevent introduction into commerce and determine whether

condemnation or other disposition is appropriate.

Before taking action consider the following factors:

- Availability of other protective actions.

Page 147: Activitatea 1.1

A1.54

- Relative proportion of contaminated food in total diet.

- Importance of the food and availability of uncontaminated substitutes.

- Contribution of radioisotopes in other foods to total dose.

- Time and effect required to implement corrective action.

- Exposure likely to be received by food processing workers.

_______________________

Source: EPA92

30. HUMAN CONSUMPTION - UF

_________________________________________________________________________

Average consumption Other

Food General population consumption

(kg/day) (a) rates used

_________________________________________________________________________

Milk, cream, cheese, ice cream ----------- .570

Milk - Infant (< 1 yr old) ------------------------------- 0.7 L/d (a,e)

Water - Adult and Child ---------------------------------- 1.4 L/d (d,e)

Fats, oils ------------------------------- .055

Flour, cereal ---------------------------- .091

Bakery products -------------------------- .150

Meat ------------------------------------- .220 (e)

Poultry ---------------------------------- .055

Fish and shellfish ----------------------- .023 (e)

Eggs ------------------------------------- .055 (e)

Sugar, syrup, honey, molasses ------------ .073

Potatoes, sweet potatoes ----------------- .105

Fresh produce (not potatoes) (b) --------- .310 (e)

Fresh vegetables (0.145) +

Fresh Fruit (0.165)

Canned vegetables ------------------------ .077

Vegetable juice (single strength) -------- .009

Canned,frozen fruit ---------------------- .036

Fruit juice ------------------------------ .045

Other beverages (coffee etc.) ------------ .180

Soup and gravies ------------------------- .036

Nuts and peanut butter ------------------- .009

_________________________________________________________________________

TOTAL ----------------------------------- 2.099

a) Source: EPA92, Section 6, p.15.

b) Fresh produce (used in calculations) = Fresh fruit + Fresh vegetables

c) Milk category is expressed as calcium equivalent, i.e. the quantity of

whole fluid milk to which dairy products are equal to calcium content.

d) Source: NRC77

e) Used in Manual

31. RETENTION -- PRODUCTIVITY -- COW CONSUMPTION

_________________________________________________________________________

Parameter Description Value

_________________________________________________________________________

Page 148: Activitatea 1.1

A1.55

Ucow Cow fresh forage consumption 56 kg/d (a,f)

(Lower impact) Cow water consumption 60 L/d (b,f)

r (e) Produce retention factor .05 (c)

Pasture retention factor .50 (a,f)

Leafy vegetable retention factor .20 (d,f)

Y Growth productivity 2.0 kg/m2 (d,f)

_________________________________________________________________________

a) EPA92

b) NCRP84.

c) ORNL-5786 p-76

d) NRC77

e) Used a single retention factor, r, for all non-noble gases (Iodine and

other particulate) because the current understanding is that the vast

majority of the Iodine released during a severe reactor accident will

be part of a particle.

32. REFERENCES

REFERENCE Title

_________________________________________________________________________

10CFR20 US Code of Federal Regulation. Part 20. January 1, 1994

An75 Anspaugh, L.R., et al. 'Resuspension and Redistribution of

Plutonium on Soils'. Health Phys. 29, pp 571-582, 1975.

Be91 Beres, D.A. and Hull, A.P. 'DEPDOSE: An Interactive Micro-

Computer Based Program to Calculate Doses from Exposure to

Radionuclides Deposited on the Ground'. Nol 1. Users Manual.

Brookhaven National Laboratory Report. BNL-47069, December

1991.

DOE84 US Department of Energy - Atmospheric Science and Power

Production, DOE. DOE/TIC-27601, 1984.

EGG75 Structures Shielding from Cloud and Fallout Gamma-Ray

Sources for Assessing the Consequence of Reactor Accidents.

E.G., EGG-1183-1670, December 1975.

EPA70 Turner. Workbook of Atmospheric Dispersion Estimates. EPA,

January 1970.

EPA88 Limiting Values of Radionuclide Intake and Air Concentration

and Dose Converion Factors for Inhalation. Submersion and

Ingestion. Federal Guidance Report No.11. US EPA, EPA 520/1-

88-020, September 1988.

EPA89 Evaluation of skin and Ingestion Exposure Pathways. US EPA.

EPA 520/1-89-016. June 1989.

EPA92 Manual of Protective Action Guides and Protective Actions for

Page 149: Activitatea 1.1

A1.56

Nuclear Incidents. US EPA. EPA 400-R-92-001. May 1992.

EPA93 External Exposure to Radionuclides in Air, Water and Soil.

Federal Guidance Report No.12. US EPA. EPA-402-R-93-081.

September 1993.

EPA94 US EPA, PAG Subcommittee Report on Implementation of EPA's

Dose Limits for Emergency Workers. July 12, 1994.

FEMA87 Guidance on Offsite Emergency Radiation Measurement Systems

Phase 2 - The Milk Pathway. FEMA, FEMA Rep-12. September 1987.

Ho94 Homann, S.G. 'HOTSPOT Health Physics Codes for the PC'.

Lawrence Livermore National Laboratory Report. UCRL-MA-106315.

Available from NTIS. Version 6.5. March 1994.

IAEA74 Evaluation of Radiation Emergency and Accidents. Selected

Criteria and Data. Technical Reports Series No.152. IAEA

Vienna, 1974.

IAEA86 Derived Intervention Levels for Application in Controlling

Radiation Doses to the Public in the Event of a Nuclear

Accident or Radiological Emergency. IAEA Safety Series No.81,

1986.

IAEA93 Modeling of Weathering, Decontamination and Activity Movement

in Sewage System. Working Draft. IAEA 1993.

ICRP74 Report of the Task Group on Reference Man. ICRP-23. Inter-

national Commission on Radiological Protection. October 1974.

ICRP89 Age Dependent Dose to Members of the Public from Intake of

Radionuclides: Part 1. ICRP-56, The International Commission

on Radiological Protection. April 1989.

NCRP84 National Council on Radiation Protection and Measurements.

'Radiological Assessment: Predicting the Transport, Bio-

accumulation and Uptake of Radionuclides Released to the

Environment'. NCRP Report No.76, 1984.

NRC77 US NRC Regulatory Guide 1.109. Calculation of Annual Doses

to Man from Routine Releases of Reactor Effluent for the

Purpose of Evaluating Compliance with 10CFR Part 50,

Appendix I, October 1977.

NRC82 McGuire, A.S. Working Safely in Gamma Radiography, A Training

Manual for Industrial Radiographer. US NRC NUREG/BR-0024,

September 1982.

NRC83 Till, J.E. and Meyer, R.H. Radiological Assessment: A Textbook

on Environmental Dose Analysis. NRC NUREG/CR-3332,

September 1983.

NRC88 Ramsdell, J.V. Atmospheric Diffusion for Control Room

Habiltability Assessments. US NRC NUREG/CR-5005, May 1988.

Page 150: Activitatea 1.1

A1.57

NRC88a McGuire, A.S. A Regulatory Analysis on Emergency Preparedness

for Fuel Cycle and other Radiological Materials Licencees.

US NRC NUREG-1140, January 1988.

NRC89 Health Effects Models for Nuclear Power Plants Accident

Consequence Analysis. US NRC NUREG/CR-4214 Rev.1, May 1989.

NRC92 Soffer, L. Accident Source Terms for Light Water Nuclear Power

Plants. US NRC NUREG-1465, June 1992, Draft for Comments.

NRC93 Response Technical Manual, RTM-93. US NRC NUREG/BR-0150,

Volume 1, November 1993.

NRC94 RASCAL 2.1. Users Manual. US NRC NUREG/CR-5257, Rev.2, 1994.

NRPB85 Doses from Intakes of Radionuclides by Adult and Young People.

National Radiological Protection Board. NRPB-R162, April 1985.

NRPB87 Committed Dose to Selected Organs and Committed Effective

Dose for Intake of Radionuclides. National Radiological

Protection Board. NRPB-GS7. August 1987.

PHS70 Radiological Health Handbook. US Public Health Service,

January 1970. PB-230 846.

SU93 Sullivan, T.S., Ellis, J.S. et al. Atmospheric Release

Advisory Capability: Real-Time Modeling of Airborne Hazardous

Materials. Bull.Amer.Meteor.Soc. 74:2343-2361, December 1993.

WASH-1400 Reactor Safety Study. US NRC, October 1975.

REQUIRED REFERENCES AND CODES

Be91(Code) Beres, D.A., and Hull, A.P. 'DEPOSE: An Intercative Micro-

computer Based Program to Calculate Doses from Exposure to

Radionuclides Deposited on the Ground'. Nol.1. Users Manual.

Brookhave National Laboratory Report. BNL-47069. December 1991.

EPA88 Limiting Values of Radionuclide Intake and Air Concentration

and Dose Conversion Factors for Inhalation. Submersion and

Ingestion. Federal Guidance Report No.11. US EPA. EPA 520/1-

88-020, September 1988.

EPA92 Manual of Protective Action Guides and Protective Actions for

Nuclear Incidents. US EPA. EPA 400-R-92-001. May 1992.

EPA93 External Exposure to Radionuclides in Air, Water and Soil.

Federal Guidance Report No.12. US EPA. EPA-402-R-93-081.

September 1993.

Ho94(Code) Homann, S.G. 'HOTSPOT Health Physics Codes for the PC'.

Lawrence Livermore National Laboratory Report. UCRL-MA-106315.

Available from NTIS. Version 6.5. March 1994.

Page 151: Activitatea 1.1

A1.58

IAEA74 Evaluation of Radiation Emergency and Accidents. Selected

Criteria and Data. Technical Reports Series No.152. IAEA

Vienna, 1974.

ICRP89 Age Dependent Dose to Members of the Public from Intake of

Radionuclides: Part 1. ICRP-56, The International Commission

on Radiological Protection. April 1989.

NCRP84 National Council on Radiation Protection and Measurements.

'Radiological Assessment: Predicting the Transport, Bio-

accumulation and Uptake of Radionuclides Released to the

Environment'. NCRP Report No.76, 1984.

NRC77 US NRC Regulatory Guide 1.109. Calculation of Annual Doses

to Man from Routine Releases of Reactor Effluent for the

Purpose of Evaluating Compliance with 10CFR Part 50,

Appendix I, October 1977.

NRC83 Till, J.E. and Meyer, R.H. Radiological Assessment: A Textbook

on Environmental Dose Analysis. NRC NUREG/CR-3332,

September 1983.

NRC93 Response Technical Manual, RTM-93. US NRC NUREG/BR-0150,

Volume 1, November 1993.

NRC94 RASCAL 2.1. Users Manual. US NRC NUREG/CR-5257,

(Code) Rev.2, 1994.

NRPB85 Doses from Intakes of Radionuclides by Adult and Young People.

National Radiological Protection Board. NRPB-R162, April 1985.

NRPB87 Committed Dose to Selected Organs and Committed Effective

Dose for Intake of Radionuclides. National Radiological

Protection Board. NRPB-GS7. August 1987.

PHS70 Radiological Health Handbook. US Public Health Service,

January 1970. PB-230 846.

36. TERMS AND ABBREVIATIONS I

GLOSSARY: TERMS AND ABBREVIATIONS

_________________________________________________________________________

ACUTE HEALTH EFFECTS

See EARLY HEALTH EFFECTS.

AGL

Above ground level.

ARAC

Atmospheric Release Advisory Capability.

CHILD

A 10 years old.

Page 152: Activitatea 1.1

A1.59

COMMITTED DOSE EQUIVALENT (CDE)

The dose equivalent to a specific organ for 50 years following intake.

COMMITTED EFFECTIVE DOSE EQUIVALENT (CEDE)

The sum of the dose equivalent for 50 years following intake (inhalation

or ingestion) of radionuclide to each organ multiplied by a weighing

factor. Used to estimate the risk of delayed health effects.

CONCENTRATION

The total activity of each radioisotope in a sample or surface area.

CRITICAL

Most important source of dose, the most organ, or the most important

group of (potentially) exposed population. That is, effects will be

dominated by this source of dose, or effects (e.g. deaths) will occur

first as a result of exposure to this organ or population (e.g. infants)

when exposed to radiation via a certain pathway.

DELAYED HEALTH EFFECTS

A wide range of cancers and hereditary effects which usually occur many

years after exposure. In contrast to early health effects, it is assumed

there are no dose thresholds below which these effects do not occur.

DEPOSITION

The contamination found on or within a few cm of the surface of the

ground.

DERIVED RESPONSE LEVEL (DRL)

A calculated value (e.g. exposure rate or radionuclide concentration)

that corresponds to an early health effect threshold or PAG. DRLs can be

used to relate environmental measurements or laboratory analysis to the

potential for early health effects or need for protective actions. Used

to allow prompt assessments.

DOE

US Department of Energy

DOSE CONVERSION FACTOR (DCF)

The dose equivalent per unit intake of a radionuclide (mrem/uCi).

EARLY HEALTH EFFECTS

Health effects that will be seen shortly after exposure (hours, weeks)

resulting from high doses over a short period (acute doses) to specific

organs and involving thresholds below which these health effects are not

expected.

EARLY PHASE

Extends from the time the threat of a major release is identified (before

the release) until the release or the threat of a major release has ended

and areas of major contamination have been identified.

EFFECTIVE DOSE EQUIVALENT (EDE)

The sum of the dose equivalent from external exposure to each organ

multiplied by a weighing factor. Used to estimate the risk from delayed

health effects. EDE from air submersion and ground shine is assumed to

Page 153: Activitatea 1.1

A1.60

(numerically) equal 0.7 times the exposure rate.

EMERGENCY WORKER LIMIT

Guidance on limits of the external and CEDE dose incurred to non-pregnant

adult while performing emergency services.

EPA

US Environmental Protection Agency.

EXTERNAL EXPOSURE

The dose of radiation received by an individual from a source of ionizing

radiation outside the body.

FACILITY OPERATOR

The organization that operates the facilty.

FDA

US Food and Drug Administration.

FRMAC

US Federal Radiological Monitoring and Assessment Center.

GROUNDSHINE

Gamma radiation from radioactive materials deposited on the ground.

HHS

US Department of Health and Human Services.

IMMERSION

To be surrounded or engulfed by the radioactive cloud.

INFANT

A child one year of age.

INTERMEDIATE PHASE

The period beginning after the release and potential for further major

release is over and reliable environmental data is available for use as

a basis for relocation and ingestion protective actions.

LFA

Lead Federal Agency (US).

LIGHT WATER REACTOR (LWR)

A nuclear reactor that uses natural water as a coolant and moderator.

All US commercial power reactors are LWRs as are the VVERs.

MARKER ISOTOPE

An isotope contained in deposition or samples that is easily identified

in the field or laboratory. It is used to determine areas of concern

before performing a comprehensive isotopic analysis.

MIX

The isotopic ratio of the radionuclides in a sample or surface deposition.

NRC

Page 154: Activitatea 1.1

A1.61

US Nuclear Regulatory Commission.

PATHWAYS

The path radionuclides follow from the source though the environment

including vegetation and animals to reach an individual or a population.

PROTECTIVE ACTION GUIDE (PAG)

The projected dose, from an accidental release of radioactive material,

at which specific actions to reduce or avoid dose are warranted.

QUALITY FACTOR (QF)

The principal modifying factor employed in deriving dose equivalent (H)

from absorbed dose, chosen to account for the relative biological

effectiveness (RBE) of the radiation in question, but to be independent

of the tissue or organ under consideration and of the biological endpoint.

For radiation protection purposes, the Quality Factor is determined by

the linear energy transfer (LET) of the radiation.

RESUSPENSION

Reintroduction to the atmosphere of material originally deposited onto

surfaces.

RTM

Response Technical Manual.

STABILITY CLASS

A class which describes an atmospheric turbulence condition. Generally

there are six classes ranging from Class A - very unstable, through

Class F - very stable.

TOTAL ACUTE BONE (MARROW) DOSE (TABD)

Dose estimates used to determine if Early Health Effects are possible

from exposure of the bone marrow. Bone marrow is a critical organ when

considering deaths from LWR accidents. TABD projections in the Manual

include: (1) EDE from air submersion; (2) 4-days of EDE from ground

deposition; (3) acute inhalation dose from the plume (dose to the organ

for 30 days after inhalation of radioactive material); and (4) acute

inhalation from 4-days of resuspension.

TOTAL ACUTE LUNG DOSE (TALD)

Dose estimates used to determine if Early Health Effects are possible

from exposure of the lung. Lung is a critical organ when considering

deaths from accidents involving transuranics. TALD projections in the

Manual include: (1) EDE from air submersion; (2) 4-days of EDE from

ground deposition; (3) acute inhalation dose from the plume (dose to the

organ for 30 days after inhalation of radioactive material); and (4)

acute inhalation from 4-days of resuspension.

TOTAL EFFECTIVE DOSE EQUIVALENT (TEDE)

Dose estimates used for comparison with EPA Early Phase PAG (EPA92).

TEDE projections include: (1) the EDE from air submersion; (2) 4-days of

EDE from ground deposition; (3) the inhalation CEDE from the plume; and

(4) CEDE from inhalation of 4-days of resuspension.

TOTAL EFFECTIVE EXPOSURE PERIOD

Page 155: Activitatea 1.1

A1.62

The time span, considering decay, that will approximate the integrated

dose over a period of time when multiplied by the dose rate at the

beginning.

TURN BACK LIMIT

An integrated dose reading on a self-reading dosimeter indicating that an

emergency worker limit has been exceeded and that the emergency worker

should leave the area where further exposure is possible.

WEATHERING

Reduction of dose from deposited material on the ground, over time, due

to rain etc.

WEIGHTING FACTORS

Used in the calculation of CEDE and EDE. They are an estimate of the

mortality risk from delayed health effects arising from irradiation of

a particular organ. Weighting factors (EPA88) are: gonads - 0.25;

breasts - 0.15; red bone marrow - 0.12; lungs - 0.12; thyroid - 0.03;

bone surface - 0.03; remainder - 0.30.

ABOUT THE FRMAC MANUAL

______________________

The present code package (ROBOT – Rule-Oriented Basic Operational Tools)

is an application of the

FRMAC ASSESSMENT MANUAL

THE FEDERAL MANUAL FOR ASSESSING ENVIRONMETAL DATA

DURING A RADIOLOGICAL EMERGENCY

Version July 1995

Manual's version as indicated is the first printing of the document for

wide distribution and use. It is labeled 'FOR INTERIM USE AND COMMENT'

with the understanding that it has undergone limited review, while the

reviewing process continues in view of fully qualifying the Manual for

use in a radiological emergency. Manual's Preface encourages readers

to provide comments and suggestions for improvement.

To assure consistency, completeness and the highest quality of assessed

data produced by the FRMAC, an attempt was made to compile into the

Manual the most appropriate assessment methods and values available.

The criteria were for these to be (1) scientifically defensible;

(2) simple; (3) applicable to a FRMAC deployment; and (4) most likely to

be adopted by others.

The primary purpose of the Manual is to provide the users a sound

scientific basis in technical, transfer and conversion values and

assessment processes, agreed upon ahead of time, in view of assuring the

users that the correct values are being used and that results will be

consistent among users from shift to shift.

DOE/NV has responsibility for maintaining the master Manual, from which

control copies can be obtained. Readers and users are kindly requested to

direct comments on the Manual to: FRMAC Program Manager, Emergency

Management and Nonproliferation Division, US Department of Energy,

Page 156: Activitatea 1.1

A1.63

Nevada Operations Office, P.O.Box 98518, Las Vegas, NV 89193-8518.

LIST OF PREPARERS

-----------------

R.L.Blanchard, S.Cohen & Associates, Inc., Montgomery, AL.

T.E.Buhl, Los Alamos National Laboratory, University of California,

Los Alamos, NM.

A.P.Hull, Brookhaven National Laboratory, Upton, NY.

T.J.McKenna, U.S. Nuclear Rgulatory Commission (HQ), Washington, D.C.

J.M.Smith, National Air and Radiation Environmental Laboratory,

US Environmental Protection Agency, Montgomery, AL.

J.A.Trefethen, U.S. Nuclear Regulatory Commission (HQ), Washington, D.C.

R.Bores, Region 1, U.S. Nuclear Regulatory Commission, King of Prussia,PA

Tom McKenna and Jean Trefethen are acknowledged as being the primary

author and technical editors of the FRMAC Manual. They were assisted by

Dan Vamanu (IAEA Fellow), and Zhiguang Li (IAEA Fellow). The FRMAC

Assessment Working Group Members, chaired by Zolin G. Burson, EG&G/EM are

acknowledged as additional contributors. They also have reviewed in

detail all aspects of the Manual.

ROBOT concept and application were developed by Dan Vamanu.

Page 157: Activitatea 1.1

A2.1

ANEXA 2

Datele Meteorologice Cuprins

A.2.1. Sistemele de dispersie în N-WATCHDOG ...................................................... A2.2 A.2.1.1. Descriere .................................................................................................. A2.2 A.2.1.2. Parametrii ................................................................................................. A2.4 A.2.1.3. Soluţia de implemetare ............................................................................. A2.8

A.2.2. Maşina de achiziţie şi prelucrare a datelor .................................................... A2.11

Page 158: Activitatea 1.1

A2.2

A.2.1. Sistemele de dispersie în N-WATCHDOG In context, un sistem de dispersie este o clasa de referinta acreditata in literatura continand specificatii pentru:

Legea de variatie a abaterilor standard, numite ‘coeficienti de dispersie’ si notate, de

obicei cu simbolul sigma, ale concentratiei de marime dispersata cu (a) distanta punctului de observatie fata de sursa (modelul Puff Trails), sau distantele pe axa vantului mediu si transversal pe aceasta (modelul Plumes); sau (b) timpul scurs de la emisie pana la momentul observatiei, pentru fiecare puff in cazul Puff Trails, sau in mod absolut in cazul Plumes.

Legea de variatie a vitezei vantului cu inaltimea pufului, sau a axei penei de efluent (wind shear law); si

Dependenta postulata a nivelelor de inversie, fata de clasa de stabilitate atmosferica.

Alegerea sistemului de dispersie depinde de judecata experta (expert judgement) a utilizatorului. Practic, clientii versiunii finale a N-WATCHDOG (Modelul experimental, 2016) vor negocia cu furnizorul de coduri sau de servicii acest aspect, impreuna cu altele aflate in aceeasi situatie – mentionate in sesiunile anterioare (particularitati ale termenului sursa considerat reprezentativ, caracterizarea rugozitatii terenului din zona de influenta a obiectivului nuclear, preferinta pentru raza de evaluare – in zona apropiata sau la mare distanta de sursa, tipul de model etc.), convenind protocoale de pre-setare a codurilor. Abordarea aspectelor definitorii mentionate, ale unui sistem de dispersie se prezinta in continuare. A.2.1.1. Descriere

DISPERSION SYSTEMS

__________________

This facility offers a way to update sets of referenced diffusion

parameters of use with atmospheric dispersion models, or to create

custom sets of such parameters.

The following chief sources were compiled:

[1] U.S. Nuclear Regulatory Commission (1983). Radiological Assessment -

A Textbook on Environmental Dose Analysis. Till J.E. and Meyer H.R.,

Editors, Washington, D.C., U.S.A.

[2] Doury A.(1976). Une methode de calcul pratique et generale

pour la prevision numerique des pollutions vehiculee par

l'atmosphere. CEA, Saclay, Rapport CEA-R-4280 (Rev.1),

as quoted in:

IAEA (1986). Atmospheric Dispersion Models for Application

in Relation to Radionuclide Releases. IAEA-TECDOC-379.

Two categories of parameters are reviewed, namely

(i) distance-dependent, and (ii) time-dependent, parameters.

I. DISTANCE-DEPENDENT DIFFUSION PARAMETERS

_______________________________________

To give the subject a uniform treatment, the following assumptions

were made:

> Distance-dependent diffusion parameters are power functions of the

distance X (m) travelled from the source, by the release:

SIGMAx = e x (X^f)

SIGMAy = a x (X^b)

SIGMAz = c x (X^d) x R

Page 159: Activitatea 1.1

A2.3

with R as a ground roughness correction factor.

> Diffusion parameters vary with plume centerline height above ground.

Their coefficients and exponents are given for three reference

levels: 0, 100, and 180m. Since, however, for some of the sets no

such distinction was operated by the proponents, the sets will

appear identical at all heights.

> All sets are assumed to vary over six atmospheric stability

classes: A, B, C, D, E, F. When a certain set would not

originally cover all classes, missing classes will be assigned

the values of the previous/next neighbour-class in the A-F series.

Enlisted with this code are the following distance-dependent

Dispersion Systems:

1. KARLSRUHE-JULICH

Applicable to sites with medium to higher surface roughness,

which is due to settlements, vegetation, and other ground

obstacles (cf.[2]). Assumed: equal downwind and crosswind

diffusion. No roughness correction (R = 1).

2. KLUG

Suited for application to short-term ground level releases over

terrains with a low surface roughness (cf.[2]). No roughness

correction (R = 1).

3. BROOKHAVEN

Applicable under conditions typical for the release of pollutants

from industrial plants (cf.[2]). No roughness correction (R = 1).

4. St.LOUIS

Applicable to releases in metropolitan areas and, possibly,

other sites of extreme surface roughness (cf.[1]). No roughness

correction (R = 1).

5. BRIGGS CNCAN

6. BRIGGS Lawrence Livermore (HotSpot)

>> Use main menu's 'Open a Distance-Dependent Dispersion System File'

to access the data pertaining to the varieties 1 through 5.

II. TIME-DEPENDENT DIFFUSION PARAMETERS

___________________________________

> Time-dependent diffusion parameters are power functions of the time

spent by the release to travel out from the source. The formulation

given by Doury [3] is:

SIGMAx = (Ah x t)^Kh

SIGMAy = (Ah x t)^Kh

SIGMAz = (Av x t)^Kv

assuming equal downwind and crosswind diffusion.

> Diffusion parameters are given for two atmospheric stability

categories: strong diffusion, and weak diffusion. Roughly, the

strong diffusion category may be assimilated with standard classes

A, B, and C, while the weak diffusion may be associated with

classes D, E, and F.

> The coefficients and exponents involved are given, in a stepwise

manner, for six time intervals.

Enlisted with this code is the following time-dependent

Dispersion System:

6. DOURY

Compiled from a variety of field measurement data to suit a generic

situation in accidental releases.

>> Use main menu's 'Open a Time-Dependent Dispersion System File'

Page 160: Activitatea 1.1

A2.4

to access the data pertaining to the variety 6.

SHARED FEATURES

_______________

> Distance-dependent diffusion parameters may be treated as time-

dependent, to the extent that the law of motion of the release

(e.g. of puff centers in puff models) is known.

> A vertical wind shear power law operates:

W(z) = W10 x ((z/10)^pw)

with exponent pw depending on atmospheric category.

> The vertical temperature gradient dT/dz (K/m) affecting plume rise

is also atmospheric category-dependent.

> To maximize code flexibility, all data on Dispersion Systems may be

user-edited (updated etc.) directly in the displaying windows.

Once edited, data sets may be saved under alternative file-names,

for further use. An indefinite variety of dispersion systems matching

different field situations, field data bases, or user beliefs, may

thus be provided.

A.2.1.2. Parametrii In descrierea din sectiunea precedenta se folosesc urmatorii parametri

DISPERSION SYSTEM: KARLSRUHE-JULICH (COSYMA, U.S.NRC)

___________________________________________________

Level(mAG): 50 @1

_______________

. Py Qy Pz Qz hInv pH

__________________________________________________

Stability-A: 1.503 0.833 0.151 1.219 1600 0.07 [C11]

Stability-B: 0.876 0.823 0.127 1.108 1200 0.13 [C12]

Stability-C: 0.659 0.807 0.165 0.996 800 0.21 [C13]

Stability-D: 0.64 0.784 0.215 0.885 560 0.34 [C14]

Stability-E: 0.801 0.754 0.264 0.774 320 0.44 [C15]

Stability-F: 1.294 0.718 0.241 0.662 200 0.44 [C16]

__________________________________________________

Level(mAG): 100 @2

_______________

. Py Qy Pz Qz hInv pH

____________________________________________________

Stability-A: 0.17 1.296 0.051 1.317 1600 0.07 [C21]

Stability-B: 0.324 1.025 0.070 1.151 1200 0.13 [C22]

Stability-C: 0.466 0.866 0.137 0.985 800 0.21 [C23]

Stability-D: 0.504 0.818 0.265 0.818 560 0.34 [C24]

Stability-E: 0.411 0.882 0.487 0.652 320 0.44 [C25]

Stability-F: 0.253 1.057 0.717 0.486 200 0.44 [C26]

____________________________________________________

Level(mAG): 180 @3

_______________

. Py Qy Pz Qz hInv pH

____________________________________________________

Stability-A: 0.671 0.903 0.025 1.500 1600 0.07 [C31]

Stability-B: 0.415 0.903 0.033 1.320 1200 0.13 [C32]

Stability-C: 0.232 0.903 0.104 0.997 800 0.21 [C33]

Stability-D: 0.208 0.903 0.307 0.734 560 0.34 [C34]

Stability-E: 0.345 0.903 0.546 0.557 320 0.44 [C35]

Page 161: Activitatea 1.1

A2.5

Stability-F: 0.671 0.903 0.485 0.500 200 0.44 [C36]

____________________________________________________

DISPERSION SYSTEM: BROOKHAVEN (U.S.NRC)

_____________________________

Level(mAG): 50 @1

_______________

. Py Qy Pz Qz hInv pH

____________________________________________________

Stability-A: 0.400 0.910 0.411 0.907 1600 0.07 [B11]

Stability-B: 0.400 0.910 0.411 0.907 1200 0.13 [B12]

Stability-C: 0.360 0.860 0.326 0.859 800 0.21 [B13]

Stability-D: 0.320 0.780 0.223 0.776 560 0.34 [B14]

Stability-E: 0.320 0.780 0.223 0.776 320 0.44 [B15]

Stability-F: 0.310 0.710 0.062 0.709 200 0.44 [B16]

____________________________________________________

Level(mAG): 100 @2

_______________

. Py Qy Pz Qz

____________________________________________________

Stability-A: 0.400 0.910 0.411 0.907 1600 0.07 [B21]

Stability-B: 0.400 0.910 0.411 0.907 1200 0.13 [B22]

Stability-C: 0.360 0.860 0.326 0.859 800 0.21 [B23]

Stability-D: 0.320 0.780 0.223 0.776 560 0.34 [B24]

Stability-E: 0.320 0.780 0.223 0.776 320 0.44 [B25]

Stability-F: 0.310 0.710 0.062 0.709 200 0.44 [B26]

____________________________________________________

Level(mAG): 180 @3

_______________

. Py Qy Pz Qz

___________________________________________________

Stability-A: 0.400 0.910 0.411 0.907 1600 0.07 [B31]

Stability-B: 0.400 0.910 0.411 0.907 1200 0.13 [B32]

Stability-C: 0.360 0.860 0.326 0.859 800 0.21 [B33]

Stability-D: 0.320 0.780 0.223 0.776 560 0.34 [B34]

Stability-E: 0.320 0.780 0.223 0.776 320 0.44 [B35]

Stability-F: 0.310 0.710 0.062 0.709 200 0.44 [B36]

___________________________________________________

DISPERSION SYSTEM: KLUG

_______________________

Level(mAG): 50 @1

_______________

. Py Qy Pz Qz hInv pH

___________________________________________________

Stability-A: 0.469 0.903 0.017 1.380 1600 0.07 [K11]

Stability-B: 0.306 0.885 0.072 1.021 1200 0.13 [K12]

Stability-C: 0.230 0.855 0.076 0.879 800 0.21 [K13]

Stability-D: 0.219 0.764 0.140 0.727 560 0.34 [K14]

Stability-E: 0.237 0.691 0.217 0.610 320 0.44 [K15]

Stability-F: 0.273 0.594 0.262 0.500 200 0.44 [K16]

___________________________________________________

Level(mAG): 100 @2

_______________

. Py Qy Pz Qz hInv pH

___________________________________________________

Stability-A: 0.469 0.903 0.017 1.380 1600 0.07 [K21]

Stability-B: 0.306 0.885 0.072 1.021 1200 0.13 [K22]

Page 162: Activitatea 1.1

A2.6

Stability-C: 0.230 0.855 0.076 0.879 800 0.21 [K23]

Stability-D: 0.219 0.764 0.140 0.727 560 0.34 [K24]

Stability-E: 0.237 0.691 0.217 0.610 320 0.44 [K25]

Stability-F: 0.273 0.594 0.262 0.500 200 0.44 [K26]

___________________________________________________

Level(mAG): 180 @3

_______________

. Py Qy Pz Qz hInv pH

___________________________________________________

Stability-A: 0.469 0.903 0.017 1.380 1600 0.07 [K31]

Stability-B: 0.306 0.885 0.072 1.021 1200 0.13 [K32]

Stability-C: 0.230 0.855 0.076 0.879 800 0.21 [K33]

Stability-D: 0.219 0.764 0.140 0.727 560 0.34 [K34]

Stability-E: 0.237 0.691 0.217 0.610 320 0.44 [K35]

Stability-F: 0.273 0.594 0.262 0.500 200 0.44 [K36]

___________________________________________________

DISPERSION SYSTEM: St-LOUIS

___________________________

Level(mAG): 50 @1

_______________

. Py Qy Pz Qz hInv pH

___________________________________________________

Stability-A: 1.700 0.717 0.079 1.200 1600 0.07 [S11]

Stability-B: 1.700 0.717 0.079 1.200 1200 0.13 [S12]

Stability-C: 1.440 0.710 0.131 1.046 800 0.21 [S13]

Stability-D: 0.910 0.729 0.910 0.702 560 0.34 [S14]

Stability-E: 1.020 0.648 0.930 0.465 320 0.44 [S15]

Stability-F: 1.020 0.648 0.930 0.465 200 0.44 [S16]

___________________________________________________

Level(mAG): 100 @2

_______________

. Py Qy Pz Qz hInv pH

___________________________________________________

Stability-A: 1.700 0.717 0.079 1.200 1600 0.07 [S21]

Stability-B: 1.700 0.717 0.079 1.200 1200 0.13 [S22]

Stability-C: 1.440 0.710 0.131 1.046 800 0.21 [S23]

Stability-D: 0.910 0.729 0.910 0.702 560 0.34 [S24]

Stability-E: 1.020 0.648 0.930 0.465 320 0.44 [S25]

Stability-F: 1.020 0.648 0.930 0.465 200 0.44 [S26]

___________________________________________________

Level(mAG): 180 @3

_______________

. Py Qy Pz Qz hInv pH

___________________________________________________

Stability-A: 1.700 0.717 0.079 1.200 1600 0.07 [S31]

Stability-B: 1.700 0.717 0.079 1.200 1200 0.13 [S32]

Stability-C: 1.440 0.710 0.131 1.046 800 0.21 [S33]

Stability-D: 0.910 0.729 0.910 0.702 560 0.34 [S34]

Stability-E: 1.020 0.648 0.930 0.465 320 0.44 [S35]

Stability-F: 1.020 0.648 0.930 0.465 200 0.44 [S36]

___________________________________________________

DISPERSION SYSTEM: Briggs-Romania

(CNCAN-360-2004)

________________________________________

Meadow, reservoir, Briggs-Romania

_________________________________

Meteorology a1 b1 a2 b2 c3 c1 d1 c2 d2 z0 hInv pH

Page 163: Activitatea 1.1

A2.7

______________________________________________________________________________________________

Stability-A: 0.1120 1.060 0.000538 0.815 0.22 1.58 0.0480 0.000625 0.45 0.01 1600 0.07 [M01]

Stability-B: 0.1300 0.950 0.000652 0.750 0.16 1.58 0.0480 0.000625 0.45 0.01 1200 0.13 [M02]

Stability-C: 0.1120 0.920 0.000905 0.718 0.11 1.58 0.0480 0.000625 0.45 0.01 800 0.21 [M03]

Stability-D: 0.0980 0.889 0.001350 0.688 0.08 1.58 0.0480 0.000625 0.45 0.01 560 0.34 [M04]

Stability-E: 0.0609 0.895 0.001960 0.684 0.06 1.58 0.0480 0.000625 0.45 0.01 320 0.44 [M05]

Stability-F: 0.0638 0.783 0.001360 0.672 0.04 1.58 0.0480 0.000625 0.45 0.01 200 0.44 [M06]

______________________________________________________________________________________________

Farm land, Briggs-Romania

_________________________

Meteorology a1 b1 a2 b2 c3 c1 d1 c2 d2 z0 hInv pH

_____________________________________________________________________________________________

Stability-A: 0.1120 1.060 0.000538 0.815 0.22 2.08 0.0269 0.000776 0.37 0.04 1600 0.07 [F01]

Stability-B: 0.1300 0.950 0.000652 0.750 0.16 2.08 0.0269 0.000776 0.37 0.04 1200 0.13 [F02]

Stability-C: 0.1120 0.920 0.000905 0.718 0.11 2.08 0.0269 0.000776 0.37 0.04 800 0.21 [F03]

Stability-D: 0.0980 0.889 0.001350 0.688 0.08 2.08 0.0269 0.000776 0.37 0.04 560 0.34 [F04]

Stability-E: 0.0609 0.895 0.001960 0.684 0.06 2.08 0.0269 0.000776 0.37 0.04 320 0.44 [F05]

Stability-F: 0.0638 0.783 0.001360 0.672 0.04 2.08 0.0269 0.000776 0.37 0.04 200 0.44 [F06]

_____________________________________________________________________________________________

Grazing field, Briggs-Romania

_____________________________

Meteorology a1 b1 a2 b2 c3 c1 d1 c2 d2 z0 hInv pH

______________________________________________________________________________________________

Stability-A: 0.1120 1.060 0.000538 0.815 0.22 2.72 0.0 0.0 0.0 0.10 1600 0.07 [G01]

Stability-B: 0.1300 0.950 0.000652 0.750 0.22 2.72 0.0 0.0 0.0 0.10 1200 0.13 [G02]

Stability-C: 0.1120 0.920 0.000905 0.718 0.11 2.72 0.0 0.0 0.0 0.10 800 0.21 [G03]

Stability-D: 0.0980 0.889 0.001350 0.688 0.08 2.72 0.0 0.0 0.0 0.10 560 0.34 [G04]

Stability-E: 0.0609 0.895 0.001960 0.684 0.06 2.72 0.0 0.0 0.0 0.10 320 0.44 [G05]

Stability-F: 0.0638 0.783 0.001360 0.672 0.04 2.72 0.0 0.0 0.0 0.10 200 0.44 [G06]

______________________________________________________________________________________________

Rural area, Briggs-Romania

__________________________

Meteorology a1 b1 a2 b2 c3 c1 d1 c2 d2 z0 hInv pH

_____________________________________________________________________________________________

Stability-A: 0.1120 1.060 0.000538 0.815 0.22 5.16 -0.0980 18.6 -0.225 0.40 1600 0.07 [R01]

Stability-B: 0.1300 0.950 0.000652 0.750 0.22 5.16 -0.0980 18.6 -0.225 0.40 1200 0.13 [R02]

Stability-C: 0.1120 0.920 0.000905 0.718 0.11 5.16 -0.0980 18.6 -0.225 0.40 800 0.21 [R03]

Stability-D: 0.0980 0.889 0.001350 0.688 0.08 5.16 -0.0980 18.6 -0.225 0.40 560 0.34 [R04]

Stability-E: 0.0609 0.895 0.001960 0.684 0.06 5.16 -0.0980 18.6 -0.225 0.40 320 0.44 [R05]

Stability-F: 0.0638 0.783 0.001360 0.672 0.04 5.16 -0.0980 18.6 -0.225 0.40 200 0.44 [R06]

_____________________________________________________________________________________________

Woods, town area, Briggs-Romania

________________________________

Meteorology a1 b1 a2 b2 c3 c1 d1 c2 d2 z0 hInv pH

____________________________________________________________________________________________

Stability-A: 0.1120 1.060 0.000538 0.815 0.22 7.37 -0.0957 4290 -0.600 1.00 1600 0.07 [W01]

Stability-B: 0.1300 0.950 0.000652 0.750 0.22 7.37 -0.0957 4290 -0.600 1.00 1200 0.13 [W02]

Stability-C: 0.1120 0.920 0.000905 0.718 0.11 7.37 -0.0957 4290 -0.600 1.00 800 0.21 [W03]

Stability-D: 0.0980 0.889 0.001350 0.688 0.08 7.37 -0.0957 4290 -0.600 1.00 560 0.34 [W04]

Stability-E: 0.0609 0.895 0.001960 0.684 0.06 7.37 -0.0957 4290 -0.600 1.00 320 0.44 [W05]

Stability-F: 0.0638 0.783 0.001360 0.672 0.04 7.37 -0.0957 4290 -0.600 1.00 200 0.44 [W06]

_____________________________________________________________________________________________

Tall buildings area, Briggs-Romania

___________________________________

Meteorology a1 b1 a2 b2 c3 c1 d1 c2 d2 z0 hInv pH

_____________________________________________________________________________________________

Stability-A: 0.1120 1.060 0.000538 0.815 0.22 11.7 -0.1280 45900 -0.780 4.00 1600 0.07 [T01]

Stability-B: 0.1300 0.950 0.000652 0.750 0.22 11.7 -0.1280 45900 -0.780 4.00 1200 0.13 [T02]

Stability-C: 0.1120 0.920 0.000905 0.718 0.11 11.7 -0.1280 45900 -0.780 4.00 800 0.21 [T03]

Page 164: Activitatea 1.1

A2.8

Stability-D: 0.0980 0.889 0.001350 0.688 0.08 11.7 -0.1280 45900 -0.780 4.00 560 0.34 [T04]

Stability-E: 0.0609 0.895 0.001960 0.684 0.06 11.7 -0.1280 45900 -0.780 4.00 320 0.44 [T05]

Stability-F: 0.0638 0.783 0.001360 0.672 0.04 11.7 -0.1280 45900 -0.780 4.00 200 0.44 [T06]

_____________________________________________________________________________________________

DISPERSION SYSTEM: Briggs-HOTSPOT(Lawrence Livermore Labs., U.S.)

(Lawrence Livermore Labs., U.S.)

___________________________________________________

Normal Terrain, HOTSPOT

_______________________

Meteorology ay by az bz cz hInv pH

____________________________________________________________

Stability-A: 0.22 0.0001 0.200 0.0000 0.0 1600 0.07 [N01]

Stability-B: 0.16 0.0001 0.120 0.0000 0.0 1200 0.13 [N02]

Stability-C: 0.11 0.0001 0.080 0.0002 0.0 800 0.21 [N03]

Stability-D: 0.08 0.0001 0.060 0.0015 0.0 560 0.34 [N04]

Stability-E: 0.06 0.0001 0.030 0.0003 0.0 320 0.44 [N05]

Stability-F: 0.04 0.0001 0.016 0.0003 0.0 200 0.44 [N06]

____________________________________________________________

Urban Terrain, HOTSPOT

______________________

Meteorology ay by az bz cz hInv pH

_____________________________________________________________

Stability-A: 0.32 0.0004 0.24 0.0000 0.001 1600 0.07 [U01]

Stability-B: 0.32 0.0004 0.24 0.0000 0.001 1200 0.13 [U02]

Stability-C: 0.22 0.0004 0.20 0.0000 0.000 800 0.21 [U03]

Stability-D: 0.16 0.0004 0.14 0.0003 0.000 560 0.34 [U04]

Stability-E: 0.11 0.0004 0.08 0.0015 0.000 320 0.44 [U05]

Stability-F: 0.11 0.0004 0.08 0.0015 0.000 200 0.44 [U06]

_____________________________________________________________

DISPERSION SYSTEM: DOURY

time-dependent dispersion coefficients

_________________________________________________________

Time-range (s) Ah Kh Av Kv

_________________________________________________

Strongest Diffusion (A-Pasquill)

--------------------------------

0 0.405 0.859 0.420 0.814 s1

240 0.135 1.130 1.000 0.685 s2

3280 0.135 1.130 20.00 0.500 s3

97000 0.463 1.000 20.00 0.500 s4

508000 6.500 0.824 20.00 0.500 s5

1300000 200000 0.500 20.00 0.500 s6

Weakest Diffusion (F-Pasquill)

------------------------------

0 0.405 0.859 0.200 0.500 w1

240 0.135 1.130 0.200 0.500 w2

3280 0.135 1.130 0.200 0.500 w3

97000 0.463 1.000 0.200 0.500 w4

508000 6.500 0.824 0.200 0.500 w5

1300000 200000 0.500 0.200 0.500 w6

A.2.1.3. Soluţia de implemetare Tabelul A2.1 prezinta schita de concept a algoritmului de selectie a sistemelor si de calcul al coeficientilor de dispersie, inclusiv ecuatiile de sistem utilizate.

Tabelul A2.1. Selectia sistemelor, ecuatiile de sistem si calculul coeficientilor de dispersie

Page 165: Activitatea 1.1

A2.9

Dispersion system code: C

Codes: D - Time-dependent Doury

C - COSYMA, Karlsruhe-Hulich - mild-hilly terrain (e.g. Central Europe)

B - BROOKHAVEN - industrial area

K - KLUG - plain field, water mirror

S - StLOUIS - tall building-featuring town area

M - Meadow, reservoir, Briggs-CNCAN, Romania

F - Farm land, Briggs-CNCAN, Romania

G - Grazing field, Briggs-CNCAN, Romania

R - Rural area, Briggs-CNCAN, Romania

W - Woods, town area, Briggs-CNCAN, Romania

T - Tall buildings area, Briggs-CNCAN, Romania

N - Normal Terrain, HOTSPOT, Lawrence Livermore NatLab, U.S.

U - Urban Terrain, HOTSPOT, Lawrence Livermore NatLab, U.S.

[sigma1]

valid$="CBKSMFGRWTNU"

warn$=""

k1$=upper$(left$(sys$,1))

if instr(valid$,k1$)=0 then

warn$="none"

return

end if

if k1$="C" then tip=0

if k1$="B" then tip=0

if k1$="K" then tip=0

if k1$="S" then tip=0

if hRel<=50 then k2$="1"

if hRel>50 and hRel<=180 then k2$="2"

if hRel>180 then k2$="3"

if k1$="M" then

tip=1

k2$="0"

end if

if k1$="F" then

tip=1

k2$="0"

end if

if k1$="G" then

tip=1

k2$="0"

end if

if k1$="R" then

tip=1

k2$="0"

end if

if k1$="W" then

tip=1

k2$="0"

end if

if k1$="T" then

tip=1

k2$="0"

end if

if k1$="N" then

tip=2

k2$="0"

end if

if k1$="U" then

tip=2

k2$="0"

end if

if k2$="X" then return

k3$=str$(class)

key$="["+k1$+k2$+k3$+"]"

open DefaultDir$+"\public\notepad\meteo\dis-sys.txt" for input as #1

while eof(#1)=0

line input #1,vo$

if instr(vo$,key$)>0 then

exit while

Page 166: Activitatea 1.1

A2.10

end if

wend

close #1

return

[sigma2]

vo$=trim$(vo$)

if tip=0 then

'Py Qy Pz Qz hInv pH

Px=val(trim$(word$(vo$,2)))

Qx=val(trim$(word$(vo$,3)))

Pz=val(trim$(word$(vo$,4)))

Qz=val(trim$(word$(vo$,5)))

hInv=val(trim$(word$(vo$,6)))

pH=val(trim$(word$(vo$,7)))

sigy=Px*downwind^Qx

sigz=Pz*downwind^Qz

if sigz>0.8*hInv then sigz=0.8*hInv

if sigy=0 then sigy=sigy0

if sigz=0 then sigz=sigz0

return

end if

if tip=1 then

if downwind=0 then

sigy=sigy0

sigz=sigz0

return

end if

'a1 b1 a2 b2 c3 c1 d1 c2 d2 z0 hInv pH

a1=val(trim$(word$(vo$,2)))

b1=val(trim$(word$(vo$,3)))

a2=val(trim$(word$(vo$,4)))

b2=val(trim$(word$(vo$,5)))

c3=val(trim$(word$(vo$,6)))

c1=val(trim$(word$(vo$,7)))

d1=val(trim$(word$(vo$,8)))

c2=val(trim$(word$(vo$,9)))

d2=val(trim$(word$(vo$,10)))

z0=val(trim$(word$(vo$,11)))

hInv=val(trim$(word$(vo$,12)))

pH=val(trim$(word$(vo$,13)))

sigy=c3*downwind/((1+0.0001*downwind)^0.5)

gx=a1*(downwind^b1)/(1+a2*(downwind^b2))

if z0>0.1 then

Fx=log(c1*(downwind^d1)*(1+1/(c2*(downwind^d2))))

else

Fx=log(c1*(downwind^d1)/(1+(c2*(downwind^d2))))

end if

sigz=gx*Fx

if sigz>0.8*hInv then sigz=0.8*hInv

if sigy=0 then sigy=sigy0

if sigz=0 then sigz=sigz0

return

end if

if tip=2 then

if downwind=0 then

sigy=sigy0

sigz=sigz0

return

end if

'ay by az bz cz hInv pH

ay=val(trim$(word$(vo$,2)))

by=val(trim$(word$(vo$,3)))

az=val(trim$(word$(vo$,4)))

bz=val(trim$(word$(vo$,5)))

cz=val(trim$(word$(vo$,6)))

hInv=val(trim$(word$(vo$,7)))

pH=val(trim$(word$(vo$,8)))

Page 167: Activitatea 1.1

A2.11

sigy=ay*downwind/((1+by*downwind)^0.5)

sigz=az*downwind/((1+bz*downwind)^cz)

if sigz>0.8*hInv then sigz=0.8*hInv

if sigy=0 then sigy=sigy0

if sigz=0 then sigz=sigz0

return

end if

return

A.2.2. Maşina de achiziţie şi prelucrare a datelor Demonstratorul de concept N-WATCHDOG (PoC) obtine datele de prognoza meteorologica din surse publice web – o tendinta in curs de conturare in Europa, unde platforma RODOS a deschis o directie de cercetare in acest sens. Tehnica utilizata in PoC recurge la urmatoarele:

(a) achizitia de date prin offline browsing facilitata de functii API ale sistemului de operare (Windows 7, 8);

(b) extractia datelor utile din fiserele de downolad prin HTML parsing; si (c) procesarea in runtime a datelor pentru aducerea lor in formatele necesare

codurilor. Schema operatiilor este redata in Figura A.2.1.

Fig. A.2.1. Schema de achizitie si prelucrare a datelor de prognoza meteorologica in N-WATCHDOG.

Alegerea furnizorilor de date publice primare a fost condusa de urmatoarele criterii:

Disponibilitatea de date suficiente necesitatilor de input ale codurilor, fie direct, fie prin inferare din alte date existente – cazul nebulozitatii si precipitatiilor;

Gradul de acoperire planetara cu statii meteorologice de furnizare a datelor pentru modelele de prognoza ale furnizorului web;

Frecventa de actualizare (refresh) a prognozelor; Stabilitatea formatului HTML/JS al paginiloror de web ale furnizorului;

Page 168: Activitatea 1.1

A2.12

Stabilitatea serviciului web; Duratele de request-access cat mai indelungate, fara abandonarea clientului; Referintele utilizatorilor privind calitatea constatata a prognozelor.

Algoritmii si solutiile de implementare necesare sunt specifici fiecarui distribuitor web de date publice si vor forma obiectul unor transferuri interne de informatii in cadrul Proiecului, intre dezvoltatorii PoC si ai Modelului Experimental EM. Conform specificatiilor Proiectului PCCA aprobat, procedura este legal utilizabila in conditiile in care PoC ramane un produs intern de cercetare, fara finalitati comerciale in sine. In masura in care dezvoltatorul produsului final – N-WATCHDOG ME va contempla, ulterior Proiectului, derivarea din ME de produse distribuibile la beneficiari terti, se vor avea in vedere termenii de licentiere in utilizarea datelor de la site-urile de origine si aranjamente corespunzatoare cu organizatiile respective, sau apelul in conditii similare la alte surse.

Page 169: Activitatea 1.1

A3.1

ANEXA 3.

Datele Geografice Cuprins

A.3.1. Termeni de referinţă ....................................................................................... A3.2 A.3.2. Resursele de date ........................................................................................... A3.2 A.3.3. Tipuri si versiuni .............................................................................................. A3.3 A.3.4. Soluţii de implementare .................................................................................. A3.6

Page 170: Activitatea 1.1

A3.2

A.3.1. Termeni de referinţă Experienta autorilor in dezvoltarea de facilitati DSS de asistare a managementui urgentelor de mediu (v.e.g.[22, 30]) a determinat urmatoarea selectie a exigentelor impuse sistemului de informatii geografice (GIS – Geographical Infromation System) potrivit aplicatiilor N-WATCHDOG:

a) Hartile de situatie: Sa asigure o acoperire virtual completa a Planetei; Sa fie georeferentiate si redate intr-o proiectie simpla, cat mai apropiata de

perceptia vizuala comuna. Sa reveleze in moduri recognoscibile atat vizual cat si numeric topografia,

comunitatile, reteaua cailor de comunicatie si, in masura posibilului – intreprinderi, institutii de interes social si facilitati de servicii.

Sa fie generate dinamic in cadrul sesiunilor de lucru automate sau asistate ale platformei (in runtime), pe arii de cuprindere ce decurg din extensia spatiala a zonelor potential expuse.

Sa fie integrabile in Rapoartele de situatie, de arhiva desktop sau destinate publicarii pe Serverul N-WATCHDOG.

Sa fie interactive (interogabile on-click), atat la interfata runtime cat si in arhiva desktop si pe Server.

Sa fie permanent realizabile, indiferent de disponibiltatea www, asigurand necesitatile N-WATCHDOG.

b) Informatia geografica textuala: Sa cuprinda elemente primare suficiente pentru aprecierea Vulnerabilitatii

Statice a comunitatilor, conform programului de evaluare descris in sectiunea 4 a Raportului.

Sa fie formatabila in fisiere editabile pentru actualizare si imediat utilizabile in aplicatii.

A.3.2. Resursele de date

S-au au in vedere urmatoarele resurse (Tabelul A3.1):

Tabelul A.3.1. Aplicatia, sursele primare de date, stocul de date procesate

Tip aplicatie Resursa primara Procesarea

Harti topografice

desktop

SRTM90(NASA) – elevatii mase

continentale

SRTM30(NASA) – elevatii mase

continentale

NOAA ETOPO1 – zone costiere si

batimetrie

54 GB Random Access files

2.17 GB Random Access files

1.73 GB Random Access files

Harti multilayer

web

Google Maps

Google Earth

Google Maps API (JS)

Google Earth Plugin API (JS)

Informatie textuala Servicii web de localizare geografica 8.93 MB Sequencial I/O file

by manual acquisition

Page 171: Activitatea 1.1

A3.3

A.3.3. Tipuri si versiuni

Figura A.3.1 prezinta tipurile de harta si versiunile de distributie avute in vedere.

Figura A.3.1. Hartile N-WATCHDOG: tipuri si versiuni de distributie.

Pentru distributia produsului se au vedere doua versiuni:

Versiunea ‘Gold’, ce ofera topografii recognoscibile precum si acuratete in calculul efectelor de teren asupra dispersiei atmosferice chiar si la raze de acoperire mici, de doar 3-5 km in jurul unei surse de emisii. ‘Gold’ foloseste ca sursa DEM SRTM-90 (NASA), cu o rezolutie de 90x90 m pe celula de grid la Ecuator.

Versiunea ‘Silver’, practicabila sub aspectul recunoasterii vizuale a terenului si a acuratetei de calcul, dar inferioara versiunii ‘Gold’. ‘Silver’ foloseste ca sursa DEM SRTM-30 (NASA), cu o rezolutie considerabil mai defavorabila, de cca 1000x1000 m pe celula de grid.

Ambele versiuni recurg, pentru reprezentarea vizuala a zonelor costiere si a ariei oceanice la sursa DEM NOAA-ETOPO1, cu o rezolutie inferioara resurselor SRTM 90 si 30 – fapt ce ramane insa fara consecinte de fond, deoarece modelele fizice sunt sensibile numai la elevatiile suprafetelor de reflexie (in cazul Oceanului/marilor, 0 m). Tranzitia de la masa continentala la aceste zone se asigura automat, de masina de harti (map engine) a codurilor. De asemenea, ambele versiuni ofera produsul vizual atat in mod-raster cat si in mod-contur de izoelevatii, in paleta de culori sau nuante de gris. Figurile A.3.2. – A.3.4 compileaza scurte descrieri ale resurselor DEM, din prezentarile originale ale site-urilor de origine, sau distribuitoare. Startegia de distributie a versiunilor (‘Gold’ – 55.73GByte si ‘Silver’ – 3.9Gbyte) in produsul final N-WATCHDOG EM se va stabili in faze ulterioare ale Proiectului.

Page 172: Activitatea 1.1

A3.4

Fig. A.3.2. SRTM 90 (NASA)

Page 173: Activitatea 1.1

A3.5

Fig. A.3.3. SRTM 30 (NASA)

Fig. A.3.4. ETOPO1 (NOAA)

Page 174: Activitatea 1.1

A3.6

A.3.4. Soluţii de implementare Masinile de harta (map engines) ale N-WATCHDOG valorifica resursele de date primare. Tabelul A.3.2 prezinta un rezumat al modurilor de abordare.

Tabelul A.3.2. Tipuri de harta si ‘masini de harta’ (map engines).

Map Type Map Engine

Desktop Topografic, Raster Canvas scanner-plotter interpolating DEM grid at pixel level. QB64 Application

Desktop Topografic, Contours

Canvas 168 x 168 grid scanner-liner interpolating DEM grid via Paul Bourke’s CONREC algorithm. LB 4.03 Application

Web, 2-D Basic Map Google Maps™ Hybrid Application: LB 4.03 + HTML5 + Google Maps API (JavaScript)

Web, 2-D Hybrid Google Maps™ Hybrid Application: LB 4.03 + HTML5 + Google Maps API (JavaScript)

Web, 3-D Earth Google Earth™ Hybrid Application: LB 4.03 + HTML5 + Google Earth Plugin API (JavaScript)

Ca si in cazul datelor meteorologice (v. Anexa 2), algoritmii si solutiile de implementare necesare vor forma obiectul unor transferuri interne de informatii in cadrul Proiecului, ce vor fi convenite intre dezvoltatorii PoC si ai Modelului Experimental EM. Conform specificatiilor Proiectului PCCA aprobat, procedura de utilizare a datelor DEM din surse publice este legala in conditiile in care PoC ramane un produs intern de cercetare, fara finalitati comerciale in sine. In masura in care dezvoltatorul produsului final – N-WATCHDOG ME va contempla, ulterior Proiectului, derivarea din ME de produse distribuibile la beneficiari terti, se vor avea in vedere termenii de licentiere in utilizarea datelor de la site-urile de origine si aranjamente corespunzatoare cu organizatiile respective, sau apelul in conditii similare la alte surse.

__________

Page 175: Activitatea 1.1

A4.1

ANEXA 4

Supliment bibliografic

Page 176: Activitatea 1.1

A4.2

Vamanu D.V., Vamanu B.I., Acasandrei V.T., Maceika E. and Plukis A. EURISOL Desktop Assisstant Toolkit (EDAT): A Modeling, Simulation and Visualization Support to the Preliminary Radiological Assessment of RIB Projects. The European Physical Journal A – Hadrons and Nuclei, Volume 44, No.1, Springer Berlin/Heidelberg, ISSN: 1434-6001 (Print) 1434-601X (Online), DOI 10.1140/epja/i2010-10935-9, pp. 129–146, 2010. U.S.EPA (1993). External Exposure to Radionuclides in Air, Water, and Soil, FRG-12 EPA-402-R-93-081 (U.S.A.). U.S.EPA (1988). Limiting Values of Nuclide Intake and Air concentration, and Dose Conversion Factors for Inhalation, Submersion and Ingestion, FRG-11 EPA 520/1-88-020 (U.S.) IAEA (2000). Generic Procedures for Assessment and Response During a Radiological Emergency. IAEA-TECDOC-1162, ISSN 1011–4289. IAEA (2001). Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment. Safety Reports Series No.19. International Atomic Energy Agency Vienna, 2001. Vamanu D.V., Acasandrei V.T., and Vamanu B.I. Safety risks in spent nuclear fuel road transportation: ‘black swans’ by malicious intent. Romanian Reports in Physics, Volume 66, No. 3, 2014.

Vamanu D.V., Slavnicu D.S., Vamanu B.I., V.T., Acasandrei and Gheorghiu D. Safety risks in spent nuclear fuel air transportation - a ‘black swan’ anatomy. Romanian Reports in Physics, Volume 66, No. 2, 2014.

Gheorghe A.V., Vamanu D.V. Resilience Governance through Serious Energy Gaming. EAI Endorsed Transactions on Energy Web. January-June 2013, Volume 13, Issues 01-06, e3. doi: 10.4108/trans.ew.2013.01-06.e3, 2013.

Vamanu B.I., Vamanu D.V. and Acasandrei V.T. (2012). Rationalizing disasters: the Standing Anticipation of Dynamic Vulnerabilities. Conference and partnering event on resilience against disasters - CONCERT Japan. Oral and poster presentation. Tokyo, Japan, 10-11 september 2012. Vamanu D.V., Slavnicu S.D, Galeriu D., Acasandrei V.T., Gheorghiu D. and Melintescu A. Decommissioning Research Reactors: A Case of a Reference Accident Scenario. Romanian Reports in Physics, Vol.63, No.1, pp. 50–66, 2011. Vamanu D., Gheorghe A. Situation Assessment Toolkit: the case of the Fukushima Accident. Second International Conference on Integrated Disaster Risk Management, IDRIM, Reframing Disasters and Reflecting on Risk Governance Deficits, University of Southern California, Los Angeles, California, July 14 -16, 2011. http://conference2011.idrim.org/IDRiM%202011%20Book%20of%20Abstracts%20With%20 Cover1.pdf. Vamanu D.V., Galeriu D., Slavnicu D.S., Stochioiu A., Acasandrei V.T., Melintescu A. and Gheorghiu D. Fukushima. Monitorizare IFIN-HH. IFIN-HH, Website IFIN-HH, martie-mai 2011. http://www.nipne.ro/fukushima_2011. Vamanu D.V., Vamanu B.I., Acasandrei V.T., Maceika E. and Plukis A. EURISOL Desktop Assisstant Toolkit (EDAT): A Modeling, Simulation and Visualization Support to the Preliminary Radiological Assessment of RIB Projects. The European Physical Journal A – Hadrons and Nuclei, Volume 44, No.1, Springer Berlin/Heidelberg, ISSN: 1434-6001 (Print) 1434-601X (Online), DOI 10.1140/epja/i2010-10935-9, pp. 129–146, 2010. Vamanu D.V., Slavnicu S.D, Gheorghiu D, Acasandrei V.T. and Slavnicu E. The Hydrological Impact Assessment in the Decision Support of Nuclear Emergency Response. Radiation Protection

Page 177: Activitatea 1.1

A4.3

Dosimetry, Technical Note, doi:10.1093/rpd/ncq048, Online ISSN 1742-3406, Print ISSN 0144-8420, pp. 1-11, 2010. Vamanu D.V., Gheorghe A.V. and Acasandrei V.T. Urban vulnerabilities: think simple International Journal Critical Infrastructures, Vol. 6, No. 3, pp. 304-325, 2010. Slavnicu S.D, Vamanu D.V., Gheorghiu D., Acasandrei V.T. and Slavnicu E. Assessing the Hydrological Impact in Nuclear Emergencies. Proceedings of the Third European IRPA Congress, June 14 – 16, 2010, Helsinki, Finland. 2010. Gheorghe A.V., Vamanu D. Vulnerability of Critical Infrastructure Systems: A Physical Analogy for Modeling Complex Hysteresis Behavior. Proceedings of The 10th International Probabilistic Safety Assessment & Management Conference (PSAM 10). June 7-11, 2010, Seattle Washington.

Slavnicu S.D, Vamanu D.V., Gheorghiu D., Acasandrei V.T. and Slavnicu E. Nuclear Emergency Response Exercises and Decision Support Systems – Integrating Domestic Experince with International Reference Systems. Proceedings of the European Nuclear Conference, May 30 – June 2, 2010, Barcelona, Spain, , ISBN 978-92-95064-09-6, 2010. Slavnicu D.S., Vamanu D.V., D. Gheorghiu, V.T. Acasandrei and Vamanu B.I. Decision support systems and emergency response exercises – lessons and issues. Radioprotection, vol. 44, no. 5, pp 97–101, ISBN: 978-2-7598-0447-4, 2009. Gheorghiu D., Slavnicu D.S., Vamanu D.V., Acasandrei V.T. Rodos and Acolytes: Integrating Domestic Experience With International Reference Decision Support Systems. Final Meeting of the EURANOS Project, “Final Contractors Meeting” and “Users Groups Meetings”, CIEMAT, Madrid, Spain, 22-26 June 2009. Gheorghe A.V., Vamanu D.V. From Risk Governance to Resilience Governance National Science Foundation (NSF) Meeting on Resilience, Sustainability and Critical Infrastructures, Alexandria, Virginia, USA, December 6, 2009. Gheorghe A.V., Muresan L. Vamanu D.V. Threats and Vulnerability Assessment of Maritime Infrastructure Systems. USA Navy - GCC Meeting on Critical Maritime Infrastructure Protection, Bahrain, February 10, 2009. Gheorghe A.V., Vamanu D.V. International Activities on System of Systems Engineering: an European Perspective. Workshop on System of Systems Engineering - State of the Art, University of New Mexico, New Mexico, USA, March 16 2009. Gheorghe A.V., Vamanu D.V. Critical Infrastructure Protection at Regional Level: Development and Use of DSS. Workshop on Regional Assessment of Critical Infrastructures, Bucharest, November 13, 2009. Slavnicu D.S., Vamanu D.V., Gheorghiu D., Acasandrei V.T. and Vamanu B.I. Decision Support Systems and Emergency Response Exercises – Lessons and Issues. International Conference on Radioecology and Environmental Radioactivity in Bergen, Norway, 15 – 20 June 2008. Vamanu D.V., Slavnicu D.S., Gheorghiu D., Acasandrei V.T. and Vamanu B.I. Decision Support Systems and Health and Environmental Impact in a Radioactive Release. Sesiunea stiintifica “Stiinte aplicate in studiul mediului inconjurator si materialelor”, Targoviste, 4-6 iunie, 2008. Gheorghe A.V. and Vamanu D.V. Homeland Security Related Issues with ‘Minor League’ Nuclear Infrastructures: Critical Topics on the Decommissioning of Research Reactors. 2nd Annual Homeland Defense and Security Education Summit, University of Maryland University College, USA, Summit sponsored and organized by The Naval Postgraduate School Center for Homeland Defense and Security, The Homeland Security/Defense Education Consortium, The U. S. Department of Homeland Security, and The University of Maryland University College, Mar 18-19, 2008.

Page 178: Activitatea 1.1

A4.4

Slavnicu D.S., Vamanu D.V., Gheorghiu D., Gheorghiu A., Acasandrei V.T., Vamanu B.I. Decision support systems. The evaluation of environmental impact in a radioactive release. National Conference of Physics, Magurele (Bucuresti), Romania, September 10 - 13, 2008 Slavnicu D.S., Vamanu D.V., Gheorghiu D., Vamanu B.I., Acasandrei V.T. and Gheorghiu A. Decission Support Systems – the Evaluation of Health and Environmental Impact in a Radioactive Release Romanian Reports in Physics, Volume 60, nr. 4, pp. 1115-1122, 2008 Gheorghe A.V. and Vamanu D.V. Quantitative Vulnerability Assessment of Critical Infrastructures: watching for hidden faults. International Journal of Critical Infrastructures, Vol. 4, Nos. 1/2, 2008, pp.144-152, 2008 Vamanu D.V., Gheorghe A.V., Acasandrei V.T. and Vamanu B.I. Critical Issues with ‘Minor League’ Nuclear Infrastructures: The Back End of the Life Cycle. International Journal of Critical Infrastructures, Volume 4, No. 4, ISSN (Print): 1475-3219, ISSN (Online): 1741-8038, pp. 368-391, 2008 Slavnicu D.S., Vamanu D.V., Gheorghiu D., Acasandrei V.T. and Vamanu B.I. Decision Support Systems and Emergency Response Exercises – Lessons and Issue. Proceedings of the International Conference on Radioecology and Environmental Radioactivity in Bergen, Norway, pp. 150-153, 15–20 June 2008. Gheorghe A.V., Vamanu D.V. Testing Critical Infrastructure Vulnerability: An Essay in Probabilistic Resilience Analysis. Published in NATO Science for Peace and Security Series: Information and Communication Security – Volume 13 ‘Computational Models of Risks to Infrastructure’, Editors: D. Skanata and D.M. Byrd August 2007, pp. 226-247, hardcover ISBN: 978-1-58603-766-6, IOS Press, The Netherlands, 2007. Gheorghe A.V. and Vamanu D.V. Risk and vulnerability games. The anti-satellite weaponery (ASAT). International Journal of Critical Infrastructures, Vol. 3, Nos. 3/4, pp. 457-470, 2007. Slavnicu D.S., Vamanu D.V., Gheorghiu D., Acasandrei V.T., Vamanu B.I. CONVEX-3: A Case for Flexible Strategies in Nuclear Emergency Assessment. Proceedings of the 11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, London, U.K., pp. 91-95, July 2-6, 2007. Vamanu B.I, Acasandrei V.T. and Vamanu D.V. EURISOL – radioprotection tools – the Desktop Assistant. Joint EURISOL-EURONS Town Meeting, Helsinki, Finland, 17 – 20 September, 2007. Poster presentation. Vamanu D.V., Slavnicu D.S., Gheorghiu A., Vamanu B.I., Acasandrei V.T. Exerciţiul de alertă nucleară “OLTENIA-2007”. IFIN-HH Raport tehnic, octombrie 2007.

Gheorghe A.V., Vamanu D.V. Critical Electricity Infrastructure: Current Experience in Europe, in Critical Infrastructures at Risk. Securing the European Electric Power System, eds. A.V. Gheorghe, M. Masera, M. Weijnen, and L. De Vries (Springer, Netherlands), Topics in Safety, Risk, Reliability and Quality Series, ISBN-10 1-4020-4306-6 (HB), ISBN-13 978-1-4020-4306-2 (HB), ISBN-10 1-4020-4364-3 (e-book), ISBN-13 978-1-4020-4364-2 (e-book), Volume 9, pp.195-253, 2006. Gheorghe A.V., Vamanu D.V. Another Tool in the Business of Spatial Framing of Illicit / Lost from Account Radioactive Material: Helping the AT (Anti-Terrorism) Paraphernalia Thrive. International Journal of Critical Infrastructures, Vol.2, No.4, Pages 347-356, 2006. Vamanu D.V., Slavnicu D.S., Gheorghiu D., Acasandrei V.T., Vamanu B.I. Adaptive Strategies in Nuclear Emergency Assessment: The ConvEX-3 Case. Romanian Reports in Physics. Vol.58, No.4, Pages 539-558, 2006 Gheorghe A.V., Vamanu D.V. Vulnerability Assessment of Critical Infrastructures. International Conference on Complex Systems, June 25-30, 2006.

Page 179: Activitatea 1.1

A4.5

Gheorghe A.V., Vamanu D.V. Vulnerability of Critical Infrastructures Exposed to Technical Failures or Natural Hazards. Chernobyl and Katrina: Two Names to Make History. Sixth Annual IIASA-DPRI Forum on Integrated Disaster Risk Management: Risks and Challenges for Business and Industry, , Istanbul, Turkey, 13 – 16 August, 2006. Gheorghe A.V., Vamanu D.V. Modeling Vulnerability of Interdependent CriticalInfrastructure: from Graphs to Models with Strange Attractors. NATO Meeting on Modeling Complex Systems, 15 – 18 May, Split, Croatia. Published in NATO Security through Science Series, IOS Press, Netherlands, 2006. Vamanu D.V., Slavnicu D.S., Gheorghiu A., Vamanu B.I., Acasandrei V.T. Evaluarea documentului “Revizia raportului final de securitate pentru DCNU”. IFIN-HH Raport tehnic intern, comanda nr.523/10.03.2006, martie 2006.

Gheorghe A.V., Birchmeier J., Vamanu D.V., Papazoglou I., Kroeger W. Comprehensive risk assessment for rail transportation of dangerous goods: a validated platform for decision support. Reliability Engineering & System Safety, Elsevier, 88, pp. 247-272, 2005 Gheorghe A.V., Vamanu D.V. On the Vulnerability of Critical Infrastructures: Seeing it Coming. International Journal of Critical Infrstructures, Vol. Nos 2-3, 2005. Gheorghe A.V., Vamanu D.V. Reading vulnerability in phase portraits: an exercise in probabilistic resilience assessment. International Journal of Critical Infrastructures, vol. 1, no. 4, pp. 312-330. Gheorghe A.V., Vamanu D.V. Risks in Business Design for Critical Infrastructures: the ‘DASHBOARD’ Concept. International Journal of Critical Infrstructures, Vol.2, No.1, Pages 70-82, 2005 Acasandrei V.T., Vamanu B.I. and Vamanu D.V. Cost assessment in nuclear decommissioning: a useful tool. Analele Universitatii Bucuresti, LIV, 2005, pp.19-31 (publicata octombrie 2007), 2005. Gheorghe A.V., Vamanu D.V. Critical Infrastructures Protection: From Systems Engineering to System of Systems Engineering. Use of Cellular Automata Modeling. International Conference on Resilient Infrastructures, Rotorua, New Zealand, September 2005. Gheorghe A.V., Vamanu D.V. Pixel as a Source of Input, Pixel as a Support of Output. Gulf Area International Workshop on the Use of GIS, Al Kuwait, 2005. Gheorghe A.V., Vamanu D.V. GIS: Pixels, Analytic Models Cellular Automata: A New Kind of Modeling. Gulf Area International Workshop on the Use of GIS, Al Kuwait, 2005. Gheorghe A.V., Vamanu D.V. Quantitative Vulnerability Assessment of Critical Infrastructures: Watching for Hidden Faults. Task Force G8 Meeting on Critical Energy Infrastructures, Brussels, November, 2005. Gheorghe A.V., Vamanu D.V. Quantitative Vulnerability Assessment for Critical Infrastructures: Bridging Risk Management and Safety. Proceedings of the International Conference on Risk and Safety Management, Hong Kong 2005. Gheorghe A.V., Vamanu D.V. Towards a Standard Model of Societal Vulnerability to Natural Disasters. The Katrina Paradigm OECD Workshop on Science and Technology for a Safer Society, Tokyo, Japan, December 5-6, 2005. Gheorghe A.V., Vamanu D.V. A cellular automaton approach to air flow dispersion in urban areas. Proceedings on Systems Analysis for a More Secure World: Application of System Analysis and REMS to Security of Complex Systems, Giacomo G.M. Cojazzi, Editor, EC JRC Ispra, pp. 369-383. 2005. Gheorghe A.V., Vamanu D.V. Daily Regional Vulnerability of Infrastructures to Obnoxious Agents. How vulnerable are you today? Proceedings of the Annual IIASA-DPRI Meeting on Integrated Disaster Risk Management, Beijing, September 2005.

Page 180: Activitatea 1.1

A4.6

Gheorghe A.V., Vamanu D.V. GIS: Pixels, Analytic Models, Cellular Automata. Innovations in Science and Policy for Risk and Vulnerability Assessment of Critical Infrastructures Proceedings of the Annual IIASA-DPRI International Meeting on Integrated Disaster Risk Management, September, 2005. Vamanu D.V., Slavnicu D.S., Gheorghiu D., Acasandrei V.T., Vamanu B.I. Riscuri eco-sanitare şi limite derivate de eliberare a radioactivităţii din activităţile de dezafectare a reactorului VVR-S, IFIN-HH. IFIN-HH Raport tehnic intern, comanda nr.933/20.07.2005, iulie 2005. Vamanu D.V., Slavnicu D.S., Gheorghiu D., Acasandrei V.T., Vamanu B.I. ConvEX 3 International Emergency Management Exercise: IFIN-HH/NIPNE Decision Support. A Technical Report, mai 2005. Gheorghe A.V., Vamanu D.V. Decision support systems for risk mapping: viewing the risk from the hazards perspective. Journal of Hazardous Materials, Volume 111, Issues 1-3, pp.45-55, 2004 Gheorghe A.V., Vamanu D.V. Complexity-Induced Vulnerability. International Journal of Critical Infrastructures, Vol. 1, no. 1, 2004, pp.76-85, 2004 Vamanu D.V., Slavnicu D.S., Slavnicu E., Vamanu B.I. Decision Support Systems in Nuclear Emergencies: A Scenario-Based Comparison of Domestic and Reference Tools. Radiation Protection Dosimetry , 112, 209 – 218, December, 2004 Gheorghe A.V., Birchmeier J, Vamanu D.V., Papazoglou I, Kröger W. Integrated Risk Assessment for Rail Transportation of Dangerous Goods: Decision Support Platform and an SBB Case Study. Reliability Engineering and System Safety, Elsevier, 2004. Gheorghe A.V., Birchmeier J., Kroeger W., Vamanu D.V., Vamanu B.I. Advanced Spatial Modeling forRisk Analysis in the Transportation of Dangerous Goods. PSAM7 – ESREL’04 Proceedings of the 7th International Conference on Probabilistic Safety Assessment and Management, 14-18 June 2004, Berlin, Germany (Published by Springer Verlag: London, Berling, Heidelberg, 2004). Vamanu D.V., Slavnicu D.S., Acasandrei V.T., Vamanu B.I. Radiological Assessment Assistance to Decommissioning. International Atomic Energy Agency Technical Meeting, Vienna, 1-3 November, 2004. Poster presentation. Vamanu D.V., Acasandrei V.T., Vamanu B.I. Aplicaţia interjudeţeană “Muntenia-2004”. Exerciţiu de protecţie civilă în caz de accident radiologic la IFIN-HH. Raport tehnic intern, septembrie 2004. Vamanu D.V., Slavnicu D.S., Gheorghiu D., Acasandrei V.T., Vamanu B.I. IFIN-HH Limite derivate de emisie ale instalaţiilor nucleare. IFIN-HH Raport tehnic intern, comanda nr. 1590/30.04.2004, aprilie 2004. Vamanu D.V., Gheorghe A.V., Vamanu B.I. On a Generic Model in Quantitative Vulnerability Assessment. Romanian Journal of Physics Supplement, Vol.48, pp 229-237, 2003. Gheorghe A.V., Vamanu D.V. Risk'o Meter and Living Risk Assessment. Inteligent Monitoring Integration. Workshop on Advancements in Accident Management Investigation. Invited presentation, Winterthur Insurance Company, Winterthur, Switzerland, 18 March 2003. Gheorghe A.V., Vamanu D.V. Risk, Vulnerability, Sustainability and Governance. Invited paper presented at the Telecom DoCoMo Seminar, Tokyo, Japan, 24 March 2003. Gheorghe A.V., Vamanu D.V. Dealing with Integrated Risk and Vulnerability Management. A new Way in Corporate Governance. Workshop in Corporate Governance, Zürich, ETH, Switzerland, 10 May 2003. Gheorghe A.V., Doerig A., Vamanu D.V. Towards a new Horizon in Corporate Governance. Think Tank Paper, UBS, Wolfsberg, Switzerland, June 30, 2003.

Page 181: Activitatea 1.1

A4.7

Gheorghe A.V., Vamanu D.V. Disaster Risk Management: Complexity Induced Vulnerability Management. International Workshop on Risk and Vulnerability Management, Kyoto, Japan, 27 July 2003. Gheorghe A.V., Vamanu D.V. Satellite Assisting Risk and Vulnerability Assessment for the Transportation of Dangerous Goods: Setting the Issues for Models and DSS. Joint Workshop ETH Zurich-Italian Space Agency on New Trends for Satellite Use in Risk Analysis, Zürich, Switzerland, 2 September 2003. Gheorghe A.V., Vamanu D.V. Decision Support System for Risk Management. European Commission, International Workshop on Severe Accident Management, Petten, Holland, 15 September 2003. Vamanu D.V., Isbasescu M., Berinde Al., Slavnicu D.S, Gheorghiu D., Acasandrei V.T, Vamanu B.I. Plan dezafectare Reactor VVR-S. Cap. 3.4. Evaluarea impactului asupra mediului. Raport tehnic intern, ianuarie 2003.

Vamanu D.V., Slavnicu D.S., Mateescu Ghe., Berinde Al., Acasandrei V.T. A Code Comparison Exercise within the European Project RODOS: Harmonizing Domestic and Reference Tools. International Journal of Risk Assessment and Management, vol.3, Nos 2/3/4, pp. 113-134, 2002 Gheorghe A.V., Vamanu D.V. Integrated Risk Assessment and Safety Management; Transportation of Dangerous Goods. International Journal of Risk Assessment and Management, Vol.3, Nos.2/3/4, 2002. Gheorghe A.V., Vamanu D.V. Vulnerability Assessment of Sustainable Energy Policies. Invited Presentation, ‘Technical Committee Meeting on Energy and Sustainable Development’, International Atomic Energy Agency, Vienna, Austria, 11 May 2002. Gheorghe A.V., Vamanu D.V. Emergency Management and Planning: Use of DSS and Knowledge Based Systems. Invited Presentation, the United Nations Office for Coordination of Humanitarian Affairs, Geneva, Switzerland, 18 June 2002. Gheorghe A.V., Vamanu D.V. Complexity Issues in Modelling of Vulnerability and Risk Management Processes. Invited Lecture, ‘The Future of Switzerland’ Foundation, Zürich, Switzerland, 27 August 2002. Gheorghe A.V., Vamanu D.V. The Risk’o Meter Concept. Proceedings of the 6th International Conference on Probabilistic Safety Assessment and Management, 23-28 June 2002, Vol. I, Elsevier, Amsterdam. Gheorghe A.V., Vamanu D.V. Quantitative Vulnerability Assessment for Critical Infrastructures. Proceedings of the 6th International Conference on Probabilistic Safety Assessment and Management, 23-28 June 2002, Vol. I, Elsevier, Amsterdam, 2002. Gheorghe A.V., Vamanu D.V. Vulnerability of Vital Systems: Impacts to Governance. Academia Europea Annual Meeting, ‘The Sciences and the Understanding of Risk: Policies for Public Trust and Well Being’, Lisbon, Portugal, 9-12 October 2002. Gheorghe A.V., Vamanu D.V. Disaster Risk and Vulnerability Management. Invited Presentation, Nazional Alarm Zentrale (NAZ), Zürich, Switzerland, 10 April 2002. Gheorghe A.V., Vamanu D.V. Sensors and Intelligent Monitoring Integration: Risk’o Meter. Workshop on Sciences and Technology within Societal Context, University of Tokyo, Japan, 25 January 2002. Gheorghe A.V., Vamanu D.V. Vulnerability Assessment in the Context of Sustainable Development. Annual Meeting of the Alliance for Global Sustainability (AGS), San Jose, Costa Rica, 21 March 2002.

Page 182: Activitatea 1.1

A4.8

Gheorghe A.V. and Vamanu D.V. Adapting to new challenges: IDSS for emergency preparedness and management. International Journal of Risk Assessment and Management, Volume 2, Numbers 3-4 / 2001, pp.211 – 223, 2001. Gheorghe A.V., Vamanu D.V. Indicators for Vulnerability Assessment and Management of Critical Infrastructures. Proceedings of the 5 th International Conference on Technology, Policy and Innovation: Main Theme - Critical Infrastructures, The Hague, The Netherlands, June 26-29, 2001. Gheorghe A.V., Vamanu D.V. The Risk Cadastre from a Concept Outline to Effective Implementation. Proceedings of the Conference and Workshops on Risk Analysis and Safety Management of Technical Systems, Gdansk, Poland 25-26 June 2001. Vamanu D.V., Slavnicu D.S., Mateescu Ghe., Berinde Al. Harmonizing Domestic and Reference Software Tools for Nuclear Accident Consequence Assessment. 7th International Conference on Harmonising within Atmospheric Dispersion Modeling for Regulatory Purposes, JCR-EI Belgirate, Italy, May 28-31, 2001. Gheorghe A.V., Vamanu D.V. Decision-support software tools for integrated risk assessment of hazardous substances in complex terrain. International Journal of Environment and Pollution, (4) 352-370, 1998.

Gheorghe A.V., Vamanu D.V. Emergency Planning Knowledge. Series: Dokumente/Polyprojekt Risiko und Sicherheit Nr. 13, VDF Verlag der Fachvereine Zurich, ISBN-10 3-7281-2201-7, p.239, 1996

Vamanu D.V., Gheorghe A.V. A heuristic approach to particle flows in complex terrain. International Journal of Environment and Pollution, (4-6) 462-490, 1996 Gheorghe A.V., Vamanu D.V. Sophisticated and intelligent systems and approaches in emergency engineering and management. International Journal of Global Energy Issues, (1-2) 82-98, 1995 Gheorghe A.V., Vamanu D.V. A pilot decision support system for nuclear power emergency management. Safety Science-Elsevier, Volume 20, Issue 1, pp.13-26, ISSN: 0925-7535, 1995 Vamanu D.V., Sandru P., Gheorghe A.V. Risk Culture in Romania - How Bitter the Pill? Proceedings of the 3rd International Conference of the Society for Risk Analysis (SRA), Paris, December 1991 Ursu I., Vamanu D.V., Gheorghe A.V., Purica I.I. Socioeconomic risk in development of energy systems. Risk Analysis, Risk Analysis, Volume 5, Issue 4, pp.315–326, 1985 Ursu I., Purica I.I., Vamanu D.V. Towards More Safety: Observing Synergisms in Reactor Behaviour. In “Nuclear Power Experience”, vol.IV, paper IAEA-CN-42-139, pp.255-266. International Atomic Energy Agency, Vienna, 1983 Vamanu D.V. Energy Pattern, Options and their Articulation in Romania. In Papers of the 12th Congress of the World Energy Conference, New Delhi, 18-23 September 1983. Ursu I., Vamanu D.V. Motivations and Attitudes in the Long-Term Planning of Alternative Energy Systems. In Proc. UNITAR Conference on Long-Term Energy Resources, Montreal, 26 November-7 December 1979. Vol.II, paper CF7/XXI/2. UNITAR, New York. i.q. in “Long-Term Energy Resources”, vol.I. Pitman (Boston-London- Melbourne-Toronto), 1981.

__________